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Abstract: In this paper, a finite-time, active fault-tolerant control (AFTC) scheme is proposed for a
class of autonomous surface vehicles (ASVs) with component faults. The designed AFTC frame-
work is based on an integrated design of fault detection (FD), fault estimation (FE), and controller
reconfiguration. First, a nominal controller based on the Barrier Lyapunov function is presented,
which guarantees that the tracking error converges to the predefined performance constraints within
a settling time. Then, a performance-based monitoring function with low complexity is designed
to supervise the tracking behaviors and detect the fault. Different from existing results where the
fault is bounded by a known scalar, the FE in this study is implemented by a finite-time estimator
without requiring any prioir information of fault. Furthermore, under the proposed finite-time AFTC
scheme, both the transient and steady-state performance of the ASV can be guaranteed regardless
of the occurrence of faults. Finally, a simulation example on CyberShip II is given to confirm the
effectiveness of the proposed AFTC method.

Keywords: fault-tolerant control; guaranteed performance; model uncertainties; autonomous surface
vehicle; active fault-tolerant control

1. Introduction

In recent years, significant progress has been made in the field of marine autopilots,
which has attracted a great deal of attention. An important area of research in this field
is the control of autonomous surface vehicles (ASVs). The ability of ASVs to operate in
remote and hazardous areas, coupled with their advanced sensing and control capabilities,
make them valuable assets for various applications in the marine, research, and exploration
industries. Numerous successful results have been developed for the control of ASVs,
such as [1–7]. The authors of [1,2] presented a comprehensive literature review of the re-
cent progress in ASVs’ development, and highlighted more general challenges and future
directions of ASVs towards more practical guidance, navigation, and control capabilities.
Common issues encountered in ASV control include trajectory tracking [3–5], formation
control [6], and cooperative target tracking control [7]. These positive results have led
to widespread applications of ASVs in marine environments, encompassing complicated
tasks such as ocean forecasting, surface inspection, and pipeline tracking. However, The
presence of unpredictable factors such as rough waves, strong currents, and changing
weather conditions can adversely affect the performance and integrity of the ASV system.
specifically, the intricate and dynamic nature of the surface environment poses signifi-
cant challenges to the reliable operation of various components within the ASV system,
including sensors, actuators, and controllers. This complexity substantially increases the
susceptibility of these components to potential malfunctions [8]. Furthermore, the repair of
these components during operation is impractical [9]. This introduces significant safety
risks for ASVs, making safety control a primary concern in fulfilling the vehicle’s mission.
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It becomes crucial to develop robust and resilient designs that can deal with these envi-
ronmental risks and ensure the continued functionality of ASVs in demanding marine
conditions. Confronting this challenge, fault-tolerant control (FTC) methods have been
proposed to enhance the safety and reliability of ASVs, maintaining stable operation and
eliminating the effects of system malfunctions [10–14].

Fault-tolerant control schemes are classified as passive fault-tolerant control (PFTC)
and active fault-tolerant control (AFTC), depending upon the utilization of fault detection
and diagnosis module and the implementation of redundancies [15]. In PFTC methods, a
fixed controller was designed that maintains the stability and performance of the control
system during both normal and faulty operating situations [16–18]. The fixed controller
is pre-designed with system redundancies which can be invoked, such as switching to
backup components or adjusting operational parameters to compensate for the fault. PFTC
approaches can ensure that the control system remains stable and performs well even in
the presence of faults, without requiring any significant changes to the control structure.
In an AFTC system, the controller reacts to malfunctions in system components through
the controller reconfiguration, guided by detection information generated by the fault
detection (FD) module. Once a fault is detected, the AFTC scheme determines the most
effective strategy for maintaining system stability and performance. For the controller
reconfiguration, the AFTC system dynamically adjusts the control parameters, modifies
the control laws, or redistributes control tasks among redundant components to eliminate
the effects of the fault. In comparison, PFTC methods are typically simpler to implement
and require less computational resources than AFTC techniques, making them a practical
solution for the control system. On the other hand, AFTC methods are more complex and
computationally demanding compared to PFTC methods but can offer greater flexibility
and adaptability in responding to faults. By actively reconfiguring the control, AFTC
techniques can effectively overcome faults and maintain system functionality, making
them suitable for applications where immediate fault response and system optimization
are critical.

As a result, AFTC schemes have attracted significant attention in research and en-
gineering applications due to their flexibility and accuracy [19–21]. In [19], the authors
proposed a distributed AFTC approach for satellite formation flying attitude control, where
sensor errors can be diagnosed by nonlinear observers and static approximators. A novel
AFTC scheme was proposed in [20] for uncertain fully actuated systems using the inte-
grated integration structure with observer and controller to reveal the model characteristics,
which include faults and uncertainty. In [21], an observer-based AFTC algorithm was
designed for spacecraft with full state constraints, and the fault diagnosis was implemented
by a linear matrix inequality (LMI)-based robust fault observer. Nevertheless, despite the
advantages offered by AFTC methods, there are some issues with the aforementioned
studies that require further investigation: (1) The utilization of an ideal data model in the
FD makes it difficult to adapt and implement in real systems, and (2) the convergence
time of the fault observer has not been considered to ensure the accurate and efficient
estimation. Consequently, there is a pressing need to develop an AFTC scheme integrating
implementable FD and precise fault estimation (FE) to guarantee the reliable tracking
control of ASVs.

