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Abstract: This paper introduces a novel ensemble adjustment Kalman filter (EAKF) that integrates
a machine-learning approach. The conventional EAKF adopts linear and Gaussian assumptions,
making it difficult to handle cross-component updates in strongly coupled data assimilation (SCDA).
The new approach employs nonlinear variable relationships established by a deep neural network
(DNN) during the analysis stage of the EAKF, which nonlinearly projects observation increments into
the state variable space. It can diminish errors in estimating cross-component error covariance arising
from insufficient ensemble members, therefore improving the SCDA analysis. A conceptual coupled
model is employed in this paper to conduct twin experiments, validating the DNN–EAKF’s capability
to outperform conventional EAKF in SCDA. The results reveal that the DNN–EAKF can make SCDA
superior to WCDA with a limited ensemble size. The root-mean-squared errors are reduced up
to 70% while the anomaly correlation coefficients are increased up to 20% when the atmospheric
observations are used to update the ocean variables directly. The other model components can also
be improved through SCDA. This approach is anticipated to offer insights for future methodological
integrations of machine learning and data assimilation and provide methods for SCDA applications
in coupled general circulation models.

Keywords: data assimilation; machine learning; deep neural network; ensemble Kalman filter;
strongly coupled data assimilation

1. Introduction

As the demand for accurate weather and climate forecasting continues to rise, opera-
tional centers have recognized the importance of integrating various earth system model
components, such as the atmosphere, ocean, and land, into coupled models. This integra-
tion poses challenges, particularly in the initialization of these models, where the quality
of initial conditions significantly influences forecast accuracy. Coupled Data Assimilation
(CDA) has emerged as a crucial method for generating initial conditions, with institu-
tions and operational centers actively involved in advancing CDA methods [1–3]. CDA
encompasses two distinct approaches: Weakly Coupled Data Assimilation (WCDA) and
Strongly Coupled Data Assimilation (SCDA) [4]. In WCDA, although the background error
covariance is derived from the coupled model forecast, the analysis process is carried out
independently in each model component. SCDA, however, uses the full background error
covariance matrix, which allows observational data from one component to influence the
state variables of another component instantaneously. In theory, SCDA holds the potential
to extract more information from the same observational data, maintaining a better balance
between the two model components, and is the optimal CDA method [5]. However, SCDA
is still in the research stage and faces a series of challenges; therefore, most operational
centers are currently using WCDA.
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The main challenge with SCDA is that the cross-component error covariance matrices,
which are used to transfer information across components, are difficult to estimate. Han
(2013) demonstrated, in a study involving a conceptual 5-variable model, that achieving
superior performance with SCDA demands an exceedingly large ensemble size, typically
on the order of O(104), in contrast to WCDA [6]. Nevertheless, increasing the number of
ensemble members incurs high computational costs within practical ensemble data assimi-
lation systems. The data assimilation community has proposed various methods to enhance
the effectiveness of SCDA with limited computational resources. For instance, the Leading
Average Coupled Covariance (LACC) [7] method leverages the asymmetry exhibited by
the ocean-atmosphere temperature correlation. It updates ocean variables by utilizing the
mean of atmospheric observations and incorporates temporally leading atmospheric obser-
vations to update ocean variables, which enhances the atmospheric-ocean correlation. The
covariance matrix reconditioning method [8] enhances the background error covariance
matrix by modifying the original eigenvectors. The interface decomposition method [9]
addresses strong coupling near the interface by artificially setting cross-component vari-
able correlations. This approach mitigates the impact of spurious correlations and noise.
Furthermore, specific methods strengthen cross-component error covariance matrices from
a localized perspective, positively contributing to the assimilation process [10,11].

The above approaches have made significant progress, but they do not fully exploit the
potential for the application of machine learning (ML) in data assimilation (DA). Recently,
ML has found widespread applications in weather forecasting, uncertainty quantification,
and data assimilation [12]. Integrating DA and ML, especially neural networks (NN), holds
considerable promise to improve the accuracy and efficiency of data assimilation and model
prediction. In hybrid approaches which combine DA and ML, NN can play various roles.
For example, they can be employed to correct model errors through statistical correction
trains using data assimilation analyses or observations [13,14]. Additionally, NN can be
utilized to estimate parameters as an alternative to the augmented state approach [15,16].
Past studies have indicated that NN can serve as surrogate models by learning the data’s
dynamic properties. This capability allows them to replace physics-based models or the
data assimilation process [17–19]. However, in these hybrid applications, ML is mostly
applied to the dynamical models involved in the DA procedure rather than being directly
embedded into data assimilation algorithms. Some data assimilation algorithms that
incorporate a machine-learning module have been recently proposed, e.g., [20,21]. However,
they did not focus on algorithms applied to SCDA.

This paper aims to exploit the capability of NN in approximating nonlinear systems
and to develop a new EAKF algorithm integrated with deep neural networks (DNNs),
which is particularly used in the cross-component update in SCDA. The main objectives of
this paper include (a) the development of a new EAKF format in which DNN-constructed
variable correlations are employed to achieve cross-component updating in SCDA; (b) the
application of this DNN–EAKF approach in a conceptual model to validate its improvement
for SCDA.

The organization of this paper is as follows: Section 2 introduces the method of
conducting coupled assimilation using the EAKF method and subsequently presents the
development of the new DNN-based EAKF algorithm through the incorporation of ML.
Section 3 outlines the setup of models and twin experiments. Section 4 presents the
experimental results, illustrating how the newly developed DNN–EAKF improves cross-
component covariances and thus enhances strongly coupled assimilation. Finally, Section 5
provides a summary and discussion of the findings.
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2. Methods
2.1. Divided State-Space Approach for CDA

The Ensemble Kalman Filter (EnKF; ref. [22]) is a widely used data assimilation method
for efficiently implementing CDA. The EnKF uses an ensemble of model states to implement
the update formula of the Kalman filter [23]. For a linear observation system, i.e.,

y = Hx,

H is a linear operator that maps the model state variable x into the observation space,
y is the observation. The analysis scheme of the Kalman filter writes

xa = x f + PHT(HPHT + R)−1(yo − Hx f ), (1)

the superscripts a, f , and o stand for analysis (posterior), forecast (prior), and observation,
respectively. P denotes the background error covariance matrix, and R represents the
observation error covariance matrix.

