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Abstract: Wave energy is one of the most widely distributed and abundant energies in the ocean,
and its conversion technology has been broadly researched. In this paper, a structure that combines
a traditional center pipe oscillating water column and a triboelectric nanogenerator is proposed.
Firstly, the structural characteristics and geometric parameters of the device are designed. The
working process of the device is introduced, the motion equation of the device is established, and the
power generation principle of the triboelectric nanogenerator is deduced and analyzed theoretically.
Secondly, hydrodynamic modeling and simulation are carried out, the influence of the bottom shape
of the main floating body and the structural parameters of the sag plate on the hydrodynamic force
of the device is analyzed, and an electric field simulation of the generation process of the friction
nanogenerator is carried out. Finally, experiments involving the wave water tank of the proposed
device are conducted, including charging the capacitor of the device under different wave conditions
and directly lighting the LED lamp. The performance of the proposed device under different wave
conditions is discussed. According to the test results, the feasibility of the proposed device for wave
energy conversion is confirmed.

Keywords: wave energy converter; oscillation water column; triboelectric nanogenerator; center pipe

1. Introduction

Ocean wave energy is a kind of renewable energy source that refers to the kinetic and
potential energy of ocean surface waves generated by atmospheric wind and of sea water
gravity. Wave energy has the characteristics of high energy density, wide distribution, and
inexhaustibility. The effective development and utilization of wave energy will greatly
alleviate the problem of energy shortage. Therefore, wave energy conversion (WEC)
technology is highly valued around the world, especially in coastal areas [1,2].

WEC devices generally consist of three energy conversion stages: the energy in-
take stage captures wave energy, the energy transfer stage converts wave energy into
mechanical energy, and the power generation stage converts mechanical energy into
electric energy [3–6]. According to the principle of energy capture, it can be classified
as a pressure differential, floating structure, overtopping device, etc. In recent years,
one typical kind of pressure differential oscillating water column (OWC) has attracted
an increasing amount of attention from scholars [7]. Generally, the main body of the
OWC consists of a chamber partially immersed in seawater, an air turbine to transform
wave energy to mechanical energy, and an electric generator to transform mechanical
energy to electricity. The chamber has two openings at the top and bottom of different
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sizes, so that the rise and fall of the ocean waves change the gas in chamber to drive the
turbine’s rotation. Compared with other WECs, the OWC has a significant advantage
of simplicity in that the only moving part of its energy conversion mechanism is the
rotor of the turbine above the water level, which rotates at a relatively high speed and
directly drives conventional generators [8,9]. In the early stage, OWCs were mainly the
shore or nearshore type. With the deepening research into WECs and the increasing need
for deep-sea development, the offshore OWC has gradually become the main object of
research [10–13].

The center pipe spar buoy, Backward Bent Duct Buoy (BBDB), and front bent duct
buoy are the three general types of offshore OWC designs. The BBDB was first proposed by
Masuda [14] in 1986, as shown in Figure 1a. The device is lightweight and loosely anchored.
Under the action of the waves, the water body resonates with the floating buoy, and the
wave is completely reflected in the L-shaped backbend pipe. The backward bent duct
type has the opening at the back of the float to meet the wave, while the front bent duct
type has the opening at the front of the float to meet the wave. A typical front bent duct
type device is the “Whale” designed and developed in Japan. A schematic diagram of the
device structure is shown in Figure 1b. There are three independent exhaust chambers at
the front, and the rear end is connected to the Wells turbine, with a total fixed power of
110 kW [15]. The main difference between the front bent duct and the back bent duct is that
the air chamber of the floating ship is different from the wave-facing surface.
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In 1947, Masuda Shinao [16] invented the first navigation beacon light based on the
OWC principle of the center pipe as shown in Figure 2. The center pipe OWC has the
advantages of a simple structure, short construction period, and low cost. Currently, the
number of practical applications is huge, which has attracted many scholars to invest in
the development and utilization of the center pipe wave energy device. Xiao [17] studied
buoys with different shapes, e.g., short cone, flat bottom, hemispherical, and long cone.
Li [18] and Wu [19] studied the influence of the tailpipe shape on the buoy’s hydrodynamic
performance. Kim [20] studied the influence of ellipsoidal and cylindrical floating bodies
on hydrodynamic coefficients, respectively.