As a critical component of AFTC systems, FD has garnered significant attention
in recent years, and researchers have published various meaningful results [22–24]. The
integration of FD mechanisms plays a crucial role in enhancing the reliability and robustness
of control systems, especially in the presence of component faults. By accurately identifying
faults, the control systems can effectively adapt their control strategies to mitigate potential
disruptions and ensure safe operation in dynamic environments. In [24], the authors
introduced a robust FE strategy that relies on residual generation and evaluation modules.
This approach enables the identification of fault occurrence, characteristics, and severity by
analyzing input and state information. When the residual evaluation function surpasses the
predefined threshold level, a fault is detected, triggering the generation of an alarm signal. It
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is worth mentioning that disturbance observation (DO) algorithms can provide many ideas
and references for FD because of the similar uncertainty characteristics between disturbance
and component fault. Until now, the control of surface and underwater vehicles has shown
a wider range of achievements with DO as opposed to FD [25–27]. In [26], a fast estimation
method was developed to assess the real-time evolution of wave disturbances acting on
a vehicle and verified by incorporating the predicted loads within a Model Predictive
Controller. An integrated deterministic sea wave predictor was proposed for underwater
vehicles in [27], demonstrating high potential to effectively mitigate disturbances and
facilitate accurate tracking performance even in the presence of high wave loading. These
results offer valuable insights for the development of FD design. For example, an interval
observer was constructed in [28] to detect and isolate the faults in multi-agent systems
by generating the residual signals and implying the thresholds. In [29], the faults were
detected by an adaptive interval observer, and isolated by a set of interval observers.
However, ASVs operate in complex marine environments and are inevitably subject to high
operational risks, failure types cannot be identified, and certain bounds of faults cannot be
given. Although many scholars have devoted themselves to design thresholds and estimate
the faults, the fault detection for ASV systems is still an open research problem.

From a practical perspective, the primary responsibility of ASVs is to maintain track-
ing performance, and fulfill their designated tasks accurately, reliably, and adaptively. To
address this, several advanced control techniques have been employed in recent studies.
These studies, referenced as [30–34], have explored different control strategies to enhance
the tracking capabilities of ASVs in terms of accuracy, stability, and adaptability, enabling
them to fulfill their tracking responsibilities effectively. Transient (convergence rate, over-
shoot, and undershoot) and steady-state performances are important performance metrics
that should be considered for control systems. Considering these performance metrics
is essential in evaluating the effectiveness of control strategies. For this purpose, a novel
control method known as prescribed performance control, introduced in [35], has achieved
plenty of positive results when applied to multiple control systems [36–38]. Prescribed
performance control focuses on achieving specific performance objectives while ensuring
robustness against uncertainties and disturbances. Due to this property, prescribed perfor-
mance control algorithms have been designed for surface vessels in [39,40] to achieve the
assigned trajectory mission. Building upon the concept of [35], a novel concept known as
finite-time performance function (FTPF) was presented in [41], which achieves finite-time
convergence while ensuring the transient and steady-state performances. An FTPT-based
fuzzy adaptive controller was developed in [42] for the trajectory tracking problem of
multiple input multiple output nonlinear systems to ensure the tracking error has the pre-
defined performance in finite time. In [43], the FTPF was utilized to design an air–ground
cooperative consensus control scheme by integrating with the fixed-time scheme, which can
guarantee the predefined time and given formation performance simultaneously. However,
maintaining and restoring the guaranteed performance becomes more notably challenging
when faults occur in ASVs. Therefore, it is significant to develop an AFTC scheme for
ASV that can both detect faults and maintain predefined performance, while ensuring
safety and reliability in the whole operating process. However, when faults occur in ASVs,
maintaining and restoring the guaranteed performance becomes notably more challenging.
Therefore, it is crucial to develop an AFTC scheme for ASVs that can detect faults and
maintain predefined performance while ensuring safety and reliability throughout the
entire operating process. By integrating the FTPF with the AFTC scheme, it is possible to
achieve both predetermined performance objectives and fault tolerance capabilities in ASVs.
This integration allows for effective tracking and control of ASVs, even in the presence of
faults or disturbances.

Motivated by the above discussion and observation, in this paper, we aim to develop
an AFTC scheme for ASV with a predefined finite-time tracking performance guaranteed.
By incorporating the FTPF and Barrier Lyapunov function, a nominal controller is proposed
to maintain the performance under normal conditions, and a fault monitoring function
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is obtained to achieve fault detection in time. Once the fault is detected, a reconfigured
controller with a finite-time estimator is employed to ensure the predefined performance
is guaranteed all the time. The main characteristics and contributions are summarized
as follows:

(1) The paper makes the first attempt to develop an integrated FD, FE, and FTC framework
for ASV. Through the utilization of transformed performance constraints, a monitoring
function with low complexity is formulated to supervise system behavior and facilitate
fault detection. This approach eliminates the need for intricate threshold calculations
as seen in existing works such as [44–46].

(2) The concept of FTPF is first introduced to solve the fault-tolerant problem of ASVs. A
nominal controller and a reconfigured controller are proposed by integrating the FTPF
and Barrier Lyapunov functions. Using the proposed controllers, the tracking errors
are guaranteed within a specified performance metric in a settling time.

(3) To enable efficient controller reconfiguration, a finite-time estimator is designed
to accurately estimate uncertainties and faults. In comparison to previous works
such as [20,21,44], the proposed estimator does not require a priori knowledge of the
upper bound of the fault.

The remaining part of the paper is organized as follows. In Section 2, the system
modeling and essential knowledge are introduced. The nominal controller and the recon-
figured controller design process are given in Section 3. In Section 4, the simulation result
is presented to illustrate the effectiveness of the designed controllers. The conclusion is
clarified in Section 5.

Throughout this paper, the following notations are adopted. R is the set of all real
numbers, and Rn represents the Euclidean space with dimension n. For a vector x ∈ Rn,
xi(i = 1, 2, . . . , n) means the corresponding ith component of x, λmax(x) and λmin(x) mean
the minimum and maximum eigenvalues, respectively. | · | denotes the absolute value of
a scalar, ∥ · ∥ denotes the Euclidean norm of a vector, diag(·) is a diagonal matrix. In×n
denotes an identity matrix of dimension n.