The divided state-space strategy proposed by Luo and Hoteit (2014) can be used to
describe the CDA approach with EnKF [24]. For simplification, we assume that x consists
of two model components x = [x(a), x(o)], where

x(a) = {x(a,1), . . . , x(a,i), . . . , x(a,na)}
x(o) = {x(o,1), . . . , x(o,j), . . . , x(o,no)}

denote atmospheric and oceanic variables, respectively, and na and no are the number
of atmospheric and oceanic variables, respectively. According to Luo and Hoteit (2014),
the background error covariance matrix P in Equation (1) can also be correspondingly
expressed in the form of the block matrices, i.e.,

P =

[
P(aa) P(ao)
P(oa) P(oo)

]
where P(aa) and P(oo) are covariances within the atmospheric and oceanic models, respec-
tively, and P(ao) and P(oa) are cross-component error covariances.

In WCDA, the update of variables across model components is not taken into account,
where the cross-component covariances are all set to zero matrices, i.e.,

P =

[
P(aa) 0

0 P(oo)

]
At this point, Equation (1) can be written as

xa
(a) = x f

(a) + P(aa)HT
(a)(H(a)P(aa)HT

(a) + R(a))
−1[yo

(a) − H(a)x
f
(a)] (2)

xa
(o) = x f

(o) + P(oo)HT
(o)(H(o)P(oo)HT

(o) + R(o))
−1[yo

(o) − H(o)x
f
(o)] (3)

where yo
(a) and yo

(o) are atmospheric and oceanic observations, respectively, and R(a) and
R(o) are the corresponding observation error covariance matrices. The H(a) and H(o) are the
observation operators within the corresponding models. Equations (2) and (3) indicate that
the two model components carry out data assimilation independently, and the observations
in each model only directly update the variables in the same model component in WCDA.
The covariance matrix across the coupled components is not used.

In contrast, SCDA requires estimating the complete background error covariance
matrix, which places a high demand on the number of ensemble members in the EnKF.
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2.2. Ensemble Adjustment Kalman Filter with Divided State-Space

EnKF relies on ensemble statistics to compute the error covariance matrix during
the data assimilation process. In practical data assimilation, various ensemble filters [22]
and derivative methods (e.g., Ensemble Transformed Kalman Filter, Ensemble Square-
root Kalman Filter, Ensemble Adjustment Kalman Filter [25–27] and Unscented Kalman
Filter) have been proposed to implement ensemble updating in the Kalman filter. Among
them, the Ensemble Adjustment Kalman Filter (EAKF) developed by Anderson [25] can
decompose observations into a series of scalars and assimilate them in turn, making it well
suited to coupled data assimilation problems with multiple mode components. Therefore,
the present study employs the EAKF for CDA. To apply EAKF, it first assumes that vector
observations can be decomposed into multiple scalars, and the scalar observations are
considered independent (R is a diagonal matrix). Subsequently, it establishes iterative
loops during the data assimilation process, assimilating only one scalar observation at each
iteration step. The analysis serves as the a priori for the following iteration, and the process
continues until all scalar observations have been assimilated.

The assimilation stage for each scalar observation comprises two steps. The initial
step involves computing the observation increment based on the assumption of a Gaussian
distribution. The subsequent step employs the linear regression method to regress the
observation increment onto the model variables that can be incorporated into the prior
states. The following provides a description of the EAKF scheme based on atmospheric
observations. Further details can be found in [28].

2.2.1. Observation Increments

Initially, we denote the observation operator that projects the state vector x onto the
ith atmospheric observation, represented by yo

(a,i), as hi. Therefore, the projection

y(a,i) = hi(x). (4)

is in the observational space. The sequential EAKF algorithm projects each member of the
forecast ensemble onto the ith atmospheric observation using Equation (4), resulting in a
prior ensemble of observation projections, i.e.,

y f
(a,i),k = hi(x f

k ), k = 1, . . . , N (5)

Here, k in the subscript denotes the ensemble members, with a total number of N.
Each ensemble member obtained through Equation (5) is a scalar value. Assuming that

these members follow a Gaussian distribution, we can compute the mean y f
(a,i) and the

variance (σ
f
(a,i))

2 of the distribution from the ensemble members. Specifically,

y f
(a,i) =

1
N

N

∑
k=1

y f
(a,i),k (6)

(σ
f
(a,i))

2 =
1

N − 1

N

∑
k=1

(y f
(a,i),k − y f

(a,i))(y
f
(a,i),k − y f

(a,i))
T (7)

Given the scalar observation yo
(a,i) and the observation error variance r(a,i) (notably,

r(a,i) corresponds to the ith element on the diagonal of R(a)), Bayes’ rule is employed to
compute the posterior probability distribution density function. This distribution conforms
to the Gaussian distribution, with a variance of

(
σu
(a,i)

)2
=

[(
σ

f
(a,i)

)−2
+ r−1

(a,i)

]−1
(8)
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with a mean of

yu
(a,i) =

(
σu
(a,i)

)2

 y f
(a,i)(

σ
f
(a,i)

)2 +
yo
(a,i)

r(a,i)

 (9)

Here, the superscript u represents the posterior value obtained from a single update.
The EAKF algorithm adjusts each ensemble member to align the posterior mean and
variance with the values specified by Equations (8) and (9). The posterior ensemble member
in the observation space is

yu
(a,i),k =

σu
(a,i)

σ
f
(a,i)

(
y f
(a,i),k − y f

(a,i)

)
+ yu

(a,i) (10)