In the process of WEC power generation, it is common to use traditional permanent
magnet generators to convert wave energy into electric energy. Alternatively, the triboelec-
tric nanogenerator (TENG) proposed by Wang [21] is capable of converting mechanical
energy into electrical energy by combining triboelectrification and electrostatic induction,
an approach that has an excellent ability to convert mechanical energy into electrical energy
output in low-frequency environments. The triboelectric nanogenerator has the characteris-
tics of high voltage and low current electrical output, and its working mechanism is very
suitable for low-frequency micro-vibration wave conditions, especially for the real-time col-
lection and detection of marine information. The implementation of this work requires the
use of marine distributed energy self-driven sensing technology, e.g., the triboelectric nano-
generator, which has the advantages of low cost, long endurance, high energy conversion
efficiency, and anti-seawater corrosion. Currently, many scholars have studied the combina-
tion of triboelectric nanogenerator and wave energy. Lin et al. [22] proposed a triboelectric
nanogenerator based on solid–liquid contact for the first time. The prepared TENG consists
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of copper as an electrode, graphic pyramid array PDMS, and water. This water-TENG can
provide an open circuit voltage of 52 V and a short-circuit current density of 2.45 mA/m2,
with a peak power density of nearly 0.13 W/m2. In 2018, Xu et al. [23] prepared a highly
sensitive wave sensor based on the characteristics of liquid–solid interface triboelectric
nanogenerators. The research results show that when the electrode width is 10 mm, the
output voltage increases linearly with the wave height, and the sensitivity is 23.5 mV/mm.
Yang et al. [24] demonstrated the first fully enclosed TENG. TENG was prepared by using
a polytetrafluoroethylene (PTFE)–polyamide (PA) film material in a closed sphere. The two
TENG units were sealed in a cylinder and were capable of directly lighting up to 60 LED
lights under oscillating conditions. Ning et al. [25] reported a frictional nanogenerator with
a seagrass imitation structure for collecting wave energy. The output current of a single
generator unit was about 10 µA, the voltage was about 260 V, and the maximum power
density was 25 µW/m2.
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Until now, various types of triboelectric nanogenerators have been designed to apply
in the field of wave energy collection, most of which were based on the characteristics of
triboelectric nanogenerators. However, the response optimization of energy capture and
energy conversion link in traditional wave energy collection devices is not conducive to
the continuous optimization of conversion efficiency. In this paper, a structure combining a
central pipe OWC and a triboelectric nanogenerator (CP-TENG) is designed that inherits the
traditional OWC structure and exploits the advanced technology of TENG. The designed
generator is simple in structure and easy to maintain. The power generation structure of
the designed generator has no underwater contact, which provides more possibilities for
the application of triboelectric nanogenerator technology in wave energy collection, and
provides a certain reference significance for the effective collection of low-frequency wave
motion. This paper is organized as follows: In Section 2, the overall idea of the designed
structure is introduced; Sections 3 and 4 explain the principle of the designed OWC and
TENG separately; Sections 5 and 6 discuss the simulation results of the proposed CP-TENG
device; and the water tank test of the proposed CP-TENG is conducted and the relevant
results are discussed in the final section.

2. Overall Structure Design of the CP-TENG

A structural construction diagram of the center pipe OWC is shown in Figure 3. The
proposed device consists of a main floating body, a heave plate, an impact air turbine,
and a disc triboelectric nanogenerator. The floating body mainly provides the overall
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buoyancy of the device. The function of the heave plate is to reduce the overall large
movement and improve the additional mass of the device. The impact air turbine absorbs
the aerodynamic energy of wave conversion to drive the disc triboelectric nanogenerator to
convert mechanical energy to electricity.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 4 of 21 
 

 

and improve the additional mass of the device. The impact air turbine absorbs the aero-
dynamic energy of wave conversion to drive the disc triboelectric nanogenerator to con-
vert mechanical energy to electricity. 

