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Abstract: The volume of maritime traffic is increasing with the growing global trade demand. The
effect of volume growth is especially observed in narrow and congested waterways as an increase in
the ship-ship encounters, which can have severe consequences such as collision. This study aims to
analyze and validate the patterns of risky encounters and provide a framework for the visualization
of model variables to explore patterns. Ship–ship interaction database is developed from the AIS
messages, and interactions are analyzed via unsupervised learning algorithms to determine risky
encounters using ship domain violation. K-means clustering-based novel methodology is developed
to explore patterns among encounters. The methodology is applied to a long-term dataset from
the Strait of Istanbul. Findings of the study support that ship length and ship speed can be used
as indicators to understand the patterns in risky encounters. Furthermore, results show that site-
specific risk thresholds for ship–ship encounters can be determined with additional expert judgment.
The mid-clusters indicate that the ship domain violation is a grey zone, which should be treated
carefully rather than a bold line. The developed approach can be integrated to narrow and congested
waterways as an additional safety measure for maritime authorities to use as a decision support tool.

Keywords: maritime safety; atomatic identification system (AIS); clustering analysis; anomaly
detection; strait of Istanbul; multi-dimensional K-means clustering

1. Introduction

Maritime transportation constitutes a significant share of the global trade [1]. As the
global trade volume is ascending, the size, speed and number of ships are also increasing.
With each vessel being a key part of its supply chain, navigational safety is a primary
concern for evolving ships and maritime traffic. Narrow and congested waterways are
specifically subject to these risks where complex local traffic and navigational conditions
are present, such as the Singapore Strait, Gulf of Finland, Kattegat in the Baltic Sea, and the
Strait of Istanbul (SOI) [2–5]. Ship–ship collisions are one of the most frequent accident types
in these waterways. Mitigation of potential consequences of these accidents is prioritized,
considering the subject locations’ environmental vulnerability, geostrategic importance and
urban life [6,7].

To estimate ship collision risks, researchers proposed different models. Geometric
collision probability analysis [8], statistical analysis on past maritime collisions [9], anomaly
detection [10] and accident estimation via stochastic modeling [11] have been some of the
directions in the efforts. Detection of accident trends and frameworks for preventive
measures have been studied [12]. Researchers also noted on limitations of maritime
accident studies, and one of the primary reasons has been the scarcity of accidents in
specific areas [13]. This has led to the prevention of comprehensive statistical learning
applications. At the same time, Automatic Identification System (AIS) emerged as a vital
source of maritime intelligence [14], where a wide range of information can be extracted
from vast amounts of data.

To understand the complex nature of accidents and make use of the vast amount of
intelligence sourced by AIS and Vessel Traffic Services (VTS), researchers have focused on
proxy measures increasingly [15]. These measures aimed to explain the conditions causing
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a maritime accident inside a defined risk framework. Dangerous events where at least two
ships are involved have been classified as non-accidental critical events, though a certain
common definition is still missing. Collision candidate [13], maritime traffic conflict [16],
and potential near miss [17] have been some of the wide range of adoptions for these
definitions. By focusing on risky encounters rather than maritime accidents, researchers
are able to conduct comprehensive statistical and machine-learning analyses using a vast
amount of data available.

Debnath and Chin [18] introduced a nearness-based understanding of potential mar-
itime accidents. Zhang et al. [17,19] proposed methodologies to identify near-miss sit-
uations during ship–ship encounters. Studies exploring the ship–ship interactions and
non-accidental critical events [15] quantified the collision risk via geospatial information.
Zhang et al.’s [20] work demonstrated a deep learning algorithm to classify potential
near-miss collisions. Rong et al. [21] presented a spatial correlation analysis based on
near-collision hotspots. Watawana and Caldera [22] developed a machine learning-based
classification of potential near-miss collisions. Li et al. [23] have combined clustering and
ship-to-ship encounter risk to model the macro complexity of the subject area to identify
encounter risk. Lately, Szlapczynski and Szlapczynska [24] proposed a ship domain-based
risk assessment framework. Rawson and Brito [25] developed a complex ship domain
methodology using machine learning. The study represents the variations in the ship
domain based on changes in navigational and geographical properties. Öztürk et al. [26]
developed a spatial near miss risk density based visual tool. While these studies are helpful
in determining the risk involved with an encounter, they mainly utilize distance between
ships as a parameter of risk.

