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Abstract: This paper investigates the affine formation maneuver control for multi-heterogeneous
unmanned surface vessels (USV), aiming to enable them to navigate through narrow channels in the
near-sea environment. The approach begins with implementing an affine transformation to facilitate
flexible configuration adjustments within the formation system. The affine transformation of the
entire formation is achieved by controlling the leaders’ positions. Second, this article introduces an
anti-perturbation formation tracking controller for the underactuated vessels, which assume the role
of leaders, to accurately follow the arbitrary formation transformation. Third, the followers consist of
fully actuated vessels with the same kinematic model as the leaders but different dynamic models.
This paper utilizes the affine localizability theorem to derive an expected virtual time-varying trajec-
tory based on the leaders’ trajectory. The followers achieve the desired formation maneuver control
by tracking this expected virtual time-varying trajectory through an anti-perturbation formation
tracking controller. Finally, the efficacy of the introduced control law is confirmed and supported by
the results obtained from rigorous simulation experiments.

Keywords: multi-heterogeneous unmanned surface vessels; disturbance estimation; formation tracking
control; affine transformation

1. Introduction

The field of unmanned maritime vehicles stands as a beacon of technological progress.
Within this realm, the importance of unmanned surface vessel (USV) formation technology
is consistently growing, driven by its remarkable strides in recent years [1–4]. USV forma-
tion represents a dynamic and collaborative approach that involves the orchestrated actions
of multiple unmanned surface vessels. Its vast potential extends across an impressive range
of essential domains, encompassing oceanography, resource surveying, maritime traffic
management, and the critical realm of rescue operations. Embracing the concept of USV
formation enables the realization of an unprecedented level of intelligent coordination and
seamless communication among these autonomous vessels. This achievement not only sig-
nificantly enhances task execution efficiency and safety, but it also simultaneously reduces
our dependency on human resources, driving down overall operational costs [5–8]. The
multifaceted benefits of USV formation have garnered attention and genuinely captivated
the maritime industry, captivating stakeholders with the immense value it offers. As ongo-
ing advancements in this technology unfold, a transformative era is on the horizon, poised
to reshape our approach to the myriad of challenges naval operations pose. This ushering
in of a new generation brings remarkable capabilities and opportunities, underscoring
the profound impact that autonomous maritime systems, driven by USV formation, will
have on our naval future. The convergence of advanced technology, strategic coordination,
and optimized resource utilization defines this exciting trajectory, promising a lot where
innovation and efficiency harmoniously navigate the complexities of our oceans.
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Control methods play a pivotal role in USV formations and can be categorized into two
fundamental types: formation-keeping control and formation maneuver control [4,9,10].
The primary goal of formation-keeping control is to sustain a relatively stable configuration
within the USV formation, ensuring the continuous and precise execution of formation-
related tasks. The maritime environment presents USVs with intricate external disturbances,
such as waves, winds, and currents, adding to the challenge. Concurrently, model un-
certainties further complicate the endeavor, potentially compromising the formation’s
stability [3,11–14]. Consequently, formation-keeping control stands as a prominent research
area in USV formations, with diverse control algorithms and methods meticulously ex-
amined to ensure the preservation of predetermined relative positions and spacing, even
amidst the volatility of maritime conditions. Recent studies [15–18] have significantly
contributed to the formation control problem by introducing novel algorithms, control
strategies, and theoretical advancements. These papers have explored various aspects of
formation control, ranging from distributed control algorithms that enhance robustness
and adaptability to using advanced sensing technologies for improved precision and co-
ordination. However, exclusive reliance on formation-keeping control may only partially
meet the demands for efficient navigation and flexible maneuverability during real-world
naval missions. To address the complexities and variabilities inherent in the marine envi-
ronment, along with the specific mission requirements, the concept of formation maneuver
control has garnered significant attention. Formation maneuver control empowers USVs
to uphold their relative positions within the formation while executing rapid and secure
maneuvering actions, encompassing translation, rotation, scaling, and shearing [6,19,20].
Through formation maneuver control, USV formations can swiftly respond to emergent
situations, evade obstacles, and optimize route planning, thereby augmenting the overall
adaptability and efficiency of formation-related tasks. This issue serves as the primary
motivation driving the focus of this study, which aims to contribute to advancing USV
formation technologies.

Many formation maneuver control strategies have emerged in recent years, encompass-
ing bearing-based, displacement-based, and distance-based control laws and techniques
grounded in barycentric coordinates and complex Laplacians [21–31]. These diverse control
methodologies possess unique advantages and applicability, offering various options for
advancing research in USV formations. Within the realm of bearing-based control, this
method predominantly focuses on adjusting the relative angles between USVs within the
formation, often employed for fine-tuning the orientation of vessels [27,30]. By manip-
ulating the heading angles of the USVs, this approach facilitates formation maneuvers
and adaptability to varying mission requirements and dynamic environmental conditions.
However, the displacement-based and distance-based control methods modify the relative
positions among the USVs within the formation [22,24–26,31]. By effectively controlling the
displacements and distances between the vessels, these methods maintain specific spacing
and positional relationships, thereby ensuring relative stability while allowing for flexibil-
ity to adjust the formation’s shape to meet situational demands. Barycentric coordinates
introduce a centroid-centric coordinate system for describing the formation’s structure,
enabling the manipulation of centroid coordinates to shape and optimise the formation’s
arrangement [32]. On the contrary, complex Laplacians employ sophisticated operators
to simulate interactions and cooperative behaviors within the formation, providing more
versatile and comprehensive control capabilities for shaping formations [21,29]. Despite the
achievements of these control methods in formation research, substantial challenges persist,
particularly in grappling with the intricacies of the marine environment and attaining
efficient control over formation maneuvers. To further elevate the performance and adapt-
ability of USV formations, the integration of affine transformation technology emerges as a
promising avenue for exploration. Affine transformations confer the flexibility to fine-tune
the formation’s shape and structure, offering advanced and diverse control strategies for
formations [28,33–36]. Consequently, this paper will focus on the comprehensive study of
affine transformation technology, delving into its application within USV formations to
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contribute meaningfully to the continued advancement of USV formation technology. This
issue is the second motivation for this study.