 
Figure 3. Structure of the central pipe wave energy device (1: floating body, 2: heave plate: 3: impact 
air turbine, 4: disc triboelectric nanogenerator). 

The working process of the CP-TENG is shown in Figure 4. The device floats on the 
ocean surface and the top of the air chamber is connected to atmospheric pressure. Tribo-
electric nanogenerators are embedded on both sides of the moving blade and the side of 
the guide blade near the moving blade. Under the action of waves, the heave of the device 
affects the liquid level of the central pipe chamber inside the floating body, causing the 
variation in the air volume in the chamber. When the liquid level in the chamber rises and 
falls, the volume of the gas in the cavity becomes smaller and greater. Meanwhile, the 
compression and expansion of air generates reciprocating air flow in the center pipe. The 
reciprocating air flow drives the moving blade of turbine at a certain angle under the guid-
ance of the guide blades. The guide blades collect both the upward and downward air 
flow directions and the moving blade drives the turbine in one direction. Then, with the 
rotation of the moving blade, the triboelectric nanogenerators generate electricity because 
of the triboelectrification and electrostatic induction. 

 
Figure 4. Working principle diagram of the center pipe-type wave energy triboelectric nanogenerator. 

Figure 3. Structure of the central pipe wave energy device (1: floating body, 2: heave plate: 3: impact
air turbine, 4: disc triboelectric nanogenerator).

The working process of the CP-TENG is shown in Figure 4. The device floats on
the ocean surface and the top of the air chamber is connected to atmospheric pressure.
Triboelectric nanogenerators are embedded on both sides of the moving blade and the side
of the guide blade near the moving blade. Under the action of waves, the heave of the
device affects the liquid level of the central pipe chamber inside the floating body, causing
the variation in the air volume in the chamber. When the liquid level in the chamber rises
and falls, the volume of the gas in the cavity becomes smaller and greater. Meanwhile,
the compression and expansion of air generates reciprocating air flow in the center pipe.
The reciprocating air flow drives the moving blade of turbine at a certain angle under the
guidance of the guide blades. The guide blades collect both the upward and downward air
flow directions and the moving blade drives the turbine in one direction. Then, with the
rotation of the moving blade, the triboelectric nanogenerators generate electricity because
of the triboelectrification and electrostatic induction.
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3. Hydrodynamics Principle of Floating Body

Assuming that the fluid is an ideal fluid of irrotation and incompressibility, the floating
body can be simplified into a cylindrical model with equal diameter. The bottom of the
device is a pendant plate, and only the pendant motion is beneficial to the power generation
of the center pipe WEC. Other degrees of freedom have limited influence on the energy
conversion performance of the power generation system of the center pipe WEC. In order
to simplify the calculation, the pendant motion of the center pipe wave energy generator is
mainly considered.

Under the action of linear wave load, the dynamic equation of the device can be
expressed as [

Mij + ∆M
] ..
ξ i + [Brad + Bvis]

.
ξ i + [Ksw + Km]ξi = [Fi], (1)

where ξi is the six-degrees-of-freedom motion amplitude of the floating body, and M is the
device mass matrix expressed as

Mij =



M 0 0 0 MzG −MyG
0 M 0 −MzG 0 MxG
0 0 M MyG −MxG 0
0 −MzG MyG Ixx Ixy Ixz

MzG 0 −MxG Iyx Iyy Iyz
−MyG MxG 0 Izx Izy Izz

, (2)

where M is the mass of the device, (ZG, YG, XG) indicates the centre-of-gravity position of
each coordinate axis, Iij indicates the inertial mass.

∆M is the device additional mass matrix; Brad is the radiation damping matrix; Bvis is
the viscous damping matrix; Ksw is the hydrostatic stiffness; Km is the mooring stiffness;
and Fi is the wave excitation force acting on the device.