Equation (10) illustrates that each ensemble member yu
(a,i),k is formed by shifting the

mean and applying a linear contraction to the prior ensemble members. These operations
of shifting and contracting ensure that the posterior sample mean equals yu

(a,i), and the

variance equals
(

σu
(a,i)

)2
. For the k-th ensemble member, the observation increment is

expressed as
∆y(a,i),k = yu

(a,i),k − y f
(a,i),k (11)

2.2.2. State-Space Increments

Given observation increments, the second step calculates the corresponding increments
for each ensemble member of each state variable. For an atmospheric variable x(a,j),k, the

increment is represented as ∆x(a,i)
(a,j),k (k indexes the ensemble member, and j = 1, . . . , na

indexes the joint state variable throughout this study). The superscript (a, i) indicates that
the increment is associated with the observation yo

(a,i).
The serial EAKF algorithm requires assumptions about the prior relationship among

joint state variables, encompassing both observed and unobserved variables. This algorithm
assumes that the prior distribution follows a Gaussian distribution. This assumption is
equivalent to assuming that a local least-squares fit to the prior ensemble members captures
the relationship among the joint state variables.

Figure 1a replicates the straightforward illustration from Anderson (2003) [28], depict-
ing the relationship between update increments for a state variable x and an observation
variable y. The observation variable is linked to the state variable through a typically non-
linear operator g. As observation increments have been determined using Equation (11),
the corresponding increments for the state variable can be calculated through a global
least-squares fit. Thus, the increment from the observation yo

(a,i) is given by

∆x(a,i)
(a,j),k =

σx(a,j),y

(σ
f
(a,i))

2
∆y(a,i),k, j = 1, 2, . . . , na (12)

Here, σx(a,j),y signifies the covariance between x(a,j) and y f
(a,i), calculated from en-

semble members, while (σ
f
(a,i))

2 represents the prior ensemble variance computed using
Equation (7).

Adding ∆x(a,i)
(a,j),k to x f

(a,j),k results in the updated analysis field xu
(a,j),k. Subsequently,

iterate over j to update all atmospheric variables using the same atmospheric observation.

xu
(a,j),k = x f

(a,j),k + ∆x(a,i)
(a,j),k, j = 1, 2, . . . , na (13)
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It is important to note that if the localization method is employed, the term ∆x(a,i)
(a,j),k

in Equation (12) should be multiplied by the localization factor ρ, which is linked to the
distance between the locations of x f

(a,j) and yo
(a,i). For simplicity in the discussion, we refrain

from utilizing the localization method in the experiments.

Figure 1. Schematic diagram of the state variable update algorithm in EAKF (a) and DNN-EAKF (b),
where g or G is the nonlinear relationship between the observed variable y and the unobserved
variable x, with “*” representing ensemble members and “+” representing the projection of ensemble
members on the x/y axis.

For an oceanic variable x(o,j),k that requires updating through cross-component cor-
relation using atmospheric observations, the same linear regression approach can still be
employed to compute the increment for each ensemble member, as follows:

∆x(a,i)
(o,j),k =

σx(o,j),y

(σ
f
(a,i))

2
∆y(a,i),k, j = 1, 2, . . . , na (14)

Ocean variables can be updated using the same process, where

xu
(o,j),k = x f

(o,j),k + ∆x(a,i)
(o,j),k, j = 1, 2, . . . , no (15)

Here, no denotes the number of ocean variables.
Nevertheless, certain studies have indicated that the methods outlined in Equation (14)

and (15) require very large ensembles for accurately estimating cross-component correlation
coefficients. Otherwise, the increments derived from Equation (14) might be significantly
biased, resulting in erroneous assimilation effects in Equation (15) [6]. This is primarily due
to the strong nonlinear correlations among variables from different components within the
coupled model, making it challenging for regression methods based on the assumption of
local linearity to precisely estimate their correlation coefficients (Figure 1a) and necessitating
a considerable number of members to achieve the desired effect.

2.2.3. DNN-Based State-Space Increments for EAKF

In this study, we introduce DNN to model relationships between cross-component
variables. The DNN is an artificial neural network characterized by multiple hidden layers
designed for learning and representing complex nonlinear relationships. The primary
strength of DNN lies in its efficient ability to capture and model complex, nonlinear
relationships in data.

As an example, using ocean and atmosphere variables, we introduce a projection
operator Π from the atmosphere to the ocean, expressed as x(o) = Π(x(a)). This projec-
tion operator facilitates the representation of cross-component inter-variable relationships
through an NN model trained on data derived from background integration. The nonlinear
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relationship based on neural networks is expressed as G(Π(x(a)), θ), where the vector θ
represents the trainable parameters of the neural network. The optimal weights are de-
termined through an iterative process of minimizing the loss function. x(o) serves as the
label for the training set. The function G(Π(x(a)), θ) can be solved using the following
optimization problem:

L(θ) =
N f

∑
i=1

∥∥∥G(i)
(

Π
(

x(a)

)
, θ
)
− x(o)

∥∥∥2

P−1
k

(16)

Here, N f denotes the length of the training set, representing the minimization of the
error between predicted and true values. Pk is a symmetric semi-positive definite matrix
defining the paradigm ∥x∥2

P−1
k

= xT P−1
k x, equivalent to the error covariance matrix of the

NN model.
By employing integration or reanalysis data, we can train the model parameters to de-

rive the nonlinear function G(Π(x(a)), θ), utilizing atmospheric variables to predict oceanic
variables. This function is subsequently employed to project a priori and a posteriori values
from the atmospheric component to the oceanic component, facilitating the computation of
variable increments within the oceanic model. This can be expressed using

∆x(oj),k = G̃(xu
(a),k)− G̃(x f

(a),k), j = 1, . . . , no (17)

where G̃, as the function of x(a), denotes the nonlinear function Π(x(a)) with the optimal
parameter derived by solving Equation (16).