Furthermore, conventional USV formation systems typically adopt a homogeneous
formation, wherein all USVs share identical characteristics and control strategies [37]. While
this formation type is straightforward to implement, it presents certain limitations when
confronted with intricate and dynamic environmental conditions and diverse mission
requirements. Homogeneous formations need help to fully adapt to the diverse demands
of various tasks and miss out on leveraging the unique strengths and advantages possessed
by individual USVs. Thus, to further broaden the applicability of USV formations, the
incorporation of heterogeneous formations has emerged as an indispensable research
avenue. Heterogeneous formations, achieved through integrating USVs with distinct
characteristics and capabilities, allow for comprehensively utilising each USV’s strengths,
catering more effectively to diverse mission requirements. For instance, including fully
actuated and underactuated USVs within a formation enables the fully actuated ones
to demonstrate agile control capabilities while the underactuated counterparts excel in
executing sustained tasks. Moreover, introducing leader–follower concepts enhances the
flexibility and intelligence of heterogeneous formations, enabling them to accomplish more
sophisticated and cooperative actions. This aspect constitutes the third primary motivation
driving the focus of this study, aiming to contribute to the advancement of heterogeneous
USV formation technology.

This paper explores heterogeneous formation technology, particularly in USV forma-
tions in near-sea environments. The approach encompasses utilising affine transformation,
the affine localizability theorem, and an anti-perturbation formation tracking controller to
efficiently navigate USV formations through narrow channels. Through this study, fresh in-
sights and methodologies are intended to be provided for the development and application
of USV formation technology, with the ultimate goal of advancing the widespread adoption
of unmanned surface vessel technology in the marine domain. The key contributions can
be outlined as follows:

1. The combination of fully actuated and underactuated vessels creates a novel class
of heterogeneous formation systems, paving the way for further investigations into
other heterogeneous stratigraphic systems;

2. This paper proposes an anti-perturbation affine formation maneuver controller for
the leaders to effectively handle the challenges of offshore vessel applications and
various factors influencing formation control, including model uncertainties and
environmental disturbances;

3. This paper leverages the affine localizability theorem to achieve seamless formation
maneuver control to derive an expected virtual time-varying trajectory based on
the leaders’ trajectory. Subsequently, the followers effectively realize the desired
formation maneuver control by tracking this expected virtual time-varying trajectory
using an anti-perturbation formation tracking controller.

The following parts of this paper are structured in the following manner. Section 2
presents the motion dynamics of fully actuated and underactuated vessels and establishes
foundational notations for affine formations. The control problem is then formulated based
on these dynamics and notes. Section 3 proposes two distinct formation controllers for fully
actuated and underactuated vessels. Section 4 showcases the simulation results, providing
evidence to validate the effectiveness of our proposed approach. Finally, Section 5 concludes
this paper and glimpses potential future research directions.
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2. Preliminaries and Problem Formulation
2.1. Model Description

The object of this paper is a heterogeneous formation system consisting of Nl under-
actuated vessels and N f fully actuated vessels. The kinematics of the underactuated and
fully actuated vessels are modelled identically as follows:

.
ηi = J (ψi)νi i ∈ Nl ∪ N f , (1)

where ηi = [pi, ψi]
T ∈ R3 is the posture vector in the earth-fixed frame E, pi = [xi, yi]

denotes the position of the vessel i, ψi denotes the heading angle of the vessel i; νi =

[oi, ri]
T ∈ R3 is the velocity vector in the body-fixed frame Bi, oi = [ui, vi] denotes the surge

and sway velocity of the vessel i, ri denotes the yaw rate; and J (ψi) is the rotation matrix
associated with the heading angle ψi, which is as follows:

J (ψi) =

[
R(ψi) 02×1
01×2 11×1

]
, R(ψi) =

[
cos ψi −sin ψi
sin ψi cos ψi

]
(2)

The dynamics of the underactuated vessel i are modelled as follows:
.
ui = f i

u +
τi

wu
mi

11
+ τi

u
mi

11
.
vi = f i

v +
τi

wv
mi

22
.
ri = f i

r +
τi

wr
mi

33
+ τi

r
mi

33

i ∈ Nl , (3)

where f i
u = − 1

mi
11

(
ci

13ri + di
11ui + gi

u
)
, f i

v = − 1
mi

22

(
ci

23ri + di
22vi + di

23ri + gi
v
)
, f i

r =

− 1
mi

33

(
ci

31ui + ci
32vi + di

32vi + di
33ri + gi

r
)
; mi

11, mi
22, and mi

33 represent the inertia coefficient

including added mass effects. The variables ci
13, ci

23, ci
31, and ci

32 are Coriolis and centripetal
coefficients; di

11, di
22, di

23, di
32, and di

33 are hydrodynamic damping coefficients; gi
u, gi

v, and
gi

r are uncertain dynamics; τi
wu, τi

wv, and τi
wr are forces or moments of external time-varying

disturbances, such as wind, waves, and currents; τi
u and τi

r are actuator inputs for the
vessel i.