The inherent period expression of the free motion of the device is

Ti = 2π

√
Mii + ∆Mii

Kii,sw + Kii,m
, (3)

where Mii is the device mass matrix and Kii is the stiffness matrix.
The research object of this paper can be simplified as a cylinder, the structure of which

has symmetry. For the center pipe wave energy generation device, only the dangling
motion is beneficial to its energy conversion, without considering the influence of other
degrees of freedom on energy conversion. Equation (3) can be simplified as[

Mij + ∆M33
]..
z + [Brad + B33]

.
z + [Ksw + Km]z = [Fz], (4)

where ∆M33 is the additional mass of the device heave and B33 is the device heave damping
coefficient. Equation (4) represents the motion equation of the droop of the center pipe
wave power generation device under the action of linear waves.

Air turbine is an important part of energy conversion in CP-TENG. By arranging a set
of fixed guide blades on both sides of the moving blades, the air flow through the fixed
guide blades in the pipeline can drive the moving blades to rotate in the same direction.

As shown in Figure 5, the wave heave in the center pipe of diameter D1 causes the
gas in the chamber to be squeezed into the center pipe of diameter D2 at the speed v1, and
then moves to the impact air turbine at the speed v2, thus driving the turbine to rotate,
assuming that the air flow in the pipe is continuous, non-viscous, and incompressible. The
latter assumption is relatively reasonable at these small scales since the volume of the air
chamber is much smaller than what would be required to simulate the compressibility
effects occurring at full scale [26,27]. The stepped interface in the pipe can be satisfied:

πD1
2dl1

4
=

πD2
2dl2

4
, (5)
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where dl denotes the instantaneous change in the axial displacement of the gas in the pipe
at the interface.
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We take the derivative of the above equation with respect to time t:

dv2

dv1
=

D1
2

D22 , (6)

where dv denotes the amount of instantaneous change in the axial velocity of the gas in the
pipe at the interface. When the bottom diameter of the center pipe is larger than the top
diameter, the airflow can be increased to better drive the rotation of the impact triboelectric
nanogenerator.

4. Power Generation Principle of Triboelectric Nanogenerator

The working principle of the triboelectric nanogenerator is shown in Figure 6. The
rotor electrode slides between Electrode 1 and Electrode 2. At the beginning, the surface
of the rotor electrode is in direct contact with the surface of the dielectric material. Due to
the difference in triboelectrification and the ability of materials to gain and lose electrons,
the rotor electrode surface generates a positive charge, while the dielectric material surface
generates negative charges. During the rotation, a potential difference is generated between
Electrode 1 and Electrode 2, resulting in a reverse current until the final state. As the
electrodes continue to rotate, an alternating current forms in the circuit.

Since thickness d of the dielectric material is much smaller than its width, the metal
electrode can be regarded as an infinite parallel plate capacitance, and the influence of its
edge effect is ignored through model simplification. The width of the thin slit between
Electrode 1 and Electrode 2 is ignored. Under the open circuit condition, assuming that the
angle of a single sector electrode is a, the rotation angle of the rotor along the electrode is
a1(0 ≤ a1 ≤ a), the charge density evenly distributed on the surface of the separation area
between the rotor electrode and electrode 1 is −σ, and the open circuit voltage between
Electrode 1 and Electrode 2 is V, it can be deduced that when the rotor is aligned with
Electrodes 1 or 2, the open circuit voltage in the initial state is

V1,2 =
2dσ

ε0εr
, (7)

where ε0 is the vacuum permittivity and εr is the relative permittivity of the dielectric material.
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The maximum voltage in a cycle is

VE =
4dσ

ε0εr
. (8)

When the rotor is not overlapping with Electrodes 1 and 2, for the charge density of
the region where the rotor is not overlapping with the parts of Electrodes 1 and 2,

ρ = σ. (9)

For the area where the rotor overlaps with Electrode 1,

ρ1 = − σa1

a − a1
. (10)