Figure 1b depicts a schematic of the algorithm. In this context, updates of the unob-
served variables are obtained not through linear regression but by employing a nonlinear
model trained by NN. Finally, utilizing Equation (15), it is possible to obtain the a posteri-
ori values of the oceanic component. Again, localization methods can also be applied in
this stage.

Due to the reliance on DNN to establish nonlinear relationships between variables, we
term the newly proposed method Deep Neural Network-Ensemble Adjustment Kalman
Filter (DNN–EAKF). Figure 2 presents a flow chart of the conventional EAKF method
and the DNN–EAKF developed in this section. Here, we take atmospheric observations
and ocean and atmospheric model variables as examples, but they can also be applied
to more general situations. It is also noteworthy that DNN–EAKF is only applied for
cross-component updates, while intra-component updates still use conventional EAKF.

Figure 2. Flow chart of the conventional EAKF method (left route) and the DNN–EAKF developed
in this section (right route).
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3. Model and Experimental Settings
3.1. Numerical Model

The numerical model employed in this study is a conceptual coupled model exten-
sively utilized in prior research to evaluate the efficacy of data assimilation methods
(e.g., [6,29–32]). This coupled model comprises a fast atmosphere, a slow upper ocean,
and a significantly slower deep ocean with an idealized sea ice component. Although the
simple coupled model may lack the physical complexity of the coupled circulation model, it
effectively characterizes interactions among multiple time-scale components in the climate
system [33] and adeptly captures certain challenges in SCDA.

The equation for this low-order coupled model is

ẋ1 = −σx1 + σx2

ẋ2 = −x1x3 + (1 + c1ω)κx1 − x2

ẋ3 = x1x2 − bx3

Omω̇ = c2x2 + c3η + c5ωη − Odω + Sm + S(t)− c7 φt−1

Γη̇ = c4ω + c6ωη − Odη

φt = Φ(x2, ω, φt−1),

where the six model variables represent the atmosphere, the ocean, and the sea ice x1, x2,
and x3 are for the atmosphere (hereafter denoted by x1,2,3 if present together), ω is for the
slab ocean, η is for the deep-ocean pycnocline, and φ is for the sea ice concentration. The
dots above the variables indicate time trends (time derivatives). In this simple system, the
seasonal period is defined as 10 nondimensional model time units (TUs, 1 TU = 100 time
steps, given ∆t = 0.01), and a model year (decade) is 10 (100) TUs. The atmosphere model
is Lorenz’s chaotic model [34], the standard values of the original parameters σ, κ, and
b are, respectively, 9.95, 28, and 8/3, and the atmospheric time scale is defined as 1 TU.
The coupling between the fast atmospheric and the slow ocean is achieved by choosing
the values of the coupling coefficients c1 and c2, which denote the ocean-to-atmosphere
and the atmosphere-to-ocean forcing, respectively. The parameters c3 and c5 denote the
linear forcing of the deep ocean and the nonlinear interaction of the upper ocean with the
deep ocean. Om is the ocean heat capacity, while Od denotes the damping coefficient of
the flat ocean variable ω. Their values define that the time scale of the ocean variable ω is
much slower than the atmosphere, e.g., (Om, Od) = (10, 1) defines the oceanic time scale to
be approximately 10 times that of the atmosphere. In addition, the model uses the term
S(t) = Sm + Ss cos

(
2πt/Spd

)
to simulate constant and seasonal forcing of the “climate”

system. The parameter c7 denotes the coupling coefficient between sea ice and the slab
ocean. In the pycnocline model, η represents the anomaly of the ocean pycnocline depth,
with its trend equation derived from a binomial equilibrium model of the latitudinal time-
averaged specific gravity pycnocline, interacting with ω. The constant of proportionality
is denoted as Γ, while c4 and c6 represent the linear forcing of the upper ocean and the
nonlinear interaction of the upper ocean with the deep ocean. Finally, the sea ice model
takes the form of a straightforward nonlinear function that maps enthalpy space to the
sea ice concentration space. In this context, “sea ice” φ influences the atmosphere solely
through the interaction of the ocean variable ω and the atmospheric variable x2.

To solve the assimilation problem caused by the discontinuity in the distribution
of sea ice concentration, Zhang et al. (2013) introduced a nonlinear function of enthalpy
(H = c8x2

2 + c9(ω− 10)2 + c10 φt−1) to define the sea ice medium [33], in which the nonlinear
transformation function from enthalpy to ice concentration is

φ = Φ(H) =


0, H > Hig
1, H < Him

0.5
[
e−(H−Him)−1

+ e−(Hig−H)/H0
]
, Him ≤ H ≤ Hig

,
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The Hig and Him represent the thresholds for the ice generation and maintenance
points, while H0 is used to adjust the shape of the curve, distributed between 0 and 1. It
also has both x2 and ω time scales according to the formulation.

Referring to Han et al. (2013) [6], the parameter values of the true-value model are
(σ,κ, b, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, Om, Od, Sm, Ss, Spd, Γ, Hig, Him, H0) = (9.95, 28, 8/3,
0.1, 1, 0.01, 1, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 10, 10, 10, 10, 1, 10, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 100, 50, 10, 80). We integrated the model using a fourth-order Runge–Kutta scheme,
starting with the initial conditions (x1 , x2 , x3 , ω , η , φ) = (0 , 1 , 0 , 0 , 0 , 0 , 0), and using
the values after spin-up over 2500 TUs as the true initial values. Figure 3 shows the time
series of the three atmospheric and two oceanic variables, as well as the sea ice variable,
and it can be observed that the three atmospheric variables have attractor characteristics.
The x-axis of Figure 3b,c uses a different time scale, revealing that the variability of the
oceanic variables is about 1/10 of that of the atmospheric variables.

Figure 3. The model state values of the atmosphere (a) x1,2,3; ocean (b) ω and η; and sea ice (c) φ,
with 0, 1, 0, 0, 0 and 0 as the initial conditions for x1, x2, x3, ω, η and φ. We showed the time series of
the 3 components during the period of 50–60 TUs, 50–150 TUs and 50−150 TUs, respectively.