The dynamics of the fully actuated vessel i are modelled as follows:

Mi
.
νi + Ciνi + Diνi = τi + τi

w i ∈ N f , (4)

where τi ∈ R3 denotes the control vector; τi
w ∈ R3 denotes the environmental vector; Mi

denotes the inertial matrix; Ci denotes the Coriolis and centripetal matrix; and Di denotes
the hydrodynamic damping matrix. These matrices are given as:

Mi =

mi
11 0 0
0 mi

22 mi
23

0 mi
32 mi

33

, Ci =

 0 0 ci
13

0 0 ci
23

ci
31 ci

32 0

, Di =

di
11 0 0
0 di

22 di
23

0 di
32 di

33

. (5)

Before proceeding, the following assumptions are made.

Assumption 1 ([12]). The environmental disturbances and their derivatives are time-varying and
bounded.

Remark 1. Due to the continuous changes in the external environment and its finite energy
resources, the external disturbances acting on the water surface vessel are characterized by their
unknown, time-varying, and bounded nature. Therefore, Assumption 3.1 is justified.

Assumption 2 ([33]). All leaders’ velocities and derivatives are assumed to be smooth and upper-
bounded by known limits.
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Remark 2. The desired formation trajectory is planned using the polynomial trajectory plan-
ning method, which involves interpolating a sequence of carefully chosen reference points using
polynomials. Therefore, Assumption 2 is justified. For further details, please refer to [20].

Assumption 3. The leader’s velocity and velocity derivative are assumed to be measurable, and the
upper bounds of disturbances and the derivatives of disturbances are known.

2.2. Definitions for Affine Transformation

First, an undirected graph G = {V , E} is employed to describe the communication
topology in the heterogeneous formation system, which consists of a node set V = describe
the set of neighbors for the vessel i. Let Γ be a nominal configuration associated with

the graph G, which can be expressed as Γ =
[
Γl , Γ f

]T
= [γ1, γ2, · · · , γN ]

T . Next, some
necessary definitions and lemmas about affine transformation are presented.

Definitions 1 ([35]). For formation (G, Γ) , let wij ∈ R be a stresatisfiesessponding edge (i, j) ∈ E .
The stress is a scalar and satisfied by wij = wji. If ∑ wij

(
γj − γi

)
= 0 for all i ∈ V and j ∈ Ni,

the set Π, consisting of wij, is considered as an equilibrium stress set and Π satisfies the following
equality:

(Π⊗ I2)Γ = 0, (6)

where Π ∈ RN×N , satisfying:

[Π]ij =


0 i 6= j, (i, j) ∈ E
−wij i 6= j, (i, j) ∈ E
∑k∈Ni

wik i = j
. (7)

Definitions 2 ([35]). For formation (G, Γ) , the affine span of the nominal configuration {γi}N
i=1

is as follows:

A =

{
N

∑
i=1

αiγi

∣∣∣γi ∈ R2 , αi ∈ R and
N

∑
i=1

αi = 1

}
(8)

Definitions 3 ([35]). The affine image is a set consisting of all the affine transformations of the
normal configuration {γi}N

i=1 and defined as follows:

S(Γ) =
{
P =

[
pT

1 , pT
2 , · · · , pT

N

]T
∈ R2N

∣∣∣∣pi = Aγi + b
}

, (9)

where A ∈ R2×2 and b ∈ R2are the affine transformation.

Definitions 4 ([35]). For the formation, (G, Γ) is affinely localizable if both of the following

conditions are satisfied: i. {γi}N
i=1 affinely span R2; ii. Any P =

[
pT

l , pT
f

]T
∈ A(Γ), i.e., p f can

be uniquely determined by pl .

Lemma 1 ([35]). Given an augmented matrix Γ = [Γ, 1N ] ∈ RN×3 , the normal configuration
{γi}N

i=1 affinely span R2 if and only if N ≥ 3 and rank
(
Γ
)
= 3.

Lemma 2 ([35]). The normal configuration (G, Γ) is universally rigid if and only if there exists a
stress matrix Π such that Π is positive semi-definite and rank(Γ) = N − 3.

Lemma 3 ([35]). In the condition of {γi}N
i=1 affinely span R2, the normal configuration (G, Γ) is

affinely localizable if and only if {γi}i∈Nl
affinely span R2.

Lemma 4 ([35]). For the stress matrix, denote:
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Π = Π⊗ I2 =

[
Πll Πl f
Π f l Π f f

]
, (10)

with Π f l ∈ R2N f×2Nl and Π f f ∈ R2N f×2N f . If the normal configuration {γi}N
i=1 affinely span

R2 and has a positive semi-definite stress matrix Π, then it is affinely localizable if and only if

Π f f is nonsingular. When Π f f is nonsingular, for any
[

pT
l , pT

f

]T
∈ A(Γ), p f can be uniquely

calculated, and p f = −Π−1
f f Π f l pl .

2.3. Control Objective

The primary aim of this paper is to ensure the convergence of all vessels to their
designated positions, thereby achieving a target formation through coordinated maneuvers
within challenging narrow channel environments, i.e.,

lim
t→∞

(
pl(t)− p∗l (t)

)
= 0

lim
t→∞

(
p f (t)− p∗f (t)

)
= lim

t→∞

(
p f (t) + Π−1

f f Π f l pl(t)
)
= 0.