For the area where the rotor overlaps with Electrode 2,

ρ2 = −σ(a − a1)

a
. (11)

According to Gauss theorem and the charge density distribution, the electric field
strength of the dielectric material in the overlapping area of the rotor and electrode can
be obtained:

E1 = − σa1

ε0εr1(a − a1)
, (12)

E2 = −σ(a − a1)

ε0εr2a1
. (13)

The open circuit voltage can be calculated:

Voc = E1d − E2d =
dσ(a − a1)

ε0εr2a1
− dσa1

ε0εr1(a − a1)
, (14)

where E1 and E2 are, separately, the electric field strength of the dielectric material in the
area where the rotor overlaps with the electrode. When Electrode 1 and Electrode 2 use the
same dielectric material, the open circuit voltage can be simplified as

Voc = E1d − E2d =
dσ

ε0εr

(
a − a1

a1
− a1

a − a1

)
. (15)
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The short-circuit current Isc relies on the rotational motion velocity of the rotor elec-
trode which is formulated as

Isc =
dQ
dt

=
dQ
dx

·dx
dt

= σ·vr, (16)

where vr denotes the rotation speed of rotor electrode. And the average power is calculated
using following equation:

Pave =

∫ T
0 V·I

T
, (17)

where T is the rotation period of the rotor electrode.

5. Analysis of Hydrodynamic Characteristics for Model Selection of OWC

The device operates under six degrees of freedom of rolling, pitching, yawing, surging,
swaying, and heaving, of which heave is an important consideration. The hydrodynamic
analysis of the device focuses on the performance index of the buoy in the direction of
heave. The frequency domain simulation analysis and hydrodynamic coefficients, such
as the damping coefficient, additional mass, and RAO coefficient, are analyzed. The
wave frequency in the coastal waters of Fujian Province is generally 0.5~2.5 rad/s. In the
hydrodynamics simulation, the change trend of the device in the frequency range of the
wave main energy is mainly observed.

5.1. Influence of the Bottom Shape of the Main Floating Body on the Hydrodynamic Force of
the Device

Through the structural design of the device, the relationship between the hydro-
dynamic performance of the device and the bottom shape of the main floating body is
analyzed. It is necessary to ensure that the diameter and mass of the device remain un-
changed. According to the design requirements, the five devices have an identical mass of
36.65 kg and a diameter of 0.6 m. Model 1 is a cylinder. Models 2 and 3 are circular tables
with different bottom diameters. Models 4 and 5 are fillet corners with different bottom
diameters. Table 1 lists the specific physical parameters.

Table 1. Physical parameters of Models 1–5.

Float Shape

Model 1 Model 2 Model 3 Model 4 Model 5
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five models, the main floating body of Model 1 is the cylinder at the bottom, which can 
obtain a better heave response in low-frequency waters. 
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Figure 7 shows the relationship between the hydrodynamic dynamics of different
main floating body bottom shapes and the wave frequency. It can be seen from the wave
exciting force curve that the main floating body with the bottom shape of a rounded corner
has the largest vertical exciting force, in which the vertical exciting force of Model 5 is
greater than that of Model 4, and the vertical exciting force of the cylindrical main floating
body is the least. It can be seen from the heave damping curve that the heave damping of
these bottom shapes is similar, where the heave damping of Model 3 is the largest and that
of Model 5 is the smallest. It can be seen from the heave add-on mass curve that the heave
add-on mass effect of Model 1 is better than that of the other models. It can be seen from
the sag RAO that the sag RAOs of the five models are close to each other at 0~3 rad/s, and
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the sag RAO of Model 1 is better than the other four models at 3~4 rad/s. Among the five
models, the main floating body of Model 1 is the cylinder at the bottom, which can obtain a
better heave response in low-frequency waters.
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5.2. Influence of the Width of the Heave Plate on the Hydrodynamic Force of the Device

When analyzing the influence of heave plate width on the hydrodynamic performance
of the device, Model 1, with its better hydrodynamic effect of the bottom shape of the main
floating body, was selected as the analysis object. Models 6–9 were established by changing
the heave plate width while keeping the shape of the main floating body unchanged. The
detailed physical parameters of the model are listed in Table 2.

