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Abstract: In recent years, the study of deep learning techniques for underwater acoustic channel
estimation has gained widespread attention. However, existing neural network channel estimation
methods often overfit to training dataset noise levels, leading to diminished performance when
confronted with new noise levels. In this research, a “bias-free” denoising convolutional neural
network (DnCNN) method is proposed for robust underwater acoustic channel estimation. The paper
offers a theoretical justification for bias removal and customizes the fundamental DnCNN framework
to give a specialized design for channel estimation, referred to as the bias-free complex DnCNN
(BF-CDN). It uses least squares channel estimation results as input and employs a CNN model to learn
channel characteristics and noise distribution. The proposed method effectively utilizes the temporal
correlation inherent in underwater acoustic channels to further enhance estimation performance and
robustness. This method adapts to varying noise levels in underwater environments. Experimental
results show the robustness of the method under different noise conditions, indicating its potential to
improve the accuracy and reliability of channel estimation.

Keywords: underwater acoustic communication; channel estimation; bias-free; deep learning;
convolutional neural network

1. Introduction

Underwater acoustic (UWA) communication systems have become a critical compo-
nent to meet the rising demand for marine exploration and commercial activities. These
systems facilitate a diverse set of applications, including oceanographic research, offshore
oil and gas exploration, and the Internet of Underwater Things [1–3]. The UWA wave is
often regarded as one of the most demanding communication mediums as it is character-
ized by limited bandwidth, significant multipath spread, fast fading, and intricate oceanic
noise [4,5].

Orthogonal frequency division multiplexing (OFDM) for UWA communication has
gained substantial attention due to its high spectral efficiency and resistance to long mul-
tipath spread in UWA channels [6]. The basic idea behind OFDM is to split the channel
bandwidth into evenly spaced subchannels in the frequency domain. Given the challenges
posed by frequency-selective fading and substantial noise fluctuations in certain UWA
environments, accurate channel estimation is crucial for a UWA OFDM communication
system. Traditional channel estimation methods, such as the least squares (LS) estimation
algorithm, suffer from poor performance in low signal-to-noise ratio (SNR) conditions, as
the estimated mean square error (MSE) is inversely proportional to the SNR. In comparison
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to LS estimation, minimum mean square error (MMSE) estimation utilizing second-order
statistics of the channel can achieve higher estimation accuracy. However, it requires prior
knowledge of noise and channel statistics, and its complexity is much higher than that of
LS estimation.

In recent years, machine learning, especially deep learning (DL), has rapidly pro-
gressed and been widely applied in various fields, offering new solutions to the challenges
in UWA communication [7–9]. Zhang et al. [10] developed a UWA OFDM communication
receiver system based on a five-layer fully connected deep neural network (DNN) for
UWA channel estimation and equalization. The model demonstrated advantages over
traditional algorithms, especially in scenarios with limited pilot subcarriers in OFDM
communication. In a subsequent work, Zhang et al. [11] introduced a UWA OFDM commu-
nication receiver system utilizing a combination of a convolutional neural network (CNN)
for feature extraction and multilayer perceptron (MLP) for data symbol recovery. This
model outperforms traditional methods and fully connected DNN-based UWA OFDM
frameworks. Liu et al. [12] proposed a CNN-based UWA OFDM receiver system that effec-
tively integrates channel estimation and equalization. The design features an encoder and
decoder structure with convolutional layers for feature extraction and signal reconstruction,
which reduces network complexity. Qiao et al. [13] introduced CsiPreNet, a learning model
comprising a one-dimensional CNN and long short-term memory (LSTM) network. This
model captures the temporal and spectral characteristics of UWA channel state information
(CSI) and outperforms existing recursive least square (RLS) predictors. Ouyang et al. [14]
modified a super-resolution neural network to address the channel estimation problem,
resulting in the channel super-resolution network (CSRNet). Simulation results showed
superior performance compared to LS. Liu et al. [15] introduced a method for UWA chan-
nel estimation based on a denoising sparsity-aware DNN (DeSA-DNN). Their approach
uses DNN to simulate the iterative process of classical sparse reconstruction algorithms,
leveraging the sparsity of UWA channels. It incorporates an effective denoising module
using CNN to mitigate the impact of interference on channel estimation.