2. Problem Formulation and Preliminaries
2.1. Problem Statement

The standard three degrees of freedom (DOF) model of the ASV under two right-hand
coordinate systems is considered, as illustrated in Figure 1. According to the trajectory
tracking mission of ASV, the nonlinear motion equation of the vehicle in the horizontal
planes can be described as

η̇ = R(η)ν,

Mν̇ + C(ν)ν + D(ν)ν + d(t) = τ + τd,
(1)

where η = [x, y, ψ]T ∈ R3 describes the position and yaw angle of the vehicle represented
in inertial coordinates, and ν = [u, w, r]T ∈ R3 is the surge, sway, and yaw velocities
represented in body-fixed coordinates. The rotation matrix between two coordinates is
expressed by

R(η) =

 cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

. (2)

For simplicity, R(η) is denoted as R in the following. It can be found that the determinant
of (2) is positive, so R is invertible. The matrix M = MT ∈ R3×3 denotes the inertial matrix,
C(ν) ∈ R3×3 describes the Coriolis and centripetal matrix, D(ν) ∈ R3×3 represents the
nonlinear damping matrix, d(t) ∈ R3 denotes the unmodeled dynamics, and τd ∈ R3 is
the unknown disturbance from wind, wave, and marine currents. The control forces and
torque are given by τ ∈ R3.
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Figure 1. ASV model with two right-hand coordinate systems.

Using the conversion relation between η and ν, we have

η̇ = Rν ⇔ ν = R−1η̇

η̈ = Ṙν + Rν̇ ⇔ ν̇ = R−1(η̈ − ṘR−1η̇).
(3)

Based on (3), the ASV model (1) under the fault-free condition is rewritten by

η̈ =ṘR−1η̇ − RM−1(C(η, η̇) + D(η, η̇))R−1η̇ + RM−1τ + RM−1(τd − d). (4)

The challenging operating conditions of ASVs increase the possibility of malfunctions
in sensors, actuators, and controllers. In this paper, fault represents a state where a system or
component does not meet its intended function or performance requirements. Specifically,
a component fault refers to a failure or malfunction of an individual component within a
control system, such as a sensor, actuator, controller, or any other hardware or software
element involved in the control process. According to [20], the bias component faults can
be modeled as fa ∈ R3, satisfying supt∈[0,∞] ∥ fa∥ < ∞ and supt∈[0,∞] ∥ ḟa∥ < ∞. In practice,
it is challenging to determine the upper bounds of component faults due to the complex
failure modes of ASVs. According to [47], the possible transition from the fault-free case
to the fault case is unidirectional. Furthermore, we also assume that the fault occurred
once during operation. Then, the faulty ASV model with the general component fault is
considered as

η̇ = R(η)ν,

Mν̇ + C(ν)ν + D(ν)ν + fa + d = τ + τd,
(5)

The control objective of this paper is to develop an integrated finite-time AFTC frame-
work for ASV so that the fault can be detected and estimated precisely, and the predefined
tracking performance is ensured under both fault-free and faulty cases.

Assumption 1. The desired trajectories ηd along with their time derivatives η̇d, η̈d are smooth
and bounded.

Assumption 2. The external disturbance τd is bounded, i.e., there is a positive constant τd, such
that ∥τd∥ ≤ τd.
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Assumption 3. Under normal operation of ASV, the unmodeled dynamics d(t) is bounded by
∥d(t)∥ ≤ d with d being a conservative constant.

Lemma 1 ([41]). Given a function φ ≥ 0 and

dφ(t)
dt

= −ι[φ(t)]κ (6)

holds, where ι > 0 and 0 < κ < 1 are the constants. Then (6) can be solved for

φ(t) =

{(
(φ(0))1−κ − (1 − κ)ιt

) 1
1−κ , t ∈ [0, T0)

0, t ∈ [T0,+∞)
(7)

where T0 = (φ(0))1−κ

ι(1−κ)
.

2.2. Finite-Time Performance Function

In this subsection, we introduce the definition of FTPF, which aims at achieving
two goals: first, it serves as a criteria for establishing a fault detection mechanism to identify
component faults. Secondly, it ensures that tracking errors converge to the small specified
residual sets within a settling time interval, even if fault occurs.

The definition of FTPF is as follows.

Definition 1 ([41]). A function ρ(t) is designated as the FTPF when it exhibits these properties:

• ρ(t) > 0;
• ρ̇(t) ≤ 0;
• limt→Ts ρ(t) = ρTs > 0;
• ρ(t) = ρTs , ∀t ≥ Ts with Ts being the settling time.

From Definition 1, it can be observed that ρ(t) can converge to a specified set within
the settling time Ts, indicating that ρ(t) converges in finite time. According to Lemma 1,
the FTPF employed in this paper is chosen as

ρi(t) =

{
(ρε

i0 − ιεt)
1
ε + ρiTs , t ∈ [0, Ts)

ρiTs , t ∈ [Ts,+∞)
(8)

where i = 1, 2, 3, ρi0, ρiTs , ι ∈ R are positive constants to be chosen, ε = ε1
ε2

∈ (0, 1] with ε1,

ε2 are positive odd integers. Based on (8), the settling time Ts can be calculated by Ts =
ρε

0
ιε .

2.3. Error Transformation

In this subsection, the performance constraints for the tracking error is given first.
Then, an error transformation is presented to transfer the time-varying constraints into an
equivalent constant one to facilitate the design of AFTC scheme.