Table 2. Physical parameters of Models 1 and 6–9.

Float Shape

Model 6 Model 7 Model 1 Model 8 Model 9
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When the shape of the main floating body is unchanged and the height of the swinging
plate is the same, the hydrodynamics of the swinging plate with different widths varies
with the wave frequency, as shown in Figure 8. It can be seen from the heave exciting force
diagram that the heave exciting force of this model group tends to be the same. It can be
seen from the sag damping coefficient curve that when the wave frequency is 0~4 rad/s,
and the sag damping of Model 7 is the least, followed by that of Model 6. By contrast,
Models 1, 8, and 9, whose sag plate is greater than or equal to the floating body diameter,
have similar sag damping. It can be seen from the sag additional mass curve that the sag
additional mass of Model 7 decreases more slowly with the increase in wave frequency,
and there is no significant difference between Model 7 and the other models. It can be seen
from the heave RAO curve that, in this group of models, the influence of the heave plate
width change on heave RAO mainly occurs at a wave frequency of 2~4 rad/s. The heave
RAOs of Models 1 and 6 are approximately different, and Model 7 has the best effect. In
other words, the optimal sag motion response can be obtained at the wave frequency of
2~4 rad/s by reasonably designing the appropriate width of the sag plate.
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6. Electric Field Simulation Analysis for Material Selection of TENG

According to principle in Section 4, the influencing factors of TENG are the thickness
and the surface charge density of the dielectric material. This means that the material
selection of TENG depends on, on the one hand, the relative dielectric constant of the
material, and on the other hand the appropriate balance between thickness and surface
charge density in the same material.

In order to verify the influence of different dielectric material thicknesses on the electric
potential size, three groups of dielectric film material PTFE with different thicknesses were
set on the basis of electric field simulation, which were 0.05 mm, 0.08 mm, and 0.1 mm,
respectively. The other setting parameters remained unchanged except for the position
changes. In addition, according to the Equations (15) and (16), both voltage and current
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are directly proportional to the surface charge density, therefore the simulation results of
voltage are only shown for brevity.

Firstly, the potential change trend of a single thickness of PTFE was analyzed: the
potential change trend diagram of the rotor electrode is shown in Figure 9a. When the
initial state is aligned with bottom Electrode 1, the potential is higher. In the process of
moving towards bottom Electrode 2, the potential gradually becomes smaller, reaching
the minimum value in the middle position. Subsequently, during alignment with bottom
Electrode 2, the potential continually returns to a higher value. Electrode 1 at the bottom
continues to decline from a higher value positive potential to 0 V in the middle and then to
negative potential, as shown in Figure 9b. The change trend of Electrode 2 at the bottom
is opposite to that of Electrode 1 at the bottom, as shown in Figure 10a. For PTFE with
increased thickness, it can be found from the three figures that the thinner PTFE makes the
electrode potential change more. This is because the thinner the PTFE, the larger the surface
charge density. As the triboelectric nanogenerator is contact friction, dielectric materials
produce friction and wear in the process of power generation. Thin dielectric materials are
more likely to be damaged, resulting in limited power generation performance. In order
to ensure the durability of dielectric materials under a certain thickness, this part of the
performance test is verified in the fourth part of the experiment.
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Figure 10. (a) Variation trend of potential of PTFE Electrode 2 with different thicknesses and (b) com-
parison of peak potential of Electrode 1 with different dielectric materials of 0.05 mm.