In summary, CNN-based methods offer simplicity and flexibility in adapting to the
characteristics of UWA channels. However, existing CNN-based channel estimation ap-
proaches often focus on single data-block estimations and lack consideration of the temporal
correlation within the channel. Moreover, these methods are typically trained within spe-
cific SNR ranges, while UWA channels often exhibit significant SNR fluctuations. This can
potentially lead to overfitting within the training SNR range and a decrease in performance
outside of it.

In this paper, a robust underwater acoustic channel estimation method based on a
bias-free CNN is introduced. The main contributions of this research can be summarized
as follows:

1. We incorporate the “bias-free” concept [16] into denoising convolutional neural net-
work (DnCNN) enhances the stability of the model performance and aims to overcome
overfitting the training SNR conditions. And through theoretical justification and
framework customization, we develop a specialized neural network for channel
estimation known as bias-free complex DnCNN (BF-CDN).

2. Utilizing the temporal correlation of the channel over a certain time period, the input
to the model consists of the coarse channel estimation results of data blocks received
within a certain time segment. This results in further improvement and robustness in
estimation performance.

3. Simulations and real sea experimental data results confirm the robustness of the
method under different noise conditions and highlight its potential to improve the
accuracy and reliability of channel estimation.

The rest of this paper is structured as follows: Section 2 provides a brief overview
of the UWA-OFDM system model. Section 3 introduces the proposed BF-CDN model for
channel estimation and covers the problem transformation, theoretical explanation, and
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model architecture design. Section 4 presents simulation and experimental results and
provides an analysis of these findings. Finally, in Section 5, we conclude the paper.

2. UWA-OFDM System Model

Assume that h(n) represents the UWA channel

h(n) =
N

∑
i=1

Ai(n)δ(τ − τi(n)). (1)

The UWA channel is assumed to be approximated by N dominant discrete paths,
where each path is associated with a complex gain Ai(n) and time delay τi(n) at the i-th
discrete sample time. The formation of multipath in UWA channels is a result of various
factors, including reflection on the water’s surface, seafloor, and object surfaces as well
as refraction in water. These factors collectively contribute to the time-varying nature of
UWA channels.

We consider a cyclic prefix (CP) OFDM baseband system in this context. The block
diagram of the system is shown in Figure 1. After passing through the channel, the signal
obtained by the receiver can be expressed as

y(n) = x(n)⊗ h(n) + w(n), (2)

where ⊗ represents the circular convolution, and x(n) and w(n) denote the transmitted
signal and additive noise, respectively. After removing the CP, the received signal in the
frequency domain can be obtained by DFT transformation:

Y =diag(X)Fh + W, (3)

where diag(X) is the diagonal matrix of the transmitted symbols, F is the corresponding
Fourier transform matrix, h is the time domain channel, and Y and W denote the frequency
domains of y(n) and w(n), respectively.

IDFT
Transmitted

signal

UWA Channel

𝒉 𝒏

𝑿 𝒌  

𝒀 𝒌  

S/P
Insert

CP
P/S

DFT
Received

signal
P/S

Remove

CP
S/P

Noise 𝒘(𝒏)

LS

Estimation
CNN

Modulation

Demodulation Equalization

Transmitter

Receiver

Figure 1. The considered CNN-based UWA-OFDM system architecture.

3. Methods
3.1. Problem Transformation

In traditional DL-based UWA channel estimation methods, several approaches, such
as [10,11,17], employ model inputs consisting of received symbols and transmitted pilots.
This type of input often requires keeping the pilot symbols fixed during the training phase,
leading to strong coupling between the model parameters and the transmitted symbols,
which is not conducive to transferability. Therefore, in our approach, we utilize the coarse
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channel estimation results as the model input. To reduce computational complexity, we
employ the LS estimator.