The adoption of the distance between ships as a risk determination parameter helps
to assess the encounter situation with a comprehensive sense, while the caveat is the limi-
tations of distance parameters. Zhang et al. [17] suggest that risk determination method-
ologies can be helpful in ranking cases based on severity, and highly ranked cases can be
presented for expert judgments to prevent future cases. Considering the varying maneu-
verability capabilities of ships in short distances and navigational complexity, mitigation
of navigational risk at the exact moment of a risky encounter can be challenging [27]. Du
et al. [27] have been the first to offer a method for stand-on ships, which demonstrates
the issues for late risk determination. To enable preventive navigational action for a risky
encounter, maritime authorities need to be warned from time ahead. On this basis, it is
suggested that the development of risk assessment models independent of the distance
between ships offers practically promising risk mitigation planning buffers, both as time
and distance.

The literature review indicates two important points. One of them is determining
risky encounters with ship domain does not reach a consensus yet. The second one is the
importance of mitigation of navigational risks during the navigation. To understand these
two problems, the encounters should be analyzed to find out the patterns. Thus, in this
study, patterns of risky encounters are analyzed with k-means clustering. The analyzed
encounters are demonstrated in three dimensions and compared with the ship domain to
highlight non-distance-related parameters’ values with respect to risk determination. This
approach enables the extraction of patterns of risky encounter variables independent of the
distance between ships and the grey zone, which is the zone between risky and non-risky
encounters. The developed methodology also serves as a validation framework from the
model variables’ perspective.

The introduced methodology can validate patterns of non-accidental critical events
from the historical AIS dataset of the ship–ship interactions via clustering. The study
proposes a validation framework for non-accidental critical event detection methodologies
rather than proposing an alternative to them [15]. The paper aims to present a discussion
on the interpretation of non-accidental critical events as a mass via mapping a large number
of the ship–ship interactions visually to develop site-specific and model variable-based
outcomes. With the help of this framework, patterns of near misses can be validated, site-
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specific risk thresholds can be determined and compared and grey zones for the encounters
can be discovered. The study demonstrates a case study in the Strait of Istanbul (SOI).

The following parts of the paper are structured as given. Section 2 outlines the problem
statement and information about the application area. Section 3 introduces the conceptual
basis of the applied model, introduction of the background of the used model variables and
the risk identification mechanism. Section 4 presents the development of the methodology,
as well as a detailed outline of the clustering algorithm in the scope of this study. In
Section 5, results and discussion are provided. Section 6 includes the conclusions.

2. Problem Statement and Application Area
2.1. Problem Statement

Studies on the analysis of non-accidental critical events [15] have gained attention, and
various models are being proposed to identify these risky encounters. While the validity of
developed methodologies has not been comprehensively established, researchers suggested
that using different methods may lead to increasingly unreliable results [28]. Due to a
lack of systematic validation, patterns of ships’ behaviors during non-accidental critical
encounters remain a research question. Since each method is being developed with a
limited number of model variables, the specific impact of these variables or other ship
properties in the moment of risky encounters is not discovered. Considering the complexity
of the relationship between variables with the nature of potential accidents, examining
each model variable with respect to others can lead to meaningful outcomes. On this basis,
analysis of model variables can help to validate proposed methodologies. As patterns
are discovered, models can be improved to adapt to the nature of risky encounters. This
study proposes a method to validate risky encounter models through high dimensional
clustering-based mapping of model variables with respect to risk based segregation with
the aid of ship domain.

Previous clustering applications showed navigational characteristics and applied
risk analysis to model outcomes [20,24,29–31]. Liu et al. [32] presented a conflict detection
method using a dynamic ship domain. They also used the ship domain to detect the severity
of a conflict. Liu et al. [32] also adopted K-means clustering, though in the spatiotemporal
domain, to find areas of conflict as hotspots. Feng et al. [33] used K-means clustering to
quantify collision risk by extracting shipping routes’ information entropy. Zhou et al. [34]
implemented a ship behavior clustering, which allowed ships’ systematic classification
based on their characteristics. Wang et al. [35] developed a co-clustering-based method-
ology for discovering ship trajectory co-occurrence patterns. Zhang et al. [36] proposed
a ship route design based on AIS trajectory analysis. Mieczynska and Czarnowski [37]
used clustering to improve AIS device efficiency, where they aimed to eliminate existing
outliers resulting from AIS packet collision. Park and Jeong [38] estimated collision risk
via distance-based parameters, such as distance at closest point approach (DCPA) and
time to closest point approach (TCPA). Rawson and Brito [39] presented opportunities and
challenges for particularly supervised learning while outlined issues such as transparency
and evaluation were also applicable to unsupervised methodologies presented in this paper.
These studies did not use synchronous AIS data during ship–ship interaction for clustering
to identify patterns.