To achieve the control target, the ASV is requested to track the reference trajecto-
ries with guaranteed performance, which indicates that the tracking error e = η − ηd
should satisfy

ρ
i
(t) < ei(t) < ρi(t), (9)

where i = 1, 2, 3, ρ
i

and ρi represent the lower and upper constraints, respectively. Suppose
ei(0) satisfies ρ

i
< |ei(0)| < ρi, depending on the sign of ei(0), the following should hold:

ei(0) ≥ 0 :

{
ρ

i
= −σiρi(t)

ρi = ρi(t)
, ei(0) < 0 :

{
ρ

i
= −ρi(t)

ρi = σiρi(t)
, (10)

where ρi(t) is the FTPF given in (8), σi is the design parameter.
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Then, a sufficient necessary condition is deduced to ensure that the guaranteed perfor-
mance described in (9) is achieved. The error transformation technology introduced and
employed to convert the complex bounds (8) into more concise bounds as

zi(t) = Ti(ei(t), ρ
i
(t), ρi(t)), i = 1, 2, 3. (11)

where z = [z1, z2, z3]
T ∈ R3 denotes the transformed error. According to [35], the given

attributes should be present in the error transformation function Ti(·):
• Ti(·) is smooth and strictly increasing;
• limei→ρi

Ti(ei(t), ρ
i
(t), ρi(t)) = 1;

• limei→ρ
i
Ti(ei(t), ρ

i
(t), ρi(t)) = −1.

Following these considerations, the error transformation function is designed as

Ti(ei(t), ρ
i
(t), ρi(t)) =

2ei(t)− (ρ
i
(t) + ρi(t))

ρi(t)− ρ
i
(t)

. (12)

It follows from (12) that (9) is guaranteed if |zi(t)| < 1. For simplicity, the independent
variable t is omitted as the default time variable in the following. From (12), the original
time-varying constraint is transformed into a constant one, which provides a simple solution
for the design of the monitoring function and the AFTC scheme. Differentiating (11) yields

żi = χi ėi − σi(ei, ρi, ρ
i
), (13)

where
χi =

2
ρi − ρ

i

,

σi(ei, ρi, ρ
i
) =

ρ̇i + ρ̇
i

ρi − ρ
i

+
(2ei − (ρi + ρ

i
))(ρ̇i − ρ̇

i
)

(ρi − ρ
i
)2

(14)

Thus, the transformed tracking error dynamics of (4) is given by
zi =Ti(ei, ρ

i
, ρi),

żi =χi ėi − σi(ei, ρi, ρ
i
),

ë =ṘR−1η̇ − RM−1(C(η, η̇) + D(η, η̇))R−1η̇ + RM−1τ + RM−1(τd − d)− η̈d.

(15)

Then, the sufficient necessary condition to guarantee performance bounds (9) can be
derived.

Proposition 1. Consider the ASV system (1) and its corresponding transformed tracking error
dynamics (15). The performance bounds (9) can be guaranteed if and only if the transformed
system (15) is stable, and the transformed error satisfies |zi(t)| < 1, i = 1, 2, 3.

Proof. If the performance bound (9) is guaranteed, then there exists an admissible contin-
uous input τ, such that ei is uniformly ultimately bounded (UUB). Employing (11)–(13),
one has

2ρ
i
− (ρ

i
+ ρi)

ρi − ρ
i

<
2ei − (ρ

i
+ ρi)

ρi − ρ
i

<
2ρi − (ρ

i
+ ρi)

ρi − ρ
i

, (16)

resulting in
−1 < zi < 1, i = 1, 2, 3. (17)

Hence, the transformed error zi is bounded. Thereby, the transformed system (15) is stable.
Conversely, if the transformed error zi satisfies |zi(t)| < 1, one has

ρ
i
− ρi < 2ei − (ρ

i
+ ρi) < ρi − ρ

i
. (18)

It can be easily obtained that ρ
i
< ei(t) < ρi holds.
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Remark 1. Compared to the given error transformation function in [41], the transformation
function in (11) has a simpler structure, which can potentially reduce computational complexity or
implementation challenges. Moreover, by converting the performance constraints for tracking errors
in (9) into a constant constraint, it becomes possible to establish a fixed threshold for fault detection
and monitoring functions.

3. Main Results

In this section, a nominal controller is presented first to ensure the tracking perfor-
mance of ASV, and a performance-based monitoring function is given to monitor the
control behavior and detect the fault. Upon detection of a fault, the reconfigured controller
is constructed to maintain the system’s stability.

3.1. Nominal Controller Design

From Proposition 1, it can be concluded that the predefined constraints can be ensured
when the transformed tracking error z satisfies |zi| < 1. The Barrier Lyapunov function
proposed in [48] is utilized to construct the Lyapunov function as follows:

V1 =
1
2

3

∑
i=1

ln
1

1 − z2
i

. (19)

Define the filtering error s = η̇ − α. α ∈ R3 is a virtual control signal to design. Taking the
time derivative of V1 yields

V̇1 =
3

∑
i=1

zi(χi(si + αi − η̇d,i)− σi(ei, ρi, ρ
i
))

1 − z2
i

. (20)

Then, α can be designed as
α = η̇d − k1χz + χσ, (21)

where k1 = diag(k1,1, k1,2, k1,3) is the filtering gain matrix, χ = diag(1/χ1, 1/χ2, 1/χ3), and
σ = [σ1(e1, ρ1, ρ

1
), σ2(e2, ρ2, ρ

2
), σ1(e3, ρ3, ρ

3
)]T . Substituting (21) into (20) results in

V̇1 =−
3

∑
i=1

k1,i
z2

i
1 − z2

i
+

3

∑
i=1

χizisi

1 − z2
i

,

≤− λmin(k1)
3

∑
i=1

z2
i

1 − z2
i
+

3

∑
i=1

χizisi

1 − z2
i

.