In traditional UWA-OFDM systems, pilots are extracted and used for channel esti-
mation. Assume that the pilots are equispaced; the LS solution in time domain can be
expressed as [18]

ĥLS(n) =
1

Kp
FH

p diag
(
Xp

)HYp, (4)

where Kp is the number of pilots, Yp is a Kp × 1 vector that consists of the received pilot
symbols, diag(Xp) is the Kp × Kp diagonal matrix with the known pilot positions along
its diagonal, and Fp represents the Kp × N DFT matrix. The MSE of the LS estimator is
calculated as [19,20]

DLS = E
∥∥∥ĥLS(n)− h(n)

∥∥∥2

2
= E

{
w(n)2

xp(n)
2

}
=

1
σ2

x
/

σ2
w

, (5)

where xp(n) represents the transmitted pilot signal. This formula demonstrates that the
MSE of the LS estimation is inversely proportional to the SNR, where σ2

w and σ2
x represent

the variances of the pilots and the noise, respectively. Assuming the LS channel estimation
results as the model input, with the goal to approximate the true UWA channel, the model
output can be represented as

ĥoutput = F (ĥLS(n); θ), (6)

where θ ≜ {θl}L
l=1 ≜ {wl , bl}L

l=1 represents the training parameters in the neural network,
L represents the number of network layers, wl and bl denote the weight items and bias items
of the l-th layer, respectively, and F (·) represents the forward computation of the model.

If the MSE is assumed as the training loss function, then

L(Θ) =
1

Mtr

Mtr

∑
m=1

∥∥∥h(n)m −F (ĥLS(n)
m

; θ)
∥∥∥2

2
∝

1
SNR

, (7)

where Mtr is the batch size, and ∝ is defined as “is proportional to”. Based on the analysis
of the aforementioned issues, the LS channel estimation problem shares similarities with
image denoising. Specifically, it involves removing noise impact on estimation results.
Leveraging this insight, this paper applies DL denoising techniques to address the channel
estimation problem.

Among DL-based image denoising methods, DnCNN [21] is one of the most repre-
sentative approaches. Building upon this foundation, this paper adopts and modifies the
fundamental framework of DnCNN to design a channel estimation neural network.

3.2. Theoretical Analysis of DnCNN Estimator

UWA channels often exhibit significant SNR variations, and traditional neural net-
work channel estimation methods tend to overfit within specific SNR ranges, leading to
performance degradation outside the training SNR. To address this challenge, we apply the
bias-free concept, which was initially introduced and validated for its robustness to SNR
variations in image denoising [16], to the field of UWA channel estimation. Furthermore,
we provide an explanation of why bias-free is relevant to channel estimation.

Under the criterion of minimizing MSE, MMSE estimation is optimal, and it can be
expressed as [22]

ĥMMSE(n) = rhh

(
rhh +

σ2
w

σ2
x

Id

)−1

ĥLS(n), (8)



J. Mar. Sci. Eng. 2024, 12, 134 5 of 17

where rhh = E[h(n)h(n)H ] refers to the autocorrelation matrix of the channel vector h(n)
in the time domain, and Id denotes the identity matrix. The MSE of the MMSE estimator
can be expressed as [23]

DMMSE = E
{
∥ĥMMSE(n)− h(n)∥2

2

}
= tr

{
rhh(

σ2
w

σ2
x

rhh + Id)
−1

}
≤ DLS, (9)

where tr represents the trace of a matrix.
In Equation (6), the function F computed by a DnCNN can be expressed as

ĥDnCNN(n) = F (ĥLS(n))

= wL · R(wL−1 · . . . · R(w1 · ĥLS(n) + b1) + . . . + bL−1) + bL

= AhĥLS(n) + bh,

(10)

where wL to w1 are the weight items of the neural network, R represents the activation
function rectified linear unit (ReLU), and bL to b1 are the bias terms. The matrix Ah serves as
the equivalent of the overall weight matrix of the network, and vector bh plays an equivalent
role to the overall bias of the network. As the error vector of the optimal estimator (in terms
of MSE) [ĥMMSE(n)− h(n)] is orthogonal to any possible estimator [24], we can express
the MSE of the DnCNN estimator as [20]

DDnCNN = E
{
∥ĥDnCNN(n)− h(n)∥2

2

}
= E{∥ĥDnCNN(n)− ĥMMSE(n) + ĥMMSE(n)− h(n)∥2

2}
= E{∥ĥDnCNN(n)− hMMSE(n)∥2

2}+E{∥ĥMMSE(n)− h(n)∥2
2}

+ 2E{(ĥDnCNN(n)− hMMSE(n))H(ĥMMSE(n)− h(n))}
= E{∥ĥDnCNN(n)− ĥMMSE(n)∥2

2}+DMMSE.