The added value of this paper is the specific focus being proposed for the ship–ship
interaction moment. Ships can be defined via their AIS intelligence synchronously in a ship–
ship interaction. In this study, intelligence is extracted under the hypothesis of proposed
model variables, and a large number of interactions are mapped to a three-dimensional
plot. Thus, the aim is to show how ship length and ship speed are distributed and related
to each other. These features are also combined with a risk measure in the same plot to
identify patterns of these model variables. The research questions of this study can be
summarized as below:
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1. With respect to varying degrees of risk, how can the patterns for risky encounters be
discovered and validated through model variables?

2. Is it possible to detect vessel size and vessel speed as risky encounter parameters in
predicting potential near–miss situations?

3. Can the grey zones between risk/non-risky encounters be identified?

2.2. Application Area

A long-term AIS dataset is utilized in the scope of this study, which is captured from
the Strait of Istanbul (SOI). This part presents a general view of the application area and
data duration.

The Strait of Istanbul is one of the busiest and most complex waterways around the
world. Navigational complexity is driven by the combination of local/transit traffic, con-
tinuously varying current regimes, strict maneuvers and narrow sections of the waterway.
These are amplified with the crossing scheme, which meets two traffic routes in the busiest
section of the straight [40]. With maritime traffic exceeding 300,000 vessels [40], complexity
affects ship–ship interactions significantly.

In Figure 1a, yearly descriptive statistics about the types of ships passing through the
SOI are presented. In Figure 1b, the distribution of length intervals for ships is presented.
The largest percentage of the ships are comprised of cargo ships. When the ship length
intervals are examined, the largest number of ships are present at 100–150 m intervals.
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To obtain the full picture of the waterway traffic, 1 year of AIS data have been analyzed,
covering a time range between September 2014 and August 2015. AIS data messages are
stored and managed through Structured Query Language (SQL), with a size of 94 Gigabytes
(GB). Detailed information about the data collection, initial management and organization
process can be found in Altan and Otay [40].

3. Conceptual Basis

The scalable and interpretable nature of a clustering model with few variables would
be a basis to pioneer discussions on observational insights based on clustering outcomes.
Since one of the objectives of this study is to identify patterns in risky encounters, showing
the relevance of used variables has been a prioritized objective. However, challenges are
present for an innovative method’s potential applicability as a software system to maritime
navigation systems [41]. On this basis, the clustering model is structured so that it can be
tested without needing a complex computational system or runtime and with relatively
few features. Considering the studies in the literature, the main risk parameter is taken as
the ship domain violation. Own ship’s length and the target ship’s speed are used as the
clustering model variables. In this section, the risk parameter and clustering variables are
explained as subsections.
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3.1. Ship Domain Violation

Fujii and Tanaka [42] suggested that the ship domain is an area from which target
ships must avoid. On the other than, recent studies show that violation of the ship domain
may not lead to a risky situation, considering a safe passage at a close distance with
complete control [15]. Rawson and Brito [25] demonstrated a critique of ship domain-based
assessment and risk and noted potential caveats. While researchers [7,43] showed that
narrow waterways have complex conditions resulting in locally designated safe encounter
conditions. A potential result is site-specific conditions-based ship domains [44]. Altan
and Meijers [45] proposed a ship domain for the SOI in this perspective. The study [45]
showed the areas around central ships that surrounding ships tended to avoid in the SOI,
and the mentioned ship domain model is used in this research. The applied ship domain
for the proposed model resembles the natural conditions. It signifies those ships violating
these naturally identified areas are subject to a violation that is not naturally observed in
ship–ship interactions of the SOI. These can be interpreted as potential maritime conflicts
with respect to site-specific conditions.

3.2. Model Variables

Congested waterways bring both transit and local ships together in close proximity.
The most distinctive aspect of these types of marine vessels can be mentioned as their
length, considering the large sizes of cargo ships, bulk carriers and tankers. At the same
time, local ships have smaller sizes and are mainly used as a means of public transportation.
Since transit ships are subject to strict speed limit constraints, local ships’ speeds are found
to be more diverse. On these bases, this article aims to highlight how the speed of a target
ship is determinative in understanding an encounter’s risk aspect, considering the size
of the own ship as a parameter for the target ship’s crew. Consequently, the target ship’s
speed and its own ship’s length are determined as model variables.

Degré and Lefévre [46] have been the first to propose the usage of velocity in the
maritime field in the context of determining the collision risk. In addition, Lenart [47]
also contributed to the integration of velocity to determine collision danger via collision
threat parameter area (CTPA), based on the idea that the velocity of the subject ship falls
into CTPA. Velocity has been integrated as a basis for linear velocity obstacle (Linear-VO)
models to detect if the subject ship’s velocity falls into the dedicated zone of velocity
obstacle. This is generated by the model by Chen et al. and Kuwata et al. [13,48], where
VO is integrated with COLREGs (Convention of International Regulations for Preventing
Collisions at Sea) to develop a motion planning algorithm for unmanned surface vessels
(UAV). Chen et al. [13] suggested a time discrete non-linear velocity obstacle (TD-NLVO)
method to detect collision candidates. While the velocity obstacle (VO) approach is based
on a spatio-temporal relationship among objects, the basis for the proposed model is the
utilization of the velocity of the target ship at the closest distance to its own ship. This
enables us to validate if speed can be a risky encounter parameter in predicting the potential
near-miss situation or not.