(22)

Define M(η) = MR−1, and the second Lyapunov function is considered as

V2 = V1 +
1
2

sT M(η)s. (23)

Differentiating V2 to time gives

V̇2 =V̇1 +
1
2

sT Ṁ(η)η̇s + sT M(η)ṡ,

=V̇1 +
1
2

sT Ṁ(η)η̇s + sT g(η, η̇) + sT(τ + δ − M(η)α̇),
(24)

where g(η, η̇) = (M(η)Ṙ − C(η, η̇) − D(η, η̇))R−1η̇, δ = τd − d(t) denotes the lumped
uncertainty. According to Assumptions 2 and 3, we have ∥δ∥ ≤ ∆ for a bounded constant
0 < ∆ := τd + d. Recalling (4), the nominal controller is designed as

τn = −k2s − g(η, η̇)− 1
2

Ṁ(η)η̇s + M(η)α̇ − Σ − Φ, (25)

where k2 = diag(k2,1, k2,2, k2,3) is the control gain matrix, the auxiliary vector Σ is given
as Σ = [z1χ1/(1 − z2

1), z2χ2/(1 − z2
2), z3χ3/(1 − z2

3)]
T , and the uncertainty compensator Φ
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is designed as Φ = (kd + ∆)sgn(s) with kd ∈ R > 0, sgn(s) = [sgn(s1), sgn(s2), sgn(s3)]
T .

Let τ = τn and substituting (25) into (24) leads to

V̇2 ≤− λmin(k1)
3

∑
i=1

z2
i

1 − z2
i
− k2sTs −

3

∑
i=1

(siδi − (kd + ∆)sgn(si)si)

≤− λmin(k1)
3

∑
i=1

z2
i

1 − z2
i
− λmin(k2)∥s∥2 −

3

∑
i=1

kd|si|.
(26)

The following theorem is proposed to point out the stability of the closed-loop system.

Theorem 1. Consider the ASV system described in (1), and Assumptions 1–3 hold. Assuming
the ASV system is fault-free on [0, Tf ), for 0 ≤ t < Tf , the proposed controller (25) is intended to
ensure the following properties.

(1) The closed-loop control system is semi-globally stable, i.e., all signals are bounded. The tracking
error converges to the origin within the predefined performance (9) at a settling time.

(2) The transformed tracking error provided by the error transformation (11) satisfies

|zi| < γ < 1, i = 1, 2, 3. (27)

with
γ =

√
1 − e−µ,

µ =
3

∑
i=1

ln
1

1 − z2
i (0)

+ λmax(MR−1(0))∥s(0)∥2,
(28)

where γ denotes a tighter bound for the guaranteed performance, µ is a constant depending on
the initial state.

Proof. It can be concluded from (26) that if the control parameters are selected to satisfy
k1, k2, kd > 0, then V̇2 ≤ 0. It can be further obtained that

V̇2 ≤− λmin(k1)
3

∑
i=1

ln
1

1 − z2
i
− k2∥s∥2 −

3

∑
i=1

kd|si|. (29)

Let ζn = min{2λmin(k1), 2k2/λmax(M(η)}, we have

V̇2 ≤ −ζnV2. (30)

Integrating (30) from 0 to t yields

V2(t) ≤ V2(0)e−ζnt ≤ V2(0). (31)

It can be concluded from the above inequality that ln(1/1 − z2
i ) and s are bounded.

Therefore, zi remains in zi ∈ (−1, 1), and all signals in the closed-loop control sys-
tem are bounded. Proposition 1 implies that tracking error ei can converge within the
predefined performance.

Furthermore, according to (23), it follows that

V2(0) ≤
1
2

3

∑
i=1

ln
1

1 − z2
i (0)

+ λmax(MR−1(0))∥s(0)∥2. (32)

Then, a tighter bound for zi can be computed by (32), i.e., zi < γ =
√

1 − e−µ, and it is clear
that γ < 1 is valid.

Remark 2. To ensure that the tracking errors are kept within the predefined bound, a tighter
monitoring bound is required. Through (11), the initial bound for e is transformed to a constant
bound for z, so that the monitoring bound for zi can also be set to a smaller constant. Compared
with [44], the complex residual calculations are avoided. Different from the time-varying monitoring
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bound given in [45], we propose a more concise bound for subsequent fault detection. This simplified
approach can make it easier to implement and analyze fault detection and monitoring strategies.

3.2. Fault Detection and Reconfigured Controller Design

In Section 3.1, the nominal controller is presented for the ASV under fault-free condi-
tion, and the uncertainty is assumed to be bounded within a known region. However, it is
crucial to consider the possibility of faults occurring at any time, denoted as Tf . Based on
the designed nominal controller, monitoring functions are given to detect the component
faults, and a reconfigured controller with a fault estimator are presented.

Theorem 1 indicates that when the fault occurs, the condition given in (27) is violated
first before the predefined performance (9) is broken. As a result, by utilizing the tighter
bounds presented in (27), we can derive the monitoring functions and identify the precise
instant at which the fault is detected as

Td := inf{t : |zi| > γ, i = 1, 2, 3}. (33)

Once the fault is detected, fault estimation and compensation must be completed as
quickly as possible to restore performance.

To guarantee the efficiency of fault estimation and performance restoration, a finite-
time fault estimator is presented first. Define new state variables ξ1 = η and ξ2 = η̇, then
the faulty ASV (4) can be described by the following equivalent dynamics:{

ξ̇1 = ξ2,

ξ̇2 = −κ1M(ξ1)ξ2 + f (ξ1, ξ2) + M(ξ1)τ + M(ξ1)δ f ,
(34)

where κ1 ∈ R is a positive constant to be chosen, M(ξ1) = RM−1, f (ξ1, ξ2) = ṘR−1ξ2 −
RM−1((C(ξ1, ξ2) + D(ξ1, ξ2))R−1 − κ1)ξ2, δ f = fa + τd − d(t). It is noted that the upper
bound of δ is unknown due to the component fault is unpredictable.