3.2. Neural Network Model

We utilize model integration data to train an NN model aimed at establishing nonlin-
ear relationships between atmospheric and oceanic variables. Specifically, for the coupled
model employed in this study, we formulate the nonlinear relationship from the atmo-
spheric variable X = [x1, x2, x3] to each of the oceanic and sea ice variables: ω, η, and φ.

Taking ω as an example, the objective of ML training is to construct a neural network
G̃W to predict ω using the atmospheric variable x(a), with W representing its weight. The
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optimal weights are determined through the minimization of the loss function during
the training phase. To acquire the training data, we conduct a background integration of
5000 TUs for the model starting from a random initial value, with an integral step size
of ∆t = 0.01. These data are divided into 5000 TUs, comprising input–output pairs of
atmospheric variables (x1,2,3) and oceanic variables (ω) at corresponding moments. Among
these, 4000 TUs are allocated for model training, 800 TUs for validation and hyperparameter
tuning during the training period, and the remaining 200 TUs are dedicated to evaluating
the model’s robustness without any overlap among the three sequences.

Based on different assumptions, we constructed three DNN models as outlined below:
In the first model, we utilize atmospheric variables to predict concurrent oceanic

variables, naming this model the Single-Instant Predictor (SIP). The training involves a three-
layer fully connected network model; refer to Figure 4a for the schematic neural network
structure. The training objective is to achieve the desired nonlinear model, expressed as
ω(t) = G̃(X(t)), where t indicates the time step.

Figure 4. Schematic diagram of the neural networks. (a) A three-layer fully connected neural network
for two single-step prediction models with input and output sizes of 3 and 1, respectively; (b) A fully
connected neural network for a multi-step prediction model with input and output sizes of 10 × 3
and 1, respectively.

In accordance with findings by Lu et al. (2015), indicating that utilizing atmospheric
observations with lead times can significantly enhance analysis quality in WCDA compared
to SCDA using a small ensemble size [7], our second model associates the oceanic variables
with the previous atmospheric variables. Specifically, we construct the model to predict
the current oceanic variable using the atmospheric variable 0.2 TUs ahead of time. We
term this model a Single-Step Leading Predictor (SLP). The network is the same as SIP,
also refer to Figure 4a, and the training results in a target nonlinear model expressed as
ω(t) = G̃(X(t − 0.2)).

Building on Lu et al. (2015) strategy of averaging time-leading atmospheric variables
to construct ocean-atmosphere covariance, which reduces noise arising from disparate
variability in the atmosphere and ocean, our third model utilizes all atmospheric variables
from the 10 consecutive steps to predict ocean variables in the final step. Termed the
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Multi-Leading Predictor (MLP), the network model is depicted in Figure 4b, trained to
achieve the target nonlinear model ω(t) = G̃(X(t − 9), . . . , X(t)). Importantly, the inputs
in each data pair include atmospheric variables from the 10-step model integration, while
the outputs represent oceanic variables from the final step. Consequently, the volume of
data for both training and validation is only 1/10th of that used for the first two models.

We use the three aforementioned models to establish the relationship between X and
ω. The models’ parameters are optimized using the Adam algorithm, and the loss function
is the Huber loss over the training dataset, which is made of background snapshots. The
training consists of 200 epochs with an adaptive learning rate (initial learning rate sets
1 × 10−3) and batch size of 50. After the entire training step, we keep the model that
yields the lowest loss over the validation dataset. The three aforementioned models to
establish the relationship between X and ω, the stabilized prediction results are shown
in Figure 5. Figure 5a–c illustrate the performances of the three models on the same test
set, where the red line represents the true value, while the blue, green, and violet lines
correspond to the predicted ω-values by the three models, respectively. It can be observed
that all three models can roughly simulate the trend of the true value, and for the SIP, some
extreme values appear due to the large variability difference between the atmospheric and
oceanic variables; the stability of the SLP (b) is significantly improved compared to (a);
and the MLP (c) achieves the best prediction result. This also implies that the use of train-
ing data related to the leading-averaged atmospheric variables enhances the accuracy of
sea-air predictions.

Figure 5. Prediction effects of Single-instant Predictor (a), Single-leading Predictor (b) and Multi-
leading Predictor (c) on the test set .

We have employed a similar approach to train the relationship between X and the deep-
ocean pycnocline variable η, as well as the sea ice variable φ with MLP, as shown in Figure 6.
The results show that the relationship between the fast-varying atmospheric variables
and the slow-varying pycnocline variables is notably weak, rendering the prediction of
η with the atmosphere nearly impossible. On the other hand, the prediction of sea ice
with atmospheric variables proves to be difficult. This discrepancy can be attributed
to the relatively weak connection between these variables in the model equations. We,
therefore, focus on the SCDA of atmospheric observations to the sea-surface variable ω



J. Mar. Sci. Eng. 2024, 12, 108 12 of 20

in the assimilation experiments below, which is also consistent with the idea of interface
decomposition proposed by [9].

Figure 6. MLP model for η (a) and φ (b).

3.3. Data Assimilation Experiment Settings

The true values and observations used as reference are generated by integrating the
coupled model with standard parameter values (cf. Section 3.1). The integration begins
with the true initial values obtained in Section 3.1, and the model integration step is
∆t = 0.01 TUs, spanning a total of 100 TUs for the entire experiment. Observational data
are generated by adding random noise, following a specific distribution, to the true values.
To simulate real-world conditions, we assume that atmospheric, sea-surface, and sea ice
variables can be observed at specific time intervals, whereas the pycnocline variable η is
unobservable. Following the setup of Zhang [31], we assume that observation errors for the
atmospheric variables x1,2,3 all follow a Gaussian distribution with a standard deviation
of 2. The observation errors for ω and φ are assumed to follow Gaussian distributions
with standard deviations of 0.5 and 0.1, respectively. Additionally, to simulate mode errors,
we introduce biased coupled modes in both the background integration and assimilation
experiments. Here, all physical parameters are perturbed from the reference parameters
with a 1% random error.