(11)

3. Affine Formation Maneuver Control Design

This section employs two practical control algorithms for leaders and followers to
successfully attain the desired formation maneuver control. The control framework for this
formation maneuver is visually illustrated in Figure 1.
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Figure 1. The control framework in Section 3.

3.1. Formation Tracking Control Design for the Leaders

Considering that the time-varying maneuver parameters A(t) and b(t) are decided by
the leaders, the objective is to design a tracking control such that lim

t→∞

(
pl(t)− p∗l (t)

)
= 0.

The details of the control design are provided in the following three steps.
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Remark 3. The intended trajectory for the formation is established through a polynomial trajectory
planning approach, which entails interpolating a well-selected sequence of reference points using
polynomial functions. Thus, the validity of the previously mentioned assumption is substantiated.
For more comprehensive information, please consult the work of [20].

Step 1: Define the position error as follows:

zi
1 = ‖pi − p∗i ‖2. (12)

Define the heading angle error as follows:

zi
2 = ψi − ψ∗i , (13)

where ψ∗i is the desired orientation angle for the ith leader, which has the following form:

ψ∗i =

{
0.5
(

1− sign
(∼

x i

))
sign

(∼
y i

)
π + arctan

(∼
y i/
∼
x i

)
, zi

1 6= 0

atan2
(
y∗i /x∗i

)
, zi

1 = 0
, (14)

where
∼
x i = xi − x*

i ,
∼
y i = yi − y*

i .
Derivation of Equation (12) yields:

.
zi

1 = uicos
(
zi

2

)
+ visin

(
zi

2

)
− .

x∗i cos(ψ∗i )−
.
y∗i sin(ψ∗i ). (15)

Derivation of Equation (13) yields:

.
zi

2 = ri −
.
ψ
∗
i . (16)

The virtual control law ensures the leader can reach the desired position:

ui
d =

(
cos
(
zi

2
))−1

(
−ki

uz
i
1 + visin

(
zi

2
)
+

.
x∗i cos

(
ψ∗i
)
+

.
y∗i sin

(
ψ∗i
))

ri
d = −ki

rz
i
2 +

.
ψ
∗
i

, (17)

where ki
u and ki

r are positive parameters.
Step 2: To avoid derivation of the desired velocity, let (17) pass through the following

first-order filter:

Ti
u

.
u

i
d = ui

d − ui
d

Ti
r

.
r

i
d = ri

d − ri
d

, (18)

where Ti
u and Ti

r are time constants. Define the velocity errors as follows:

ei
1 = ui − ui

d
ei

2 = ri − ri
d

ei
3 = ui

d − ui
d

ei
4 = ri

d − ri
d.

(19)

Derivation of Equation (19) yields:

.
ei

1 = f i
u +

τi
wu

mi
11
+ τi

u
mi

11
− ei

3
Ti

u
.
ei

2 = f i
r +

τi
wr

mi
33
+ τi

r
mi

33
− ei

4
Ti

r
.
ei

3 = − ei
3

Ti
u
−Λi

r

( .
x∗i ,

..
x∗i ,

.
y∗i ,

..
y∗i , ψ∗i ,

.
ψ
∗
i ,zi

1,
.
zi

1,zi
2,

.
zi

2, vi,
.
vi

)
.
ei

4 = − ei
4

Ti
r
−Λi

r

(
ψ∗i ,

.
ψ
∗
i ,zi

2,
.
zi

2

)
.

(20)
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Λi
u and Λi

r are continuous functions. The affine formation tracking control is proposed
as follows:

τi
u = mi

11
(
−ki

uei
1 − ei

3/Ti
u − cos

(
zi

2
)
zi

1 − σi
u
)

τi
r = mi

33
(
−ki

rei
2 − ei

4/Ti
r −zi

2 − σi
r
) , (21)

where ki
u and ki

r are positive parameters; σi
u = f i

u + τi
wu

mi
11

and σi
r = f i

r +
τi

wr
mi

33
are lumped

disturbances consist of environmental disturbances and model uncertainties, which will be
composited by the disturbance observer in step 3.

Step 3: Let χi =
[
ui.vi, ri, σi

u, σi
v, σi

r
]T and Ui =

[
τi

u
mi

11
, 0, τi

r
mi

33
, 0, 0, 0

]T
, and rewrite (3) in

state-space form, which derives:

.
χi = Biχi + Ui +Qihi, (22)

where Bi =

[
03×3 I3×3
03×3 03×3

]
, Qi =

[
03×3
I3×3

]
, hi =

[ .
σ

i
u, 0,

.
σ

i
r

]T
. The observer is proposed:

.
χ̂i = Biχ̂i + Ui +HiFi

∼
χi, (23)

where χ̂i =
[
ûi, v̂i, r̂i, σ̂i

u, σ̂i
v, σ̂i

r
]T is the estimation of χi,

∼
χi = χi − χ̂i is the estimation error,

Fi =
[
I3×3 03×3

]
, andHi ∈ R6×3 is the constant observer gain, which is proposed to be

computed as follows:
Hi = −PT

i Φi, (24)

where Pi ∈ R6×6 and Φi ∈ R6×3 are part of the solution of the optimization problem,
which can get by employing some LMIs:

min
Pi ,Φi ,δi

δi

s.t. Pi > 0,
BT

i Pi + PiBi +FT
i ΦT

i + ΦiFi + I ≤ 0[
−δi I PiQi
∗ −δi

]
≤ 0

, (25)

where δi ∈ R is the decision variable, then the affine formation tracking control with the
disturbance estimation is proposed as follows:

τi
u = mi

11

(
−ki

uei
1 −

ei
3

Ti
u
− cos

(
zi

2
)
zi

1 − σ̂i
u

)
τi

r = mi
33

(
−ki

rei
2 −

ei
4

Ti
r
−zi

2 − σ̂i
r

) , (26)

where σ̂i
u and σ̂i

r are the fourth and sixth elements in χ̂i.