To obtain the estimation of δ f , an auxiliary state variable ξa ∈ R3 is defined, and its
dynamics is given as

ξ̇a = −κ1M(ξ1)ξa + f (ξ1, ξ2) + M(ξ1)τ. (35)

The difference between state variables of (34) and (35) is denoted by ξe = ξ2 − ξa. Then,
a modified two-order estimator is designed to precisely estimate the lumped uncertainty
including fault as δ̂ f = κ1ξ̂e + MR−1ξ̇e,

˙̂ξe = −κ2ξ̂e + ξ̇e + κ2ξe + κ3sig(ξ̃e)
r1
r2 ,

(36)

where
sig(ξ̃e)

r1
r2 = [sgn(ξ̃e,1)|ξ̃e,1|

r1
r2 , sgn(ξ̃e,2)|ξ̃e,2|

r1
r2 , sgn(ξ̃e,3)|ξ̃e,3|

r1
r2 ]T , (37)

κ2, κ3 ∈ R are positive constants to be chosen, r1, r2 ∈ R are positive odd integers and
are selected to satisfy r1 < r2. Define the estimation errors of (36) as δ̃ f = δ f − δ̂ f and
ξ̃e = ξe − ξ̂e; the following Lemma is obtained.

Lemma 2. Based on the modified two-order estimator designed in (36) for the ASV system (4)
without component faults, and Assumptions 1–3 holding. Then, the estimation errors δ̃ f and ξ̃e can
converge to zero in a finite time.

Proof. According to the estimator given in Equation (36), the time derivative of ξ̃e can be
calculated as

˙̃ξe = ξ̇e + κ2ξ̂e − ξ̇e − κ2ξe − κ3sig(ξ̃e)
r1
r2

= −κ2ξ̃e − κ3sig(ξ̃e)
r1
r2 .

(38)

It can be obtained from (34) and (35) that
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ξ̇e = −κ1M(ξ1)ξe + M(ξ1)δ f , (39)

and
δ̃ f = M−1(ξ1)ξ̇e + κ1ξe − κ1ξ̂e − MR−1ξ̇e = κ1ξ̃e. (40)

Differentiating (40) with respect to time yields

˙̃δ f = κ1
˙̃ξe = −κ2δ̃ f − κ3sig(δ̃ f )

r1
r2 . (41)

Consider a Lyapunov function for the estimator given in Equation (36) as Vd = 1
2 δ̃T

f δ̃ f ,
and the time derivative of Vd is given as

V̇d = δ̃T
f (−κ2δ̃ f − κ3sig(δ̃ f )

r1
r2 )

≤ −κ2∥δ̃ f ∥2 − κ3∥δ̃ f ∥
r1+r2

2r2

≤ −Γ1Vd − Γ2Vr
d ,

(42)

where Γ1 = 2κ2, r = r1+r2
2r2

, Γ2 = 2rκ3. It can be concluded from (40) and (42) that Vd

is bounded, and the boundedness of δ̃ f and ξ̃e can be ensured. It follows from [49] that
the estimation errors converge to zero in a finite time, and the convergence time can be
obtained as

Tc ≤
1

Γ1(1 − r)
ln

Γ1V1−r(δ̃ f (0)) + Γ2

Γ2
. (43)

Based on Lemma 2, the nominal controller can be reconfigured as

τr = −k2s − g(η, η̇)− 1
2

Ṁ(η)η̇s + M(η)α̇ − Σ − δ̂ f , (44)

Similar to the analysis in Theorem 1, let τ = τr and substituting (44) into (24) leads to

V̇2 ≤ −λmin(k1)
3

∑
i=1

z2
i

1 − z2
i
− λmin(k2)sTs − sT δ̃ f . (45)

Theorem 2. Consider the ASV system described by (4) subject to component faults, and
Assumptions 1–3 hold. Assume the component fault occurs at t = Tf and is detected at t = Td, for
t > Td, the proposed controller (44) with the estimator (36) can ensure the following:

(1) The closed-loop control system is semi-global stable, i.e., all signals are bounded.
(2) The transformed tracking error zi, i = 1, 2, 3, is kept in in the compact set (−1, 1).
(3) The tracking error can converge to the origin within the predefined performance (9) at a

settling time.

Proof. Select the Lyapunov function as

Vn = V2 + Vf . (46)

Differentiating Vn and substituting (45) results in

V̇n ≤− λmin(k1)
3

∑
i=1

z2
i

1 − z2
i
− k2sTs − sT δ̃ f + V̇f

≤− λmin(k1)
3

∑
i=1

z2
i

1 − z2
i
− 1

2
λmin((2k2 − I))∥s∥2 − (κ2 −

1
2
)∥δ̃ f ∥2 − Γ2∥δ̃ f ∥2r.

(47)

If the control parameters are selected to satisfy k1 > 0, 2k2 − I > 0, κ2 > 1
2 , it can be

obtained that V̇n ≤ 0. Similar to Theorem 1, we can obtain that zi remains in zi ∈ (−1, 1),
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and all signals in the closed-loop control system are bounded. Furthermore, Proposition 1
implies that tracking error ei converges within the guaranteed performance.

Remark 3. MPC methods have been gradually applied for performance optimization in vehicle
trajectory tracking scenarios [50–52]. In comparison to the MPC scheme, the advantages of the
proposed FTPF + AFTC method are as follows: (1) Fault Recovery Time: the FTPF method imposes
strict constraints on both reaction time and convergence range, which cannot be achieved by other
methods currently available. (2) Fault Detection: the FTPF method not only ensures tracking
performance within an ideal region but also provides a concise bound for designing the monitoring
function. (3) Model Mismatch and Measurement Bias: in MPC control, performance can be sensitive
to discrepancies between the prediction model and the actual system dynamics, potentially resulting
in degraded control performance. If long-term stability is a critical requirement for ASV operations,
the FTPF-based AFTC algorithm becomes a preferable choice.