Assimilation experiments were conducted to compare the performance of conventional
EAKF and DNN–EAKF in SCDA. Prior studies indicate that high-frequency atmospheric
observations positively impact oceanic variables, while low-frequency oceanic observations
struggle to adjust atmospheric variables [6,35]. Hence, our emphasis is on evaluating SCDA
concerning atmospheric observations while using WCDA to assimilate ocean and sea ice
observations. Three CDA frameworks can be established for atmospheric observations:
WCDA, SCDA at the interface (SCDA-I), and fully SCDA (SCDA-F). The influence of
observations on various variables is illustrated in Figure 7. Among them, SCDA-I utilizes
atmospheric observations to update the sea-surface variable ω, which references [9].

As shown in Figure 5, a DNN can efficiently establish a nonlinear relationship be-
tween atmospheric variables x1,2,3 and the sea-surface variable ω. However, establishing a
relationship between atmospheric variables and pycnocline or sea ice variables remains
challenging (Figure 6). Therefore, we employ DNN–EAKF to update ω using atmospheric
observations in SCDA-I (black box in Figure 7b). We then compare the results with those of
the three CDA experiments using the conventional EAKF method.



J. Mar. Sci. Eng. 2024, 12, 108 13 of 20

Figure 7. Three frameworks for coupling assimilation: WCDA (a), SCDA at the interface (b) and
fully SCDA (c). The horizontal axis represents the observed variables, and the vertical axis represents
the variables affected by each observation. The dark gray shadows in SCDA-I (b) represent the
DNN–EAKF method obtained using conventional EAKF or DNN-based training models in the
atmospheric observation effect ω variable.

In the subsequent discussion, we initially present the results of assimilating only atmo-
spheric observations and subsequently extend our analysis to encompass the assimilation
of all available observations.

4. Results
4.1. Atmosphere Observations

In the initial scenario, the focus is on assimilating exclusively atmospheric observations
into the coupled model, employing various CDA frameworks and methodologies. Various
assimilation intervals (e.g., assimilating atmospheric observations every 0.1 or 0.2 TUs) and
multiple ensemble sizes (with N representing the ensemble member size, ranging from 10
to 50) are explored. The assessment of data assimilation results includes comparing true
values using metrics such as root-mean-squared error (RMSE) and anomaly correlation
coefficient (ACC). In this context, RMSE and ACC are defined as:

RMSE =

√√√√ 1
K

K
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In these equations, K denotes the time steps for a state variable x, while xa and xtrue

signify the ensemble mean of the analysis and true values of variable x, respectively. To
ensure the reliability of the conclusions, we utilized the results from the last 30 TUs for
calculating RMSE and ACC.

To mitigate the impact of randomness in the outcomes, each experiment was replicated
10 times with different initial perturbation values. The final results were determined based
on the mean values of RMSE and ACC obtained from these ten experiments.

In this scenario, we examine the outcomes related to the atmospheric variable x2 and
the oceanic variable ω. Figure 8 depicts histograms illustrating the RMSE distributions for
each method. The bar values denote the mean of 10 replicate experiments, and the error
bars indicate their standard deviation.
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Figure 8. The RMSEs of WCDA (blue), SCDA-I(EAKF) (orange), SCDA-F (green), SCDA-I(MLP) (red),
SCDA-I(SLP) (violet), and SCDA-I(SIP) (pink) for the atmospheric variable x2 when the atmospheric
observation interval is 0.1 TUs (a) and 0.2 TUs (c), within the [70, 100] TUs timeframe; (b,d) same as
(a,c), but for the ocean variable ω. The error bars represent the standard deviation of the RMSE of
10 replicate experiments for each coupled method; the ratios beneath the bar of DNN-EAKF are the
error reduction rates compared to WCDA (blue).

Comparing RMSE, it is evident that, in the realm of CDA utilizing EAKF, SCDA-F
(green) exhibits poor performance, while WCDA (blue) demonstrates superior perfor-
mance. Additionally, their assimilation effectiveness improves with larger ensemble sizes
and more frequent observations. This indicates that introducing cross-component error
covariance through linear approximation may degrade state estimation when there are
insufficient ensemble members, consistent with findings in [6]. The detrimental impact
of an increased frequency of atmospheric observations on the assimilation performance
of SCDA-F (green) is conspicuous. This implies that poorly estimated cross-component
error covariances can accumulate adverse effects when rapidly incorporating atmospheric
observation information.

Regarding the ocean variable ω in Figure 8b,d, DNN–EAKF consistently outperforms
the conventional EAKF approach in SCDA-I (orange). It indicates that, even with smaller
ensembles, atmospheric observations can accurately adjust ocean variables through non-
linear mapping, thanks to the enhanced signal-to-noise ratio of the cross-component error
covariance. In line with the diverse behaviors of different models illustrated in Figure 5,
SCDA-I(MLP) (red), exhibiting the highest prediction accuracy, performs optimally in
most cases. However, the large standard deviation of the results from the 10 replicate
experiments reveals that the predictive effect of SCDA-I(SIP) (pink) is not sufficiently stable,
limiting the method’s performance.

Additionally, it is observed that SCDA-I using DNN–EAKF surpasses the assimilation
effect of WCDA in some instances, particularly with an observation interval of 0.2 TUs.
This implies a positive updating effect of atmospheric observations on oceanic variables
through DNN–EAKF. We define the relative error reduction rate r as
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r =
RMSEWCDA − RMSEDNN˘EAKF

RMSEWCDA
,

denoting the relative error reduction of SCDA-I using DNN–EAKF compared to WCDA
and representing the improvement effect from the cross-component update based on
DNN–EAKF. The value of r is indicated in Figure 8 beneath the bar where SCDA-I using
DNNs outperforms WCDA. It highlights that the error reduction of DNN–EAKF over
WCDA becomes more prominent with an extended atmospheric observation interval and a
smaller ensemble size. This signifies situations where DNN–EAKF holds a more significant
advantage, namely when the problem is more nonlinear and the ensemble size is limited.