Zhang et al. [17] have applied ship length as a decision parameter, both directly and
indirectly, via the ship domain approach and reached the outcome that vessel size is a
significant indicator for a possible near-miss situation’s detection via classifying ships’
size into three clusters. The local and transit maritime traffic characteristics of narrow
waterways are distinct. Moreover, there is a significant difference between local ships’
sizes and transit ships’ sizes [40]. Due to this, it has been relevant to include ship size
as a decision factor for other ships in interaction. Furthermore, this study also describes
the understanding of the own ship’s length by surrounding vessels. One hypothesis can
be outlined as local ships’ captains being “more cautious” in certain conditions where
transit ships’ observable characteristics resemble intimidation. This is also outlined via
varying ship domains based on speed, length, vessel type, course over ground (COG), and
approaching angles [45], including ship length as a feature to contribute to detecting the
outcome of this hypothesis as well.
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4. Materials and Methods

In this part, the framework of the procedure, encounter model and clustering is sum-
marized. Through the framework, significant steps to develop the course are highlighted.
In the encounter model section, the most fundamental stage of development of the compu-
tational model to extract intelligence out of the ship–ship interaction situations is discussed.
Moreover, the utilized ship domain approach to assessing risky encounter determination is
provided. Feature selection and design of risky encounter assessment features are outlined.
Furthermore, a sample preprocessed dataset is presented. In the Clustering section, the
determination of the appropriate algorithms and practical optimality tests are explained.
Additionally, the aspect of three-dimensional interpretation and the conceptual basis is
demonstrated on the literature basis.

4.1. Framework of the Procedure

Throughout the analysis, different methodologies are combined constructively. In the
initial step, an algorithm is developed to transform the raw AIS dataset to an encounter
model, where each ship–ship interaction is extracted with respective parameters. Next,
based on an extensive literature review and experimental calculations, variables are selected
and designed to be introduced to the clustering model. Determination of the used clustering
algorithm is also conducted. Based on variables chosen and predetermined algorithms, an
optimal number of clusters are calculated via optimality tests, and candidate cluster counts
are prepared. In the final step, a three-dimensional clustering application is performed via
two distinct ship domain approaches. A high-level diagrammatic representation of the
process is provided in Figure 2.
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4.2. Encounter Model

A ship–ship encounters database is developed to determine potentially risky encoun-
ters. Following an extensive cleaning and preprocessing procedure, algorithms are built
and applied to the raw AIS database to create a dataset suitable for the analysis. The
resulting dataset has been the basis of clustering applications. Montewka et al.’s [4] circular
ship domain, which is also utilized by Weng et al. and Mou et al. [43,49], is adopted. Ship
domain violation criteria are used as “Own ship’s domain should not be violated by the
entrance of the target ship” [50].

In Figure 3, a representation of the encounter searching algorithm is presented as
a sketch in a non-scaled way. A developed algorithm is used to capture the encounter
between two ships. Around each own ship, a 1 km meters radius circle is searched. This
area is represented with circle #1 in Figure 3. Ships and their distance inside this radius are
recorded. Among interactions, the closest interaction between all ships is extracted. Review
and elimination of duplicate ship–ship interactions are applied to keep a single interaction
between each ship pair. During the application of the algorithm, the non-regular timely
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submission of data points is overcome via a linear interpolation process. In this way, each
interaction situation is analyzed in a synchronized way.
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After determining the ship interactions, a smaller circular area is searched around the
own vessels. In this step, the radius of the circle is determined through the ship domain
of the own ship, and it is demonstrated as circle #2 in Figure 3. For each encounter, the
rate of ship domain violation or non-violation is recorded. Through this approach, relevant
encounters are recorded, and the dataset is prepared for clustering analysis.

A representation of the ship domain is given in Figure 4. In the Figure, (xi, yi) represent
own ship’s location, and (xj, yj) represent the target ship’s location. li is the length of the
own ship, vj is the velocity of the target ship. Distance between these ships is provided
with Dij, where the calculation is given in Equation (1). The radius of the circular ship
domain is represented as r, and the distance from the target ship to the domain boundary
is shown as d.