4. Simulation Study

To validate the feasibility of the designed AFTC scheme, a simulation example is
carried out on CyberShip II model [53]. The parameters M, C(ν), D(ν) in (1) are given as

M =

 m11 0 0
0 m22 m23
0 m32 m33

,

C(ν) =

 0 0 c13(ν)
0 0 c23(ν)

−c13(ν) −c23(ν) 0

,

D(ν) =

 d11(ν) 0 0
0 d22(ν) d23(ν)
0 d32(ν) d33(ν)

.

(48)

where m11 = m0 − Xu̇, m22 = m0 −Yẇ, m23 = m0xg −Yṙ, m32 = m0xg − Nẇ, m33 = Iz − Nṙ,
c13(ν) = −m11w − m23r, c23(ν) = m11u, d11(ν) = −Xu − X|u|u|u| − Xuuuu2, d22(ν) =
−Yw − Y|w|w|w|, d23(ν) = −Yr − Y|w|r|w| − Y|r|r|r|, d32(ν) = −Nw − N|w|w|w| − N|r|w|r|,
and d33(ν) = −Nr − N|w|r|w| − N|r|r|r|. The system parameters are listed in Table 1.

Table 1. Main parameters for cybership II.

Factor Value Factor Value Factor Value

m0 23.8 Yw −0.8612 Xu̇ −2
Iz 1.76 Y|w|w −36.2823 Yẇ −10
xg 0.046 Yr 0.1079 Yṙ 0
Xu −0.7225 Nw 0.1052 Nẇ 0

X|u|u −1.3274 N|w|w 5.0437 Nṙ −1
Xuuu −5.8664

In the simulation example, the control objective is to force the vehicle to track the
desired trajectory as ηd = [4 sin(0.02πt),−4 cos(0.02πt), 0.1t(1 − e−t/5]T . The initial states
of ASV are set as η(0) = [1,−2, 1]T , ν(0) = [0, 0, 0]T . The parameters of performance
function are chosen as ρi0 = 4.7, ρiTs = 0.3, ι = 1.2, ε = 0.3, i = 1, 2, 3, and the settling
time can be calculated by (6) as Ts = 4.4190s. For simplicity, the lumped uncertainty δ is
described in a general term as time-varying forces/moment:

δ =


1.6 + 2 sin(0.01πt)

−0.9 + 1.5 sin(0.1πt − π/6) + 1.5 sin(0.01πt)

sin(0.09πt + π/3) + cos(0.01πt)

. (49)

To verify the fault-tolerant ability of the proposed AFTC scheme, the component faults
are intentionally introduced into the ASV control system at a specific time
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t = Tf = 40 s and fa = [6.2 + 5 sin(0.01πt − 10), 5.4 + 5 cos(0.01πt − 10), 7.2 + 0.3e−0.2t]T .
The control system’s response to these faults can be analyzed and assessed to determine
the effectiveness of the fault-tolerant control strategy. The control gains are selected as
k1 = diag(23, 28, 2), k2 = diag(1.95, 1.7, 0.5), kd = 3.5. According to the initial states, we
can calculate that γ = 0.6075. The controller switches from nominal controller to recon-
figured controller when |zi| > γ at t = Td. The estimator gains are selected as κ1 = 0.001,
κ2 = 0.9, κ3 = 15, r1 = 99, r2 = 101.

4.1. Fault-Tolerant Ability Verification

To illustrate the effectiveness of the proposed nominal controller and the reconfigured
controller, two experiments are conducted under fault-free and component fault conditions.
In the first experiment, the fault-free condition is considered, where no component faults are
present in the system. This experiment aims to demonstrate the performance of the control
system under a nominal controller when there are no faults affecting the system’s behavior.
In the second experiment, the component fault condition is considered. Component
faults are intentionally introduced into the system at a specific time, as mentioned earlier.
This experiment aims to evaluate the performance of the control system in the presence
of component faults. The control system switches from the nominal controller to the
reconfigured controller when the fault detection threshold is exceeded. By comparing the
results of these two experiments, the effectiveness of both the nominal controller and the
reconfigured controller can be evaluated. The control system’s ability to maintain stability,
tracking performance, and fault tolerance can be assessed, providing insights into the
overall performance of the proposed AFTC scheme.

The simulation results are shown in Figures 2–9. Among them, Figures 2–4 are
the results of fault-free experiment and Figures 6–9 are the results of component fault
experiment. It can be observed from Figures 2–4 that the ASV can follow the given
trajectories within the designed nominal controller, and the predefined performance bounds
are guaranteed. The trajectories of the ASV closely track the desired reference trajectories
in Figure 2, indicating accurate tracking performance. The predefined performance bounds
are observed to be satisfied in Figure 3. This ensures that the system operates within the
desired performance criteria. The trajectories of transformed error are given in Figure 4,
and it is obvious that the transformed errors are kept within the given sets. The control
inputs are given in Figure 5.
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Figure 2. Fault−free experiments: trajectories under the nominal controller.



J. Mar. Sci. Eng. 2024, 12, 347 14 of 21

0 10 20 30 40 50 60 70 80
Time(sec)

-5

0

5

e 1
(m

)

0 10 20 30 40 50 60 70 80
Time(sec)

-5

0

5

e 2
(m

)

0 10 20 30 40 50 60 70 80
Time(sec)

-5

0

5

e 3
(r

ad
)

Figure 3. Fault-free experiments: tracking errors with performance bounds.