Figure 8c shows a notable increase in the relative error reduction rate for the atmo-
spheric variables with an expanding ensemble when the observation interval is 0.2 TUs.
This is attributed to the substantial improvement that DNN–EAKF brings to the oceanic
variables in this scenario, resulting in a decrease in oceanic error with the increasing ensem-
ble size. It can be inferred that the coupling with the improved ω contributes to improving
the accuracy of x2 in SCDA-I using DNN–EAKF.

Figure 9 displays the ACC corresponding to the results shown in Figure 8, reaffirming
the same conclusion. It should be noted that the ratio labeled is ACC growth instead of
RMSE reduction. Clearly, SCDA-I based on DNN–EAKF, especially when utilizing the
MLP model, consistently produces significantly enhanced assimilation results compared
to WCDA. The advantage is more pronounced in scenarios characterized by stronger
nonlinearity and smaller ensemble sizes.

Figure 9. Same ACCs of WCDA (blue), SCDA-I(EAKF) (orange), SCDA-F (green), SCDA-I(MLP) (red),
SCDA-I(SLP) (violet), and SCDA-I(SIP) (pink) for the atmospheric variable x2 when the atmospheric
observation interval is 0.1 TUs (a) and 0.2 TUs (c), within the [70, 100] TUs timeframe; (b,d) same as
(a,c), but for the ocean variable ω. The error bars represent the standard deviation of the RMSE of
10 replicate experiments for each coupled method; the ratios beneath the bar of DNN-EAKF are the
ACC value growth rates compared to WCDA (blue).
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It is intriguing to further investigate how DNN–EAKF addresses nonlinearities. Figure 10
illustrates the probability distributions of x2 and ω (i.e., climatological state distributions) in
the mean of analysis field using 10 ensemble members at an observation interval of 0.2 TUs.
Once again, we rely on the results from the last 30 TUs and compare the climatological
distributions of WCDA, SCDA-I (MLP), and the true values. Notably, the climatological
distributions of the atmospheric variables do not differ significantly between the three
methods. However, for the oceanic variables, the climatological distribution of EAKF
results differs significantly from the true climatological distribution, but the DNN–EAKF
aligns with it more closely. It suggests that the method excels in handling nonlinear and
non-Gaussian problems, shedding light on the underlying reasons for its advantages.

Figure 10. The probability distributions of the atmospheric variable x2 for the EAKF (WCDA) (a),
DNN−EAKF (SCDA−I(MLP)) (b), and true values (c) during the period [70 TUs, 100 TUs] are shown,
respectively; (d–f) same as (a–c), but for the ocean variable ω. This analysis is based on an experiment
with 10 ensemble members assimilating atmospheric observations every 0.2 TUs.

4.2. Multiple Observations

Experiments in Section 4.1, exclusively assimilating atmospheric observations, demon-
strated that SCDA-I using DNN–EAKF effectively improves cross-component updates. It
results in a more stable and accurate model state compared to EAKF, particularly in condi-
tions with pronounced nonlinearities, such as those with low assimilation frequencies and
few ensemble members. In this section, we investigate the broader impact of DNN–EAKF
on the overall variables of the coupled model, considering multiple observations, including
atmosphere, sea surface, and sea ice. A more realistic scenario is considered, where oceanic
observations are less frequent than those for the atmosphere. Specifically, we assume an
observation interval of 0.1 TUs for the atmosphere and 0.5 TUs for the oceans and sea ice.
This results in atmospheric observations directly updating ocean variables more frequently
than oceanic observations in SCDA-F and SCDA-I. However, inaccurate cross-component
error covariances can significantly degrade assimilation results compared to WCDA.
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We calculate the RMSE at each step using the experimental results of the 10 ensemble
members compared to the true values and present them in Figure 11, focusing on the
impact of SCDA-I (MLP). To mitigate randomness, we computed the average RMSE over
10 repeated experiments. For the presentation, we applied a smoothing process to the
time series of RMSE, using a moving average with a window size of 1 TU (or 100 steps).
Consistent with findings from experiments assimilating only atmospheric observations,
SCDA-I (MLP) effectively assimilates both x2 and ω, surpassing the performance of the
three coupled assimilation frameworks using the conventional EAKF. Although SCDA-F’s
influence on the assimilation of these two variables is weaker than that of WCDA and
SCDA-I, it remains within an acceptable range due to the presence of ocean observations
constraining the ocean variables. The enhancements in ocean variable assimilation achieved
by SCDA-I are also manifested in η and φ (Figure 11 shows the corresponding enthalpies
H), indicating improved assimilation results for the deep-sea and sea ice.

Figure 11. The absolute error of x2 (a), ω (b), η (c) and H (d) of size 10 are collected in WCDA (blue),
SCDA-I(EAKF) (black), SCDA-F (green) and SCDA-I(MLP) (red), respectively. The shaded areas in (c)
represent the mean RMSE of 10 replicate experiments plus/minus the standard deviation of them.

For more detailed quantitative results, Table 1 presents the time-averaged RMSEs of x2,
ω, η, and φ from the experimental results with varying ensemble sizes. In these experiments,
the SCDA-I experiments used the conventional EAKF and three DNN models. Examination
of the data reveals clear advantages of DNN–EAKF, including reduced analysis errors and
improved ACC. Notably, among the three DNN models, SLP performs best for atmospheric
variables, while MLP excels for ocean and related variables. Table 1 also illustrates the
relative error reduction rate and relative ACC increase rate of SCDA-I (MLP) compared to
WCDA. The improvement resulting from strongly coupled data assimilation is particularly
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pronounced with a smaller number of ensemble members. It is worth noting that although
SCDA-I using DNN–EAKF did not reduce the RMSEs of pycnocline variable η compared
to WCDA (especially when N = 20 or 50), the ACCs still increased. Due to the lack of
observations on η, the accuracy of η analysis is poor. The improvement of η is mainly
achieved through model integration; therefore, it has a good correlation.