Dij =
√

(xi − xj)
2 + (yi − yj)

2 (1)
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For the size of the ship domain, Mou et al. [49] state that the majority of circular
ship domain radii are around three times the own ship’s length. Based on the unique
conditions in the SOI, where narrow passages as low as 700 m are a significant challenge
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for captains [37], two times the own ship’s length is determined as the basic ship domain
approach as given in Equation (2).

ri = 2× li (2)

On the other hand, considering the unique conditions of the SOI, a site-specific sta-
tistical ship domain approach is used to observe the changes in the results. Therefore, a
modified version of the [45] statistical ship domain with two-length groups for the SOI is
used. These can be provided as small LOA <= 157 m and large as LOA > 157 m. Smaller
ships’ domains were detected to have a lower LOA multiplier for their domain, while larger
vessels were observed to have a higher multiplier for their size. To simulate site-specific
conditions and represent more accurate ship domain violations, two different ship domain
calculations are proposed for respective length groups as given in Equations (3) and (4).

ri = 1.75× li ; i f LOA ≤ 157 m (3)

ri = 3× li ; i f LOA > 157 m (4)

The comparison of the basic ship domain and site-specific ship domain is given in
Table 1.

Table 1. Respective ship domain radii for two approaches.

Ship Length (m) Basic Ship Domain (m) Site Specific Ship Domain (m)

Length (li) ≤ 157 m 2 × li 1.75 × li
Length (li) > 157 m 2 × li 3 × li

After calculating ship domain distances, the violation of the ship domain for each
interaction and violation distances are mapped. Since each interaction’s distance is an
essential factor in the violation, a parameter to relate ship–ship distance, violation distance,
and own ship’s length is needed. To achieve this, the Violation Distance per Own Ship’s
Length (V.D.P.O.S.L.) measure is developed as given in Equation (5):

V.D.P.O.S.L. =
(
(li× r)− Dij

)
/(li) (5)

where li is the own ship’s length, r is the domain radius for the individual approach, and
Dij is the distance between two ships. The V.D.P.O.S.L parameter is critical in the sense
that it provides a depth of risk spectrum for model variables. Rather than identifying risky
or non-risky situations, the spectrum enables the assessment of risk associated with each
encounter smoothly. Moreover, due to the −1 to 1 scale of the variable, encounters that
have a value close to 0 are positioned to be neutral, independent of their sign.

V.D.P.O.S.L. parameter also signifies if a ship’s domain is violated or not. Based on
similar calculations, this can be represented via a binary relationship as in Equation (6),
where x represents own ship’s length:

f (x) =
{

0, | Dij − (x× r) > 0
1, | Dij − (x× r) ≤ 0

(6)

By using the explained framework, a representation of the prepared dataset used in
the clustering analysis is provided in Table 2.
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Table 2. Dataset used in the clustering process.

Variable Value

Own Ship’s Length (m) 157
Target Ship’s Speed (m/s) 4.5
Basic Ship Domain (m) 157 × 2
Site-specific Ship Domain (m) 157 × 1.75
Distance (m) 350
Violation Distance per Own Ship’s Length (B.S.D.) ((157 × 2) − 350)/157
Violation Distance per Own Ship’s Length (S.S.S.D.) ((157 × 1.75) − 350)/157
Violation Indicator (0 or 1) (Basic Ship Domain) 0
Violation Indicator (0 or 1) (Site-specific Ship Domain) 1

4.3. Clustering Model

Unsupervised learning is generally positioned as the exploratory procedure during
an analysis. Moreover, it is identified to be challenging in the sense that assessing the
results of an unsupervised learning implementation can be subjective due to the lack of a
clear indicator of success [51]. Clustering can be identified as one of the most fundamental
unsupervised learning algorithms, convenient where datasets are not naturally labeled and
patterns are hidden among the hidden layers. It is also defined as the process of finding out
what happens naturally in a given dataset [52]. For the case of vast datasets, if labeling is a
challenging process, clustering becomes significantly efficient in discovering insights [53].
Considering the randomness of the encounters, the K-means algorithm is utilized with its
computational feasibility, high dimensional convenience and robustness [54].

The k-means algorithm conducts a center-based grouping of provided data points,
and each center would represent its group. It is also referred to as “vector quantization”,
where the main objective of the algorithm is to apply division to numerous data points for
k distinct groups in a way that within-group distances are minimized and distance between
members of different groups are maximized [54]. The algorithm works to iterate itself
until the centers of the groups would not be subject to further change with each iteration.
Additionally, a specific limitation of iterations can be included. Previously, for near-miss
modeling, K-means has been used to model spatial images’ clustering to reveal patterns [17].
K-means can be identified as applicable, considering their applicability in visualization and
suitability for various shapes to occur due to clustering in the high dimensional space. Since
three-dimensional observation is crucial for this research, K-means is suitable to serve.