Figure 4. Fault-free experiments: transformed errors and monitoring functions.
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Figure 5. Fault-free experiments: control inputs.
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Figure 6. AFTC experiments: trajectories under the nominal and reconfigured controller.
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Figure 7. AFTC experiments: tracking errors with performance bounds.

Figure 8. AFTC experiments: transformed errors and monitoring functions.
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Figure 9. AFTC experiments: the lumped uncertainties and their estimations (after Td).

In Figures 6–9, the detection results and the control performance under controller
reconfiguration are depicted, which illustrates the system’s behavior during the occurrence
of component faults. Figure 6 depicts the curves of desired and actual trajectories of the ASV.
The tracking errors and their constraints are illustrated in Figure 7, which reveals that the
predefined performance is guaranteed at all times. Although there may be some variation
in system performance when the fault occurs, it can be quickly recovered. Figure 8 focuses
on the response of the transformed error. As seen from Figure 8, when the component
fault occurs at t = Tf = 40 s, the transformed error z reacts to the fault faster than the
tracking error e in Figure 7. This behavior indicates that the fault is detected and reflected
in the transformed error before affecting the tracking performance. After the effect of
component faults on ASV exceeds the detection threshold, the FE module provides an
effective detection signal at t = Td = 40.8 s. From Figure 9 we can see that the estimator
is activated at t = Td, indicating that the controller reconfiguration has been achieved,
and the faults are well estimated. The control inputs are given in Figure 10. These figures
demonstrate the system’s response to component faults, the activation of the fault detection
module, and the successful transition to the reconfigured controller.
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Figure 10. AFTC experiments: control inputs.
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4.2. Robustness Verification

In this subsection, the lumped uncertainties are reset to three distinct frequencies in
order to assess the robustness of the controller against various frequency perturbations.
The frequencies used for testing are as follows:

(1) δ =


1.6 + 2 sin(0.3πt) + 0.5 cos(0.01πt)

−0.9 + 1.5 sin(0.3πt − π/6) + 1.5 sin(0.01πt)

sin(0.3πt + π/3) + cos(0.01πt)

.

(2) δ =


1.6 + 2 sin(0.2πt) + 0.5 cos(0.01πt)

−0.9 + 1.5 sin(0.1πt − π/6) + 1.5 sin(0.01πt)

sin(0.1πt + π/3) + cos(0.01πt)

.

(3) δ =


1.6 + 2 sin(0.01πt)

−0.9 + 1.5 sin(0.1πt − π/6) + 1.5 sin(0.01πt)

sin(0.01πt + π/3) + cos(0.01πt)

.

The above formula is observed to provide a broader frequency range of disturbance. The
simulation results are depicted in Figures 11 and 12. It can be inferred from Figure 11 that
disturbances at different frequencies do not significantly impact the control performance,
demonstrating the robustness of the method against interference. Figure 12 displays the
estimation results of the estimator at various frequencies.
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Figure 11. Robustness experiments: tracking performance under different frequency disturbance.
(a) Trajectory tracking performance. (b) Tracking errors.
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Figure 12. Robustness experiments: uncertainties estimation under different frequency distur-
bance. (a) Disturbance frequency = 3/20. (b) Disturbance frequency = 1/20. (c) Disturbance
frequency = 1/200.
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4.3. Advantages Highlight

In order to present a comprehensive assessment of the designed control strategy and
demonstrate its superiority, additional numerical simulations were conducted in this subsec-
tion. Specifically, we performed a performance comparison between the designed control
strategy and a classical backstepping control schemes used in [54]. For the backstepping
method, the control input can be provide as follows:

τb = MR−1(−kb1s − RM−1g(η, η̇)− α̇ − Φ) (50)

where s is defined as the proposed controller, and α = −kb2e + η̇d. The remain equations
are the same as the proposed controller. It is important to note that the proposed fault
detection algorithm, being based on the FTPF, cannot be included in the comparison
method. The simulation results of both controllers under fault conditions are presented
in Figures 13 and 14. The simulation results for both controllers under fault conditions are
depicted in Figures 13 and 14. As illustrated in Figure 13, the proposed controller exhibits
a noticeably faster convergence rate compared to the backstepping controller. Furthermore,
when component faults occur, the proposed ATFC scheme demonstrates superior fault
tolerance, ensuring system stability. In Figure 14, the evolution of the tracking errors is
presented, while the backstepping controller can partially guarantee the stability of the
ASV, it is evident that without the FTPF, the tracking error cannot be maintained within a
predefined range. Overall, these simulation results showcase the capability of the proposed
controller to achieve satisfactory tracking performance while ensuring that all outputs
remain within their specified ranges.

Figure 13. Comparison experiments: trajectories under the proposed controller and backstepping
controller.

Figure 14. Comparison experiments: tracking errors under the proposed controller and backstepping
controller.
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5. Conclusions

In this paper, a novel AFTC scheme has been investigated to solve the predefined
tracking performance problem of ASV with component faults. The integrated AFTC
framework has been proposed to accomplish fault detection, fault estimation, and control
reconfiguration autonomously. By introducing the error transformation and the Barrier
Lyapunov function, a nominal controller was proposed to maintain the control performance
under the normal fault-free condition. Within the guaranteed performance, a monitoring
function has been designed to supervise the tracking behaviors and report the occurrence
of faults. With the signal of the monitoring function, the reconfigured controller was
activated, and the lumped uncertainty including fault was estimated precisely by a modified
finite-time estimator. Finally, the effectiveness of the proposed AFTC controller has been
verified by three aspects: fault-tolerant ability, robustness, and highlighted advantages.
The simulation results demonstrate the system’s fast response to faults, the activation of
the fault detection module, and the successful transition to the reconfigured controller. The
comparative simulations further show the superiority of the proposed method.
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