Table 1. The time-averaged root mean square errors (RMSE) and anomaly correlation coefficients
(ACC) of x2, ω, η, and φ under different ensemble member conditions when the observation interval
of atmospheric variable is 0.1 TUs, and the ocean and sea ice is 0.5 TUs .

RMSE

N = 10 N = 20 N = 50

x2 ω η φ x2 ω η φ x2 ω η φ

WCDA 8.64 0.72 0.52 0.21 7.63 0.67 0.46 0.19 5.60 0.33 0.30 0.15

SCDA-I 10.01 0.82 0.89 0.28 9.86 0.65 0.87 0.25 7.21 0.65 1.02 0.26

SCDA-F 9.61 0.89 1.96 0.33 10.37 0.85 1.26 0.26 7.50 0.64 1.30 0.24

SCDA-I(MLP) 2.35 0.28 0.51 0.13 2.04 0.26 0.54 0.11 2.10 0.24 0.46 0.11

SCDA-I(SLP) 1.81 0.31 0.40 0.14 1.63 0.30 0.55 0.13 1.52 0.28 0.70 0.13

SCDA-I(SIP) 2.33 0.31 0.53 0.14 2.31 0.30 0.53 0.13 1.68 0.29 0.56 0.13

reduction rate 72.78% 61.50% 1.01% 39.46% 73.30% 61.43% −16.42% 39.88% 62.52% 27.42% −55.21% 20.4%

ACC

x2 ω η φ x2 ω η φ x2 ω η φ

WCDA 0.86 0.74 0.79 0.69 0.89 0.85 0.70 0.77 0.93 0.93 0.82 0.83

SCDA-I 0.81 0.76 0.84 0.59 0.84 0.84 0.91 0.66 0.90 0.85 0.90 0.64

SCDA-F 0.81 0.75 0.38 0.51 0.80 0.72 0.28 0.57 0.89 0.82 0.47 0.65

SCDA-I(MLP) 0.98 0.99 0.93 0.90 0.99 0.99 0.95 0.92 0.99 0.99 0.95 0.92

SCDA-I(SLP) 0.98 0.98 0.90 0.89 0.99 0.99 0.95 0.90 1.00 0.99 0.93 0.9

SCDA-I(SIP) 0.99 0.99 0.96 0.88 0.99 0.98 0.95 0.90 0.99 0.99 0.95 0.90

growth rate 14.07% 32.89% 16.78% 30.67% 12.04% 16.40% 34.98% 20.17% 6.33% 5.87% 16.72% 11.44%

5. Conclusions

In recent years, the research of CDA has received extensive attention, among which
SCDA is considered the theoretically optimal coupled data assimilation method for re-
analysis and prediction initialization. One of the key challenges of SCDA is to accurately
estimate its coupled error covariance matrix, especially the cross-component error covari-
ance. Numerous studies have shown that in ensemble-based data assimilation algorithms,
the accuracy of covariance estimation is highly dependent on the ensemble size. This
is because traditional ensemble-based data assimilation methods, such as EAKF, adopt
linear and Gaussian assumptions, making it difficult to handle cross-component updates
in SCDA.

To solve the difficulties faced by EAKF in SCDA, this paper proposes a DNN–EAKF
algorithm, which incorporates machine learning and EAKF. The new algorithm employs
nonlinear intra-variable relationships established by DNN during the analysis stage of the
EAKF, which nonlinearly projects observation increments into the state variable space. It
means that this method relies less on the Gaussian linear assumption and has the potential
to handle nonlinear SCDA situations.

This study verifies the algorithm’s performance using a conceptual coupled model
consisting of atmospheric, oceanic, pycnocline, and sea ice variables at different spatiotem-
poral scales. Twin experiments are conducted by creating synthetic atmospheric, oceanic,
and sea ice observations and comparing the assimilation performance of different methods.
The emphasis is placed on the strong/weak CDA of atmospheric observations, and the
ocean and sea ice observations are assimilated using WCDA.

Three DNN models are established based on different considerations, namely SIP,
SLP, and MLP models, which are obtained to use atmosphere variables to predict the
ocean. The DNN–EAKF obtained by combining these models with EAKF is used for SCDA
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using atmospheric observations to update ocean variables (we call it SCDA-interface or
SCDA-I). The results show that DNN–EAKF performs much better in SCDA-I than the
conventional EAKF method using finite ensemble members, indicating that the DNN–EAKF
can better estimate the cross-component error covariances, thus providing more accurate
analysis. The SCDA-I can be even better than WCDA using EAKF. This indicates that even
with very few ensemble members, SCDA-I using DNN–EAKF can still provide effective
information to other model components, implying its effectiveness. From Figures 8 and 9, it
concludes that the RMSEs are reduced from WCDA up to 70% while the ACCs are increased
up to 20% when the atmospheric observations are used to update the ocean variables
directly. Figure 10 and Table 1 show that the other model components can also be improved
through SCDA.

The experimental results show that DNN–EAKF has great potential to improve the
ensemble-based data assimilation performance in coupled modes. However, this study pri-
marily presents the rationale behind the DNN–EAKF algorithm and validates the concept
using a relatively low-order model. Although the simple model demonstrates promis-
ing results, various challenges persist in its application to realistic high-resolution mod-
els. Specifically, the computational cost of training the machine-learning model escalates
in complicated coupled models, and predictions generated during assimilation by the
machine-learning model introduce computational overhead. Moreover, its superiority over
EAKF in weak nonlinearity cases is not significant. In future research, our focus will be on
further optimizing DNN–EAKF in additional low-order models and its application to real
operational prediction models.
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