(11)

Substituting Equations (8) and (10) into Equation (11) results in

DDnCNN = E{∥ĥDnCNN(n)− ĥMMSE(n)∥2
2}+DMMSE

= E{∥AhĥLS(n) + bh − rhh

(
rhh +

σ2
w

σ2
x

Id

)−1

ĥLS(n)∥2
2}+DMMSE.

(12)

Next, let us represent rhh(rhh + σ2
w

σ2
x

Id)
−1 as AMMSE; we can restate DDnCNN as

DDnCNN = E{∥AhĥLS(n) + bh − AMMSEĥLS(n)∥2
2}+DMMSE. (13)

It can be observed that AMMSE represents a linear transformation. Ah serves as the
weight matrix for the DnCNN estimator and aims to approximate AMMSE to minimize the
MSE. Notably, the presence of bh does not contribute to minimizing the MSE. Therefore, it
can be omitted to prevent overfitting.

Therefore, the performance comparison among the aforementioned methods can be
outlined as follows:

DLS ≥ DDnCNN ≈ DMMSE. (14)

3.3. Proposed BF-CDN Architecture

Beyond the bias removal requirement discussed earlier, channel estimation differs
from image denoising in two significant ways. (1) Complex vs. real values: While image
denoising deals with real-value inputs in three-channel RGB matrices, channel estimation
involves complex values. (2) One-dimensional vs. two-dimensional: Images are two-
dimensional matrices and are typically processed using two-dimensional convolutions. In
channel estimation, the results are represented as one-dimensional vectors.
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Due to these differences, this paper employs one-dimensional complex convolution
layers (ComplexConv1d) to effectively leverage complex values in UWA channel estimation.
The complex convolution layer can be represented as [25][

R
(

xOUT)
I
(
xOUT) ]

=

[
A −B
B A

][
R
(
xIN)

I
(

xIN) ]
, (15)

where xIN and xOUT represent the input and output of the network layer, respectively,
R(·) and I(·) are responsible for extracting the real and imaginary parts, respectively, and
A and B are the real and imaginary parts, respectively, of a complex kernel w = A + iB.
Furthermore, a complex activation function, ComplexReLU, is utilized in this context; it is
defined as [26]

ComplexReLU
(

xOUT
)
= ReLU

(
R
(

xOUT
))

+ i ∗ ReLU
(
I
(

xOUT
))

. (16)

Based on the optimizations of and modifications to the basic DnCNN as described
above, we obtain a BF-CDN architecture suitable for UWA-OFDM channel estimation.

As shown in Figure 2, for a given depth of BF-CDN, there are three types of layers:
(i) For the first layer, a ComplexConv1d and CompelxReLU are employed. The input
feature map has a dimension corresponding to the length of the LS estimation results.
(ii) For the hidden layers, batch normalization (BN) is added after the ComplexConv1d,
and the number of features in the hidden layers remains unchanged; these are followed by
a ComplexReLU. (iii) For the last layer, a ComplexConv1d is used to restore the number of
features to the size of the channel dimension.

ComplexConv1d+ComplexReLU

ComplexConv1d+BN+ComplexReLU

…

ComplexConv1d

Input

LS channel estimation results

Channel estimation results

Output

ComplexConv1d+BN+ComplexReLU

Figure 2. The architecture of BF-CDN.

It is worth noting that the bias terms are removed in each convolutional layers to
mitigate overfitting; this architecture can be represented as follows:

ĥBF−CDN(n) = F (ĥLS(n))

= wL · R(wL−1 · . . . · R(w1 · ĥLS(n)))

= AhĥLS(n).

(17)

Meanwhile, the bias terms are also removed from the BN used during training. On
the other hand, UWA channels are typical time-varying channels, and several studies
have shown their strong temporal correlation at time scales within the channel coherence
time [27,28]. Therefore, the temporal correlation of the channel can be utilized to improve
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the performance of channel estimation. Thus, we utilize LS channel estimation results
within the channel coherent time as inputs. LS channel estimation results from distinct data
blocks are employed as different channel inputs for the model. This approach allows the
model to leverage temporal correlations to distinguish between the channel and additive
noise more effectively, thereby better extracting the characteristics of the channel.