Since K-means require predetermination of the number of clusters, an initial step for
deciding on the optimal number of clusters is needed. Quantitative methodologies to
relate the within-cluster sum of distances and the inter-cluster sum of lengths are helpful in
conducting judgments. Silhouette Coefficient and Elbow Method are utilized in the scope
of this paper. Silhouette can be defined as the measure of within closeness and between
apartness of each cluster. This can be expressed as a natural separation assessment for each
cluster; in other words, it assesses if the resulting clustering scheme reflects the natural
conditions. To calculate Silhouette, the average dissimilarity of a point to its cluster and
average dissimilarity to other clusters would be required metrics. It is calculated for each
data point, and each score from a dataset can be averaged to assign a Silhouette score
for a given dataset in a given number of clusters status. Secondly, elbow methodology
measures the sum of squares of each data point to its cluster center [55]. A higher number
of clusters may be potentially more explanatory to identifying detailed patterns in a dataset.
However, a lower number of clusters could be more insightful and practical for observing
distinct separations. Via the elbow method, the optimal point for these two assessments is
compared in a two-dimensional plot, and the number of clusters can be decided. While
clustering is an analysis that is highly dependent on the approach and can accommodate
subjectivity, visual observation is also helpful in assessing optimality in some clusters.

For the cases where quantitative methodologies do not propose an obvious outcome,
visual exploration and comparison via domain knowledge are required, as is also applied in
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this paper [56]. In this perspective, the optimum candidate number of clusters is generated
and presented in this study rather than selecting a single number of clusters. This can also
be identified as a remark on the subjective nature of clustering analysis, especially in higher
dimensions [53]. High dimensional clustering is known for its interpretable challenges and
lack of visual observational suitability [57]. The third dimension in clustering helps with an
additional observational layer for analysis. At the same time, it does not suffer from a lack
of interpretability; instead, it increases the revealing ability of results, so it is advantageous
from multiple perspectives.

5. Results and Discussion

The presented approach is applied to a comprehensive AIS dataset collected from the
Strait of Istanbul. After the extensive encounter model development process, a clustering
dataset has been prepared. Three variables are determined to be input for the clustering
model, namely, Own Ship’s Length (0 to 1), Target Ship’s Speed (0 to 1) and Violation
Distance per Own Ship’s Length (V.D.P.O.S.L.) (−1 to 1). The −1 to 0 range for V.D.P.O.S.L.
should be interpreted as the situation of the ship domain being violated. The 0 to 1 range
for the same scale should be interpreted as the ship domain not being violated. Moreover,
−1 represents the maximum distance between ships with respect to their own ship’s length,
and +1 represents the minimum distance with respect to their own ship’s length. Own
Ship’s Length is scaled between 10 m and 300 m. Target Ship’s Speed is scaled between
2 m/s to 15 m/s.

A total of 73,543 interactions are included in the three-dimensional clustering process.
Figure 5 represents a general overview of the process.
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Figure 5. General overview of the clustering process.

In the first clustering model, the basic ship domain approach is utilized, as provided in
Equation (2). To detect the optimum number of clusters, Silhouette Coefficient and elbow
analyses have been conducted. In the Silhouette analysis, 2 clusters obtained the highest
score with 0.3651. It was followed by 3 clusters with the second-highest score of 0.3183 and
4 clusters with 0.3143. Moreover, combined with a visual observation for different clusters
and the elbow analysis, local optimums in 3, 5 and 9 are selected as candidate numbers
of clusters. Silhouette analysis results can be found in Figure 6a. In Figure 6b, the elbow
method’s outcome is presented.
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In the second clustering model, site-specific ship domain conditions are used as
provided in Equations (3) and (4). Silhouette Coefficient resulted in two possible optimum
locations, 3 clusters and 5 clusters, with 0.3703 and 0.3027 scores, respectively. Following
an elbow analysis and observational judgment, a number of clusters are designated based
on these two alternatives, 3 and 5 clusters. Figure 7a,b represent the Silhouette coefficient
and elbow model’s graphs for site-specific ship domain conditions, respectively.
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Figures 8 and 9 represent three-dimensional clustering visualizations, and in each
figure, x, y, z dimensions represent:

1. x = Own Ship’s Length, Scaled (0 to 1)
2. y = Target Ship’s Speed, Scaled (0 to 1)
3. z = Violation Distance per Own Ship’s Length (V.D.P.O.S.L.), Scaled (−1 to 1)