Furthermore, the condition of dielectric material thickness of 0.05 mm was simulated,
and the potential size diagram of three common dielectric materials, including polyte-
trafluoroethylene (PTFE), polyimide (Kapton), and polyethylene terephthalate (PET), was
compared under this condition, as shown in Figure 10b. It can be seen from the figure that
PTFE has the largest peak potential. PET has the smallest peak potential.
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7. Prototype Development and Test Environment

Figure 11 shows a two-dimensional assembly diagram of the wave-making flume
prototype of the center pipe wave energy triboelectric nanogenerator. Table 3 lists the
specific parameters of the model. In addition to the impact triboelectric nanogenerator, the
whole device is manufactured and welded in a non-standard metal processing factory. Due
to the limited amount of practical engineering experience, in order to highlight the test
effect and verify the realizability of the small sensor energy supply of the center pipe wave
energy triboelectric nanogenerator, the whole device was scaled to the turbine width of
100 mm based on the original turbine design standards, and a new turbine was 3D printed
and assembled.
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Table 3. Model parameters.

Parameter Names Model

Total height of device, H (m) 1.018
Maximum diameter of float, D (m) 0.6

Main float height, L1 (m) 0.6
Central pipe diameter, D1 (m) 0.4

Maximum diameter of top air port, D2 (m) 0.175
Wall thickness, T1, T2 (m) 0.003, 0.005

Heave plate thickness, T (m) 0.005
Swing board height, L2 (m) 1.01

Sag board connection rod diameter, D3 (m) 0.01
Diameter of the center through hole of the

swing plate, D4 (m) 0.2

7.1. Experimentation

The test environment for the prototype is a wave-making flume with a length of
12.5 m, a width of 1.5 m, and a height of 1.2 m (minimum working water depth 0.2 m,
maximum working water depth 1.0 m). The test environment is shown in Figure 12. The
nanogenerator data acquisition instrument is a Keithley 6514 electrometer, and the electrical
output data are saved in real time via the upper computer software, which can satisfy the
measurement of experimental data well.
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electrical performance output of the device is the best, the average open circuit voltage is 
about 28 V, and the short-circuit current is about 0.56 µA. In the case of this period, when 
the significant wave height is higher than 0.12 m, the device shakes violently, and the 
turbine assembly process and other factors increase the blade clearance under vibration 
conditions. The blade stalls and exhibits other problems, showing irregularity. 

Figure 12. Test environment of the wave-making tank.

The flume prototype was placed in the back part of the flume throughout the test.
The water level of the flume was set to 70 cm. A thin cable was used as the anchor at the
bottom of the prototype, and the anchor was used as the slack mooring to tie the weight
to the other end of the cable. The state of the device in still water and in waves is shown
in Figure 13. The electrical output performance test of the device is tested by setting four
groups of different cycles and four groups of different significant wave heights, as shown
in Table 4. The random wave condition is generated by the JONSWAP spectrum, which has
the highest practical usage in ocean engineering studies [28], with significant wave height
as 0.12 m and Gama value as one. The application of small electronic components and the
electrical output performance under a group of random wave conditions are tested.
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Table 4. Parameters of wave height and period under regular waves.

Significant Wave
height (m) 0.09 0.12 0.15 0.18

Period (s) 2 2.5 3 3.5

7.2. Test and Result Analysis

(1) Test and analysis of electrical output performance under regular waves

The electrical performance output of the central pipe wave power generation de-
vice with different significant wave heights when the wave period is 2 s is shown in
Figures 14 and 15. It can be seen from the figure that when the significant wave height is
0.12 m, the electrical performance output of the device is the best, the average open circuit
voltage is about 28 V, and the short-circuit current is about 0.56 µA. In the case of this
period, when the significant wave height is higher than 0.12 m, the device shakes violently,
and the turbine assembly process and other factors increase the blade clearance under
vibration conditions. The blade stalls and exhibits other problems, showing irregularity.
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The electrical performance output of the center pipe wave power generation device
at different wave levels when the wave period is 2.5 s is shown in Figures 16 and 17. It
can be seen from the figure that when the significant wave height is 0.12 m, the electrical
performance output of the device is the best, the open circuit voltage is about 24 V, and the
short-circuit current is about 0.38 µA.
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The electrical performance output of the center pipe wave power generation device
at different wave levels when the wave period is 3 s is shown in Figures 18 and 19. It
can be seen from the figure that when the significant wave height is 0.12 m, the electrical
performance output of the device is the best, the open circuit voltage is about 25 V, and the
short-circuit current is about 0.23 µA.
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The electrical performance output of the center pipe wave power generation device 
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Figure 19. When the wave period is 3 s, the short-circuit voltage output of center pipe wave power
converter in different significant wave heights.