As described in Equation (7), the model employs MSE as the loss function and utilizes
the Adam optimizer.

4. Results and Discussion
4.1. Simulations

To ensure the reliability of the simulations, the channel impulse responses (CIRs) from
the real sea UWA communication experiment are used. These CIRs are subjected to manual
denoising and then employed as the training and testing datasets for the model. Details
about the experiment are presented in Section 4.2.

A total of 700 CIRs were used for the simulations, with 535 CIRs allocated for the
training dataset and 135 CIRs for the testing dataset. Other simulation parameters are
provided in Table 1. Additional system parameters are provided in Table 2. The model is im-
plemented using the PyTorch framework, while Python serves as the simulation platform.
The flow graph of the model is presented in Table 3.

Table 1. Parameters of UWA communication simulation.

Parameter Value

UWA modulation scheme OFDM with 4QAM
Bandwidth 100 Hz
Center frequency 300 Hz
Number of subcarriers 256
Number of pilots 64
Number of data subcarriers 192
Length of cyclic prefix 0.44 s
Number of blocks in a frame 10

Table 2. Other system parameters.

Parameter Value
Optimizer Adam
Learning rate 1 × 10−4

Batch number 20
Epoch number 500

Table 3. Flow graph of the proposed model.

Layer * Input Layer Operation Output Shape
Input - - - (20, 160, 10)
Conv1 ComplexConv1d layer (256, 7, 1, 3) Input ComplexReLU (20, 160, 256)
Conv2 ComplexConv1d layer (256, 7, 1, 3) Conv1 BN + ComplexReLU (20, 160, 256)
Conv3 ComplexConv1d layer (256, 7, 1, 3) Conv2 BN + ComplexReLU (20, 160, 256)
Conv4 ComplexConv1d layer (256, 7, 1, 3) Conv3 BN + ComplexReLU (20, 160, 256)
Output ComplexConv1d layer (10, 7, 1, 3) Conv4 - (20, 160, 10)

* The convolutional layer (C, K, stride, padding). C: channel number, K: kernel size, stride: stride of the
convolution, padding: padding added to both sides of the input.

4.1.1. Robustness under Various Noise Levels

To evaluate the robustness of the proposed method under various noise levels for UWA
channel estimation, we first compare the performance between DnCNN and BF-CDN.

In Figure 3, we depict the average error levels on the test set for both methods across
different training SNR ranges. It is observed that within their respective training SNR
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ranges, DnCNN performs well. However, when subjected to new noise levels, it experiences
a substantial decline in performance, revealing evident overfitting issues within the model-
training noise level. In contrast, BF-CDN maintains relatively stable performance outside
the training range, even when faced with different noise conditions.

(a) (b) (c)

Figure 3. The residual norms of the estimated channels and the true channels within different
training SNR ranges. The training SNR ranges are highlighted in the blue area: (a) SNR ∈ [10, 15]dB,
(b) SNR ∈ [0, 5]dB, and (c) SNR ∈ [−10,−15]dB.

For a more intuitive explanation, a comparison of channel estimation results is pro-
vided for scenarios outside the training SNR range. Channel estimation results of three
samples are shown by using DnCNN and BF-CDN models, with both models trained within
an SNR range of 10 to 15 dB. In Figure 4, with a testing SNR of 15 dB, it is evident that
within the training SNR range, both DnCNN and BF-CDN exhibit excellent performance,
accurately estimating the channel conditions. Conversely, in Figure 5, with a testing SNR
of −10 dB, DnCNN exhibits poor performance. By comparison, BF-CDN demonstrates
a significant improvement in performance, highlighting the enhanced robustness of the
BF-CDN model across different noise conditions.

4.1.2. Gains from Temporal Correlation

Traditional DL-based UWA channel estimation typically adopts estimating individual
data blocks to capture static channel characteristics while often overlooking the common
temporal correlation gains inherent in UWA channels. For the time-varying channel of sev-
eral consecutive OFDM blocks within the channel coherence time, the positions of non-zero
delays are similar, and the corresponding gains exhibit temporal correlation. Building upon
the orthogonal matching pursuit (OMP) algorithm for UWA channel estimation [28], Zhou
et al. [29] introduced the simultaneous orthogonal matching pursuit (SOMP) algorithm,
which takes into account the temporal correlation between multiple channels. Experimental
results have demonstrated promising performance with this method. In this context, we
leverage this characteristic to improve the performance of DL-based UWA channel estima-
tion. We provide a comparative analysis with the performance of the SOMP algorithm in
Sections 4.1.3 and 4.2.