Figure 8 is the representation of the basic ship domain approach, while Figure 9 is the
representation of the site-specific ship domain approach. In Figures 8a and 9a, 3 clusters
case is presented for two different ship domain approaches. Figures 8b and 9b represent
5 cluster cases. Finally, 9 cluster cases are presented in Figure 8c. In all visuals, colors are
randomly assigned and do not have an underlying implication.
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When all clustering outcomes are examined, the mutual pattern can be identified as the
mid-cluster, where a smooth trend of switching from non-violation to violation is observed.
As the z-axis represents the Violation Distance per Own Ship’s Length parameter, a certain
group of interactions that can be defined as almost violations and almost non-violations are
observed to be carrying similar properties. So, they form a cluster together. This cumulation
around point 0 in the z-axis can be interpreted with the indefinite or ambiguous transition
between violation and non-violation situations between ships. In other words, this is the
grey zone, which is the end-product of captains’ judgments about the risk. When a ship
domain is applied to label these encounters, some of them are labeled as non-risky, although
they are very close to risky encounters. As a result, the classification of each ship–ship
encounter is binary in terms of risk can be expressed to be challenged with this result.

Edges of clustering results in the z dimension explain how limiting properties are
shaped in ship–ship interactions. While there is an unclear separation between violation
and non-violation situations in the 0 line, both edges are distinctly clustered together with
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some data points in the mid-cloud. Considering the three-dimensional plot, the main
distinction between interactions is almost always the Violation Distance per Own Ship’s
Length, as provided.

In Figure 8, the dispersion of ship–ship encounters in three dimensions is visualized
from the own ship’s length perspective. With the increase in the number of clusters for the
basic ship domain between Figure 8a,b, the violation indicating cluster gets smaller. The
mid-cloud gets divided, and the non-violation cluster gets divided into two parts: one is in
the middle of the violation rate while the other is in the far-right edge. The interpretation of
this point is how edge points are not being impacted by the change in the number of clusters
and how the middle cluster is being further divided. At this point, since the majority of
interactions are in the region where violation to non-violation switch occurs, a further
separation within this group is being required by maximization of between clusters and
minimization of within-cluster principles. At the same time, with 5 clusters, the far-right
cluster gets to be divided into the vertical axis (target ship’s speed). This can be explained
as the target ship’s speed being a more crucial determinant than the own ship’s length
for the case of non-risky interactions. In Figure 8c, nine clusters case is presented. The
occurrence of the far left risky clusters is observed. Moreover, in the nine clusters case,
only 8 clusters are visible from the x perspective. This indicates how the own ship’s length
becomes crucial in the nine clusters case; thus, some of the clusters experience separation
in the x perspective.

With the implementation of a site-specific ship domain, more realistic outcomes are
attempted, and results are presented in Figure 9a,b. As a result of the implementation,
more data points are found out be belonging to the risky encounter class when compared
to the basic ship domain. Figure 9a represents the three clusters case, where increased
encounters on the negative z-axis are observed. At the same time, based on a general
comparison between basic ship domain and site-specific ship domain approaches for five
cluster cases, a slight change towards the negative sign in the z-axis is observed in the
cluster centers. This can be understood as the impact of site-specific ship domain and the
realistic outcome being riskier in the generous sense when a more accurate ship domain
approach is implemented.

In addition to the visual representation of the clustering, results are also shown in
Tables 3 and 4 in terms of clusters’ centers for each analysis. Fitted centers are demonstrated
to detect risky encounters and corresponding model variable values for their fitted centers.
In Table 3, basic ship domain approach, the highest target ship speed is observed in the
violation occurring cluster’s center. While the risky encounter cluster is also represented
by the lowest own ship’s length value. This indicates that the target ship’s speed and own
ship’s length are important determinants of ship domain violation as they represent two
edges for both features. In Table 3, five clusters setting, the risky encounter cluster is also
observed with the highest target ship speed and lowest own ship’s length. Furthermore,
the target ship speed is higher than the three clusters case for this setting. At the same
time, in the site-specific ship domain setting, a different pattern is observed. Violation
representing cluster is identified by the highest own ship’s length value. This result shows
how used decision criteria shapes outcomes, and model variables are representative of
risky encounter from different perspectives in varying settings.

Results indicate that the most distinctive axis is the z-axis, which is the defined metric.
It would indicate that while length and speed present a diverse distribution, theirs are
rather uniform, while V.D.P.O.S.L. metric segments encounter different groups. In other
words, the defined metric is a proxy parameter to understand the encounters’ nature about
involved risk, and occurring clusters along 0 value indicate encounters should not be solely
defined as risky or non-risky; rather, the risk is a continuous measure.
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Table 3. Basic Ship Domain Clustering Results: Fitted Centers.