3.2. Formation Tracking Control Design for the Followers

With (20) in play, the leaders can accurately track the desired positions. In this
subsection, control algorithms are devised for the followers to achieve the objective of
lim
t→∞

(
p f (t) + Π−1

f f Π f l pl(t)
)

= 0. The details of the control design are provided in the

following two steps.

Step 1: Define p f =
[

p1, p2, · · · , pN f

]T
, Π−1

f f Π f l pl =
[

p*
1, p*

2, · · · , p*
N f

]T
. The desired

heading angle is as follows:
ψ∗i = atan2(y∗i , x∗i ). (27)
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Let η*
i =

[(
p*

i
)T , ψ*

i

]T
, the position error as follows:

zi
3 = ηi − η∗i . (28)

The desired virtual control law is as follows:

ςi = J T(ψi)
(
−Ki

1z
i
3 +

.
η
∗
i

)
, (29)

where Ki
1 ∈ R3×3 is the gain matrix.

Step 2: To avoid complex differentiation and simplify controller design, let ςi pass
through a first-order filter:

Ti
f

.
ςi = ςi − ςi. (30)

where Ti
f ∈ R3×3 is the time constant matrix. Define the velocity errors as follows:

ei
5 = νi − ςi

ei
6 = ςi − ςi

. (31)

The affine formation tracking control is proposed as follows:

τi = Mi

(
−Ki

2ei
5 −J T(ψi)z

i
3 − ei

6/Ti
f − σi

)
. (32)

where Ki
2 ∈ R3×3 is the gain matrix; σi = τi

w − Ciνi − Diνi is lumped disturbances that
consist of environmental disturbances and model uncertainties, which will be composited
by the disturbance observer in Step 3.

Step 3: Let χi =
[
νT

i , σT
i
]T and Ui = M−1

i τi, and rewrite (4) in state-space form, which
derives:

.
χi = Biχi + Ui +Qihi, (33)

where Bi =

[
03×3 I3×3
03×3 03×3

]
, Qi =

[
03×3
I3×3

]
, hi =

.
σi. The observer is proposed:

.
χ̂i = Biχ̂i + Ui +HiFi

∼
χi, (34)

where χ̂i =
[
ν̂T

i , σ̂T
i
]T is the estimation of χi,

∼
χi = χi − χ̂i is the estimation error, Fi =[

I3×3 03×3
]
, and Hi ∈ R6×3 is the constant observer gain, which is proposed to be

computed as follows:
Hi = −WT

i Yi, (35)

where Wi ∈ R6×6 and Yi ∈ R6×3 are part of the solution of the optimization problem,
which can be derived by employing some LMIs:

min
Pi ,Φi ,εi

εi

s.t. Wi > 0,
BT

i Wi +WiBi +FT
i YT

i + YiFi + I ≤ 0[
−εi I WiQi
∗ −εi I

]
≤ 0

, (36)

where εi ∈ R is the decision variable. By employing disturbance observer (34) to estimate
lumped disturbances composed of model uncertainties and environmental disturbances,
the affine formation tracking control with the disturbance estimation for countering the
effects of disturbances is proposed as follows:

τi = Mi

(
−Ki

2ei
5 −J T(ψi)z

i
3 − ei

6/Ti
f − σ̂i

)
. (37)
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4. Stability Analysis

Theorem 1. Under Assumptions 1–2, consider the underactuated vessel formation system (1) and
(3). The anti-perturbation affine formation maneuver control scheme is proposed by integrating the
formation tracking controller (26) and the disturbance observer (23). In that case, all the signals of
the closed-loop system are bounded.

Proof of Theorem 1. The candidate Lyapunov function is selected as:

Vi
1 =

1
2
∼
χ

T
i Pi
∼
χi. (38)

Taking the derivative of
∼
χi, one derives:

.
∼
χi = (Bi −HiFi)

∼
χi +Qihi. (39)

Combining the above Equations, the derivative of (38) is:

.
V

i
1 =

1
2
∼
χ

T
i

(
(Bi −HiFi)

TPi + Pi(Bi −HiFi)
)∼

χi +
∼
χ

T
i PiQihi. (40)

Let Φi = −PiHi, and rewrite (40) as:

.
V

i
1 =

1
2
∼
χ

T
i

(
BT

i Pi + PiBi +FT
i ΦT

i + ΦiFi

)∼
χi +

∼
χ

T
i PiQihi. (41)

If the third inequality in (25) is satisfied, one derives:

.
V

i
1 ≤ − 1

2

∥∥∥∼χi

∥∥∥2
+
∥∥∥∼χi

∥∥∥‖PiQi‖‖hi‖

≤ − 1
2 (1− θi)

∥∥∥∼χi

∥∥∥2 , (42)

where 0 < θi < 1, and
∥∥∥∼χi

∥∥∥ ≥ 2‖PiQi‖‖hi‖
θi

. According to Assumption 1, one derives:∥∥∥∼χi

∥∥∥(t) ≤ max
{

Ω
(∥∥∥∼χi(0)

∥∥∥, t
)

, Ξ(‖hi‖)
}

, (43)

where Ω(•) is the kL function, and Ξ(•) is the k∞ function defined as:

Ξ(‖hi‖) =

√
λmax(Pi)

λmin(Pi)

2‖PiQi‖‖hi‖
θi

. (44)

Hence, the estimation dynamics are ISS with respect to hi.
Consider the following Lyapunov function:

Vi
2 =

1
2

(
zi

1

)2
+

1
2

(
zi

2

)2
+

1
2

(
ei

1

)2
+

1
2

(
ei

2

)2
+

1
2

(
ei

3

)2
+

1
2

(
ei

4

)2
. (45)
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Taking the derivative of zi
1, zi

2, ei
1, ei

2, ei
3, and ei

4, one derives:

.
zi

1 = −ki
uz

i
1 + cos

(
zi

2
)(

ei
1 + ei

3
)

.
zi

2 = −ki
rz

i
2 + ei

2 + ei
4

.
ei

1 = − ei
1

Ti
u
−Λi

u

( .
x∗i ,

..
x∗i ,

.
y∗i ,

..
y∗i , ψ∗i ,

.
ψ
∗
i ,zi

1,
.
zi

1,zi
2,

.
zi

2, vi,
.
vi

)
.
ei

2 = − ei
2

Ti
r
−Λi

r

(
ψ∗i ,

.
ψ
∗
i ,zi

2,
.
zi

2

)
.
ei

3 = −ki
uei

3 − cos
(
zi

2
)
zi

1 +
∼
σ

i
u

.
ei

4 = −ki
rei

4 −zi
2 −

∼
σ

i
r

, (46)

where
∼
σ

i
u = σi

u − σ̂i
u,
∼
σ

i
r = σi

r − σ̂i
r. Combining (46) and Young’s inequality, the derivative

of (45) is:

.
V

i
2 = zi

1
.
zi

1 +zi
2

.
zi

2 + ei
1

.
ei

1 + ei
2

.
ei

2 + ei
3

.
ei

3 + ei
4

.
ei

4

≤ −
(

ki
u − 1

2

)(
zi

1
)2 −

(
ki

r − 1
2

)(
zi

2
)2 −

(
1

Ti
u
− 1

2

)(
ei

1
)2 −

(
1
Ti

r
− 1

2

)(
ei

2
)2

−
(
ki

u − 1
2

)(
ei

3
)2 −

(
ki

r − 1
2

)(
ei

4
)2

+ ∆i

, (47)

where ∆i =
|Λi

u|
2 +

|Λi
r|

2 +

∣∣∣∣∼σi
u

∣∣∣∣
2 +

∣∣∣∣∼σi
r

∣∣∣∣
2 is bounded. The selection of parameters is as follows:

ki
u > 1

2 , ki
r >

1
2 , ki

u > 1
2 , ki

r >
1
2 , 1

Ti
u
> 1

2 , 1
Ti

r
> 1

2 . Finally, (47) becomes:

.
V

i
2 ≤ −2ξiVi

2 + ∆i, (48)

where ξi = min
{

ki
u − 1

2 , ki
r − 1

2 , 1
Ti

u
− 1

2 , 1
Ti

r
− 1

2 ,ki
u − 1

2 ,ki
r − 1

2

}
. By solving Equation (48),

one derives:

0 ≤ Vi
2(t) ≤

∆i
2ξi

+

(
Vi

2(0)−
∆i
2ξi

)
e−2ξit, (49)

which implies that lim
t→∞

Vi
2(t) =

∆i
2ξi

and all the signals of the closed-loop system are bounded.

�

Theorem 2. Under Assumptions 1–2, consider the fully actuated vessel formation system (1) and
(4). The anti-perturbation affine formation maneuver control scheme is proposed by integrating the
formation tracking controller (37) and the disturbance observer (34). In that case, all the signals of
the closed-loop system are bounded.

Proof of Theorem 2. The candidate Lyapunov function is selected as:

Vi
3 =

1
2
∼
χ

T
i Pi
∼
χi. (50)

Taking the derivative of
∼
χi, one derives:

.
∼
χi = (Bi −HiFi)

∼
χi +Qihi. (51)

Combining the above Equations, the derivative of (48) is:

.
V

i
3 =

1
2
∼
χ

T
i

(
(Bi −HiFi)

TPi + Pi(Bi −HiFi)
)∼

χi +
∼
χ

T
i PiQihi. (52)
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Let Yi = −WiHi, and rewrite (52) as:

.
V

i
3 =

1
2
∼
χ

T
i

(
BT

i Wi +WiBi +FT
i YT

i + YiFi

)∼
χi +

∼
χ

T
i WiQihi. (53)

If the third inequality in (37) is satisfied, one derives:

.
V

i
3 ≤ − 1

2

∥∥∥∼χi

∥∥∥2
+
∥∥∥∼χi

∥∥∥‖WiQi‖‖hi‖

≤ − 1
2 (1− εi)

∥∥∥∼χi

∥∥∥2 , (54)

where 0 < εi < 1, and
∥∥∥∼χi

∥∥∥ ≥ 2‖WiQi‖‖hi‖
εi

. According to Assumption 1, one derives:∥∥∥∼χi

∥∥∥(t) ≤ max
{

Ω
(∥∥∥∼χi(0)

∥∥∥, t
)

, Ξ(‖hi‖)
}

, (55)

where Ω(•) is the kL function, and Ξ(•) is the k∞ function defined as:

Ξ(‖hi‖) =

√
λmax(Wi)

λmin(Wi)

2‖WiQi‖
εi

‖hi‖. (56)

Hence, the estimation dynamics are ISS with respect to hi.
Consider the following Lyapunov function:

Vi
4 =

1
2

(
zi

3

)T
zi

3 +
1
2

(
ei

5

)T
ei

5 +
1
2

(
ei

6

)T
ei

6. (57)

The derivative of (55) is:

.
V

i
4 =

(
zi

3
)T .

zi
3 +

(
ei

5
)T .

ei
5 +

(
ei

6
)T .

ei
6

≤ −
(

Ki
1 −

1
2 I
)(

zi
3
)T

zi
3 −

(
Ki

2 −
1
2 I
)(

ei
5
)Tei

5 − ( 1
Ti
f
− I)

(
ei

6
)Tei

6 + Θi
, (58)

where Θi =
.
ς

T
i

.
ςi

2 +
∼
σ

T
i
∼
σi

2 . Fully actuated vessels in practical applications have bounded
control inputs and velocities. The control input ςi and its derivation are a continuous
and bounded function, ensuring precise and stable maneuvers while adhering to opera-
tional standards. The observer error

∼
σi is bounded from (50)–(56). Hence, Θi is bounded.

The selection of parameters is as follows: λmin

(
Ki

1 −
1
2 I
)
> 0, λmin

(
Ki

2 −
1
2 I
)
> 0, and

λmin

(
1

Ti
f
− I
)
> 0. Finally, (58) becomes:

.
V

i
4 ≤ −2ζiVi

4 + Θi, (59)

where ζi = min
{

λmin

(
Ki

1 −
1
2 I
)

, λmin

(
K2,i − 1

2 I
)

, λmin(
1

Ti
f
− 1)

}
. By solving Equation

(59), one derives:

0 ≤ Vi
4(t) ≤

Θi
2ζi

+

(
Vi

4(0)−
Θi
2ζi

)
e−2ζit, (60)

which implies that lim
t→∞

Vi
4(t) =

Θi
2ζi

and all the signals of the closed-loop system are bounded.

�

5. Simulation

In this section, an empirical evaluation is conducted to assess the effectiveness of the
controllers and observers proposed in Section 3. Our study focused on a heterogeneous
formation system comprising three underactuated and four fully actuated vessels [38,39].
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Table 1 presents the model parameters for the leader i, all expressed in the International
System of Units (SI). It is noteworthy that both fully actuated vessels and underactuated
vessels share the same model parameters. The simulation experiments were conducted
using MATLAB 2020a, with a sampling time selected as 0.01, and the integration of the
differential Equations was performed using the Runge–Kutta method. The three lead-
ers’ initial position and velocity vectors were set as η1 = [14, 381, 0]T , η2 = [3, 382, 0]T ,
η3 = [0, 359, 0]T , ν1 = [0, 0, 0]T , ν2 = [0, 0, 0]T , and ν3 = [0, 0, 0]T . The four followers’
initial position and velocity vectors were set as η4 = [−20, 380, 0]T , η5 = [−10, 360, 0]T ,
η6 = [−20, 380, 0]T , η7 = [−40, 378, 0]T , ν4 = [0, 0, 0]T , ν5 = [0, 0, 0]T , ν6 = [0, 0, 0]T , and
ν7 = [0, 0, 0]T . The corresponding equilibrium matrix are as follows:

Π =



0.2741 −0.2741 −0.2741 0.1370 0.1370 0 0
−0.2741 0.6852 0 −0.5482 0 0 0.1370
−0.2741 0 0.6852 0 −0.5482 0.1370 0
0.1370 −0.5482 0 0.7537 −0.0685 −0.2741 0
0.1370 0 −0.5482 −0.0685 0.7537 0 −0.2741

0 0 0.1370 −0.2741 0 0.2741 −0.1370
0 0.1370 −0 0 −0.2741 −0.1370 0.2741


(61)

Table 1. Parameters.

Entry Value Entry Value

mi
11 25.8 di

11 0.72 + 1.33|ui|+ 5.87u2
i

mi
22 33.8 di

22 0.8896 + 36.5|vi|+ 0.805|ri|
mi

23 1.0115 di
23 7.25 + 0.845|vi|+ 3.45|ri|

mi
32 1.0948 di

32 0.0313 + 3.96|vi|+ 0.13|ri|
mi

33 2.76 di
33 1.9− 0.08|vi|+ 0.75|ri|

ci
13 −33.8vi − 1.0115ri gi

u 0.0279uiv2
i + 0.0342v3

i ri
ci

31 −ci
13 τi

u 2sin (0.08πt− π/6) + 0.5cos(0.05πt + π/5)
ci

23 25.8ui τi
v 2sin (0.08πt− π/4) + 0.5cos(0.05πt + π/4)

ci
32 −ci

23 τi
r 2sin (0.08πt− π/5) + 0.5cos(0.05πt + π/3)

gi
v 0.0912u2

i vi gi
v 0.0156uir3

i + 0.0278uiv3
i ri

The controller parameters were set as k1
u = k2

u = k3
u = k4

u = 3, k1
r = k2

r = k3
r = k4

r = 2,
k1

u = k2
u = k3

u = k4
u = 1, k1

v = k2
v = k3

v = k4
v = 3, T1

u = T2
u = T3

u = T4
u = 0.05,

T1
r = T2

r = T3
r = T4

r = 0.05; K1
1 = K2

1 = K3
1 = K4

1 = diag{1, 1, 1}, K1
2 = K2

2 = K3
2 = K4

2 =
diag{2, 2, 2}, and T1

f = T2
f = T3

f = T4
f = diag{0.05, 0.05, 0.05}. By employing YALMIP

with the sedumi solver to solve (24) and (35), one derives:

Wi = Pi =



5.2780 0 0 −1.5951 0 0
0 5.2780 0 0 −1.5951 0
0 0 5.2780 0 0 −1.5951

−1.5951 0 0 2.6363 0 0
0 −1.5951 0 0 2.6363 0
0 0 −1.5951 0 0 2.6363

 (62)

Φi = Yi =



−2.6547 0 0
0 −2.6547 0
0 0 −2.6547

−5.2780 0 0
0 −5.2780 0
0 0 −5.2780

 (63)

Figures 2–13 present the simulations, which serve to confirm the effectiveness of
the proposed control scheme. In Figure 2, channels in the near-sea environment are
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simulated by utilizing the gaps between grey obstacles. The heterogeneous formation
system demonstrated its capability to perform various maneuvering operations, including
translation, scaling, rotation, and shearing at specific time instances: 148 s, 280 s, 355 s,
and 450 s, respectively. Based on the information shown in Figures 3 and 4, it was evident
that both the leaders and the followers could precisely track their intended positions.
From these figures, it can be observed that under the presence of uncertain models and
external disturbances, the tracking errors of the unmanned vessels are consistently and
ultimately bounded, aligning with Theorems 1 and 2. Figure 5 showcases the velocities of
the three leaders while their corresponding forces and moments are depicted in Figure 8.
On the other hand, Figures 6 and 7 display the velocities of the four followers, and their
complementary forces and moments are illustrated in Figures 9 and 10. Figures 8–10 show
that the leaders’ and followers’ forward thrust and turning moment are both bounded.
The lumped disturbances experienced by the unmanned vessels were effectively captured
through the observation estimation designed in this section, as shown in Figures 11–13.
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To validate the estimation performance of the observer optimized through LMI (Lin-
ear Matrix Inequality), this section compared the gains obtained through LMI solutions
with those obtained based on Lyapunov stability conditions. The observer gain without
LMI was set as: H1 = H2 = H3 = [diag(10, 5, 5), diag(5.5, 5.5, 3)]T ,H4 = H5 = H6 =

H7 = [diag(5, 5, 2), diag(11, 2, 2)]T . Figures 14–16 present the observation error obtained by
solving the observer gain using LMI and directly setting the observer gain. Those figures
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show that the gains obtained using the Linear Matrix Inequality (LMI) approach yield
higher accuracy in estimating the aggregate disturbance than gains computed based on
Lyapunov stability conditions. This indicated that the optimization criterion (24) improved
the observer’s performance and results in more accurate state estimation. These simu-
lation results proved the control scheme’s effectiveness in achieving desired formation
maneuvers.
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6. Conclusions

This paper delves into affine formation maneuver control for multi-heterogeneous
unmanned surface vessels (USV) in near-sea environments. The proposed control scheme
offers a comprehensive solution to tackle the complexities of navigating through narrow
channels while upholding the integrity of the formation. By incorporating affine transfor-
mations, the formation system gains the ability to adapt its configuration, boosting the
overall flexibility and versatility of the USVs. Furthermore, the anti-perturbation formation
tracking controller ensures precise and accurate tracking of arbitrary formation transforma-
tions by fully actuated and underactuated vessels. This capacity empowers the formation
to swiftly adapt to evolving mission requirements and dynamic environmental conditions.
As a future research direction, this study can be extended to explore collision avoidance
strategies involving dynamic obstacles and effectively address the challenges tied to input
saturation. These efforts will significantly fortify the formations’ maneuverability, espe-
cially when navigating intricate and demanding maritime environments, where precise
control and adaptability are crucial. Additionally, a deeper investigation into integrating
real-time adaptive algorithms for collision avoidance and developing advanced control
mechanisms could enhance the formations’ responsiveness and resilience, enabling them
to excel in dynamic and uncertain operational scenarios.
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38. Skjetne, R.; Fossen, T.I.; Kokotović, P.V. Adaptive Maneuvering, with Experiments, for a Model Ship in a Marine Control

Laboratory. Automatica 2005, 41, 289–298. [CrossRef]
39. Lu, Y.; Zhang, G.; Sun, Z.; Zhang, W. Adaptive Cooperative Formation Control of Autonomous Surface Vessels with Uncertain

Dynamics and External Disturbances. Ocean. Eng. 2018, 167, 36–44. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TAC.2018.2836022
https://doi.org/10.1109/TCYB.2020.2978981
https://doi.org/10.1109/TCYB.2019.2908190
https://www.ncbi.nlm.nih.gov/pubmed/31021782
https://doi.org/10.1016/j.neucom.2018.04.052
https://doi.org/10.1016/j.automatica.2020.109086
https://doi.org/10.1109/TCYB.2017.2684461
https://doi.org/10.1002/rnc.6241
https://doi.org/10.1016/j.automatica.2020.109004
https://doi.org/10.1109/TAC.2018.2798805
https://doi.org/10.1016/j.jfranklin.2021.07.019
https://doi.org/10.1016/j.oceaneng.2022.112268
https://doi.org/10.1016/j.automatica.2004.10.006
https://doi.org/10.1016/j.oceaneng.2018.08.020

	Introduction 
	Preliminaries and Problem Formulation 
	Model Description 
	Definitions for Affine Transformation 
	Control Objective 

	Affine Formation Maneuver Control Design 
	Formation Tracking Control Design for the Leaders 
	Formation Tracking Control Design for the Followers 

	Stability Analysis 
	Simulation 
	Conclusions 
	References