The electrical performance output of the center pipe wave power generation device
at different wave levels when the wave period is 3.5 s is shown in Figures 20 and 21. It
can be seen from the figure that when the significant wave height is 0.12 m, the electrical
performance output of the device is the best, the open circuit voltage is about 23 V, and the
short-circuit current is about 0.25 µA.
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Figure 21. When the wave period is 3.5 s, the short-circuit voltage output of center pipe wave power
converter in different significant wave heights.

Four groups of different significant wave heights were tested in the above four different
periods. It was found that when the significant wave height was 0.12 m, the electrical
performance output of the central pipe-type wave energy triboelectric nanogenerator was
the best in the four groups of cycles from 2 to 3.5 s, and the electrical performance output
diagram showed that the output characteristics were related to the wave period. Through
the test, it can be intuitively observed that when the period is shorter and the significant
wave height is higher, the sag and swing of the device are more intense. When the frequency
is lower than 2.5 s, the swing of the device is more intense. When the frequency is higher
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than 2.5 s, the sag motion of the device is good, and the swing amplitude is not large. Due
to the large airflow fluctuation in the pipe, the test turbine’s moving blade collides with
the guide blade. As the gap between the moving blade and the guide blade increases,
the interface gap of the triboelectric nanogenerator enlarges, the motion contact condition
is poor, and the electrical performance output is limited by environmental factors, such
as humidity.

(2) Electrical performance output under irregular waves

In the irregular wave test, the Jonswap spectrum was adopted, and the effective
significant wave height was set to 0.12 m, the Gama value to one, the period to 2.5 s,
the wave train length to 1024, and the random seed number to 1000. The measured
electrical performance output of the central pipe wave power generator under random
wave conditions is shown in Figure 22. It can be seen from the figure that the open circuit
voltage is about 5 V, and the short-circuit current is about 0.62 µA. Compared with the
regular wave with the same significant wave height and the same period, the power
generation performance exhibits little difference.
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(3) Small electronic component self-energy application

The charging condition of the 1000 µF capacitor under a regular significant wave
height of 0.12 m and a period of 2.5 s was tested. In the test charges, after 296 s of operation
of the central pipe-type wave energy triboelectric nanogenerator, the 1000 µF capacitor
was charged to 1.5 V, and the thermometer with electronic digital display was successfully
driven to work, as shown in Figure 23. In the test, 33 LEDs were directly lit on the driven
device, as shown in Figure 24.
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8. Conclusions

In this paper, both central pipe wave energy capture technology and triboelectric
nanogenerator technology were combined to devise a feasible wave energy generation
device in terms of miniaturization and performance improvement. The main achievements
of this paper include the following:

(1) A structure combining a central pipe OWC and a triboelectric nanogenerator was
designed. The motion equation of the device was established, the working mode of
the TENG was preliminarily designed, and its working principle was analyzed.

(2) Hydrodynamic modeling, a simulation of the structure of the device, and an electro-
static field simulation of the generation mode of the TENG were carried out, and the
influence of different parameters on the device were analyzed.

(3) Optimized design and semi-physical experiments were carried out on the power gen-
eration performance parameters of the TENG, through which the effects of dielectric
material, thickness, and electrode angle on the power generation performance were
identified, and durability experiments were carried out. The results showed that the
LED lamp can be successfully lit at a small wave level, verifying the capability of
energy supply for small sensors.

In future research, more reasonable assumptions will be applied in the simulation
model (such as the compressibility of air in the chamber) and a real sea test will hopefully
be carried out to verify the generating efficiency of the proposed OWC. The structure and
parameters of the proposed OWC may be further optimized according to the sea test.
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