In this context, based on the BF-CDN framework, a performance comparison is con-
ducted between using LS channel estimation of individual data blocks and using LS channel
estimation of 10 data blocks as model inputs (joint estimation, i.e., BF-CDN). Figure 6 illus-
trates the channel estimation performance of both methods within different training SNR
ranges of the test set. It can be observed that, compared to BF-CDN-individual estimation,
BF-CDN exhibits smaller estimation errors and more stable performance under various
SNR conditions. Furthermore, Figure 7 illustrates examples at an SNR of 15 dB. It is evi-
dent that under conditions of high SNR, both BF-CDN-individual and BF-CDN achieve
accurate channel estimation. However, as depicted in Figure 8, when the SNR decreases to
−10 dB, the estimation performance of BF-CDN-individual significantly underperforms,
indicating a weakened ability to suppress noise. In contrast, BF-CDN demonstrates more
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precise estimation under the same conditions. This demonstrates that by employing joint
estimation with multiple channels over the channel coherence time, the method can capture
more channel information and suppress noise effectively, leading to improved channel
estimation accuracy.

Figure 4. Examples of channel estimation results for DnCNN and BF-CDN, with both trained at noise
level SNR ∈ [10, 15] dB and tested at SNR = 15 dB.

4.1.3. UWA Channel Estimation Performance

In order to assess the channel estimation performance of the proposed method, several
commonly used channel estimation methods were compared in simulations. The com-
pared methods include the LS method, the OMP method, the SOMP method, and the
condition of known CSI. The LS method serves as the foundational approach for channel
estimation, while OMP has been widely adopted as an advanced method in recent years
and demonstrates superior performance according to various studies. SOMP, building
upon OMP, similarly leverages temporal correlation. Hence, these methods are selected as
comparative benchmarks.

The real-time performance of the methods is summarized in Table 4. Simulations were
conducted on a computer equipped with an Intel Core i7 CPU operating at 2.50 GHz and
with 16 GB of memory. In terms of computational complexity, the DL-based algorithm
undergoes a two-phase process involving offline training and online deployment. Follow-
ing offline training, the model parameters remain constant. During the subsequent online
deployment phase, channel estimation is executed through forward propagation using the
pre-trained DL model.
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Figure 5. Examples of channel estimation results for DnCNN and BF-CDN, with both trained at noise
level SNR ∈ [10, 15] dB and tested at SNR = −10 dB.

(a) (b) (c)

Figure 6. The residual norms of the estimated channels and the true channels within different
training SNR ranges. The training SNR ranges are highlighted in the blue area: (a) SNR ∈ [10, 15] dB,
(b) SNR ∈ [0, 5] dB, and (c) SNR ∈ [−10,−15] dB.
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Figure 7. Examples of channel estimation results for BF-CDN-individual estimation and BF-CDN,
with both trained at noise level SNR ∈ [10, 15] dB and tested at SNR = 15 dB.

Table 4. Real-time performances of different methods.

Algorithm Runtime (ms)

LS 3.7
OMP 304.0

SOMP 170.6
DnCNN 16.3
BF-CDN 17.4

Figures 9 and 10 depict the average MSE and bit error rate (BER) performance of
the channel test set. It is evident that compared to the LS, OMP, and SOMP algorithms,
the proposed method, BF-CDN, significantly reduces channel estimation errors. At an
SNR of 15 dB, the MSE performance improvement is 13.8 dB, 7.9 dB, and 7.3 dB, respec-
tively. Furthermore, it consistently maintains optimal BER performance within the SNR of
[−15 dB, 15 dB]. Correspondingly, the spectral efficiency under various SNRs is presented
in Figure 11. It is evident that the proposed method closely approximates the spectral
efficiency of the known CSI, demonstrating its efficacy at channel estimation.
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Figure 8. Examples of channel estimation results for BF-CDN-individual estimation and BF-CDN,
with both trained at noise level SNR ∈ [10, 15] dB and tested at SNR = −10 dB.