Non-Scaled, Basic Ship Domain

3 Clusters Fitted Centers
Cluster No. Own Ship’s Length (m) Target Ship’s Speed (m/s) V.D.P.O.S.L.
1 96.872 4.821 −0.203
2 266.912 3.722 0.573
3 139.928 3.562 0.161

5 Clusters Fitted Centers
Cluster No. Own Ship’s Length (m) Target Ship’s Speed (m/s) V.D.P.O.S.L.
1 229.16 5.421 0.278
2 109.352 3.502 0.055
3 97.808 5.275 −0.278
4 186.728 3.262 0.348
5 284.384 3.489 0.655

9 Clusters Fitted Centers
Cluster No. Own Ship’s Length (m) Target Ship’s Speed (m/s) V.D.P.O.S.L.
1 129.008 5.035 −0.054
2 298.424 3.262 0.724
3 76.592 3.442 0.08
4 236.024 3.289 0.511
5 91.256 5.654 −0.39
6 117.152 3.249 0.115
7 285.944 5.181 0.493
8 173.624 3.282 0.302
9 205.136 5.315 0.208

Table 4. Site-Specific Ship Domain Clustering Results: Fitted Centers.

Non-Scaled, Site-Specific Ship Domain

3 Clusters Fitted Centers
Cluster No. Own Ship’s Length (m) Target Ship’s Speed (m/s) V.D.P.O.S.L.
1 124.64 5.055 0.15
2 207.008 4.435 −0.312
3 109.352 4.921 0.604

5 Clusters Fitted Centers
Cluster No. Own Ship’s Length (m) Target Ship’s Speed (m/s) V.D.P.O.S.L.
1 120.584 4.135 0.384
2 116.216 6.101 0.163
3 105.608 5.181 0.677
4 145.232 4.082 0.052
5 210.44 4.515 −0.359

When the overall results of both the B.S.D and S.S.S.D approaches are analyzed, the
clustering approach shows the middle clusters, which are at standing close to the ship
domain violation, have members both at the violating and non-violating side of the domain
boundary. This outcome proves that captains make their judgments according to visual
inspection. As a result, ship domain violation is found to be a grey zone rather than a bold
line. This outcome can help while making judgments about the risk level of the encounters.

6. Conclusions

In this paper, a novel methodology to explore patterns in ship–ship interactions is
presented and applied to the Strait of İstanbul. Three-dimensional clustering analysis
is conducted to present patterns among risky encounters. For clustering purposes, the
K-means algorithm is used. The number clusters were determined via the elbow and
Silhouette method. Visual feature-based mapping for 73,543 encounters is presented,
and feature-based separation of risky and non-risky encounters is discussed. The main
contribution of this paper is mapping synchronous states of ship speed and ship length
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in encounter situations together with varying degrees of risk. Ship domain violation per
ship’s length is presented as a criterion to assess the severity of the risky encounter and
integrated into a three-dimensional clustering analysis.

Results show that both the own ship’s length and the target ship’s speed provide
important outcomes in interpreting risky encounters. A cluster of risky encounters forms in
each result. For the basic ship domain approach, the lowest own ship’s length and highest
target ship speed represent the risky cluster. For the site-specific ship domain approach,
the highest own ship’s length represents a risky encounter cluster. The distinction between
risky and non-risky encounters is found to obtain a smooth transition. The Violation
Distance per Own Ship’s Length (V.D.P.O.S.L.) feature is the most distinctive feature among
the presented model features. Basic and site-specific ship domain approaches are used,
and both present similar results. The site-specific ship domain highlights risky encounters
and produces a greater risky encounter cluster. In all results, the largest cluster occurs in
the middle area, where the smallest Violation Distance per Own Ship’s Length values is
present. The mid-clusters show that violation is a grey zone rather than a bold line for both
basic ship domain and site-specific ship domain applications. Thus, labeling encounters
via just ship domain can create over or under-estimation of risky encounters.

A limitation of the study can be described as the lack of individual ship-level in-
formation due to the analysis of a large number of encounters. On this basis, the study
aims to demonstrate the large-scale occurrence of risky patterns and approach encounters
independent of their case-by-case nature.

The study can be improved by including additional model variables and cross-
comparison of different variable relationships via clustering. Alternative risky encounter
detection frameworks can be applied. The presented model can be applied to different
narrow and congested waterways to compare results. Since patterns of risk in terms of
model variables are presented, site-specific risk thresholds for model variables can be
determined, and these thresholds can be compared between different narrow and con-
gested waterways. In this way, characteristic and quantitative maritime traffic conditions
of different sites can be determined. This information can be utilized for maritime traffic
regulation through authorities. A ship domain, which has been agreed upon for the given
waterway, with all of its irregularities in terms of shape, can be used for further clustering
purposes and sensitivity checks of different ship domain sizes can be conducted. Lastly,
machine learning-based prediction models can be built to predict risky encounters without
including distance by examining ship length and speed as distinctive risk factors. This
promising application can help to predict potential risky encounters before vessels enter
the waterway.
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