SNR (dB)

M
SE

(d
B

)

LS
OMP
SOMP
DnCNN
BF-CDN

Figure 9. The MSE performance on the test set.
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Figure 10. The BER performance on the test set.
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Figure 11. The spectral efficiency on the test set.

4.2. Processing of Real Experimental Data

In this section, we utilized real-world sea trial data to validate the proposed method’s
performance. The experiments were conducted in the western Pacific Ocean with fixed
positions for both the transmitter and receiver, which were spaced approximately 55 to
60 km apart (with additional distance due to sensors and boats floating). The hydrophone
was positioned at a depth of approximately 1040 m underwater. The experimental setup is
depicted in Figure 12, while the sound speed profile near the hydrophone is illustrated in
Figure 13. Additional experimental parameters are detailed in Table 5.

Table 5. Parameters for UWA communication in real trial.

Parameter Value

UWA modulation scheme OFDM with 4QAM
Bandwidth 100 Hz
Center frequency 300 Hz
Number of subcarriers 256
Number of pilots 64
Number of null subcarriers 9
Number of data subcarriers 183
Length of cyclic prefix 0.44 s
Number of blocks in a frame 10



J. Mar. Sci. Eng. 2024, 12, 134 14 of 17

Sea 
Depth 

(m)
Receiver Depth: 1040m

Hydrophone

Acoustic source

Distance: 55--60km

0

6000

100m

Figure 12. The environment of the seal trail.

Figure 13. Sound speed profile.

A comparison of channel estimation results for 20 consecutive received OFDM frames
is presented in Figure 14, and the corresponding received SNRs are shown in Figure 15. It
can be observed that in comparison to LS, OMP, and SOMP, the proposed method consis-
tently maintains superior BER performance under different SNR conditions, demonstrating
its excellent robustness for noise fluctuations.

Frame

LS
OMP
SOMP
BF-CDN

Figure 14. BER performances on sea trial data.
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Figure 15. The SNR for each received frame in sea trial.

5. Conclusions

In this paper, a robust UWA channel estimation method based on the bias-free CNN is
introduced. Initially, the LS channel estimation results are employed as a channel affected
by noise, and a denoising neural network is applied to achieve accurate channel estimation.
Subsequently, the bias-free concept is introduced, and its necessity is theoretically explained
and validated through simulations. Then, modifications are made to the model to adapt it
for channel estimation. Compared to the DnCNN network, the proposed method exhibits
superior robustness for noise fluctuations: even those not encountered during training.
Furthermore, simulations confirm that joint estimation further improves the performance
and robustness compared to individual estimation by leveraging the temporal correlation
of the channel.

Finally, a performance comparison is conducted between the proposed method and
classical methods such as LS, OMP, and SOMP. The simulation results show that the method
outperforms these classical methods across different SNR levels. At an SNR of 15 dB, the
MSE performance improvement is 13.8 dB, 7.9 dB, and 7.3 dB, respectively. Real sea trail
data processing further validates the superior performance of the proposed method. In
future work, exploration will be conducted on the impact of implementing the bias-free
technique within various CNN architectures on channel estimation. The objective is to
design and refine models for enhanced performance.
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Abbreviations
The following abbreviations are used in this manuscript:

UWA Underwater acoustic
OFDM Orthogonal frequency division multiplexing
LS Least squares
SNR Signal-to-noise ratio
MSE Mean square error
MMSE Minimum mean square error
DL Deep learning
DNN Deep neural network
CNN Convolutional neural network
MLP Multilayer perceptron
LSTM Long short-term memory
CSI Channel state information
RLS Recursive least square
CSRNet Channel super-resolution network
DeSA-DNN Denoising sparsity-aware DNN
DnCNN Denoising convolutional neural network
BF-CDN Bias-free complex denoising convolutional neural network
CP Cyclic prefix
ReLU Rectified linear unit
CompelxReLU Compelx rectified linear unit
ComplexConv1d One-dimensional complex convolution layers
BN Batch normalization
CIRs Channel impulse responses
OMP Orthogonal matching pursuit
SOMP Simultaneous orthogonal matching pursuit
BER Bit error rate
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