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Abstract: In this study, we address the integrated scheduling problem involving quay cranes and IGVs
in automated terminals. We construct a mixed-integer planning model with the aim of minimizing the
total energy consumption during quay crane and IGV operations, focusing on the loading-operation
mode. The model considers the impact of the actual stowage of container ships on the loading order.
We propose a dimension-by-dimension mutation sparrow search algorithm to optimize the model’s
solution quality. Building upon the standard sparrow search algorithm, we incorporate cat mapping
to enhance the diversity of the initial sparrow population. To improve global search in the early stage
and local search in the later stage of the algorithm, we introduce an adaptive t-distribution mutation
strategy. Finally, a total of 12 instances with container counts containing 30, 100, and 250 were
designed for experiments to validate the effectiveness of the model and algorithm. The experiments
demonstrate that, by appropriately increasing the number of quay cranes, configuring more than two
or three IGVs can achieve optimal energy consumption for overall operations.

Keywords: integrated scheduling; loading operation; loading order; dimension-by-dimension mutation
sparrow search algorithm

1. Introduction
1.1. Background and Motivation

In response to economic-development needs, container ships are evolving towards
larger scales, resulting in a proportional increase in port throughput [1]. This trend not only
raises the bar for the operational efficiency and service levels of modern container terminals
but also presents more formidable challenges in resource conservation, energy efficiency,
and emissions reduction for sustainable and green operation [2,3]. To enhance operational
efficiency and energy conservation, the Port of Rotterdam in the Netherlands pioneered the
use of automation equipment in terminal operations as early as 1993. After nearly 30 years
of development, terminal production operations widely employ automated loading and
unloading equipment, including automated dual-trolley quay crane (AQC), automated
guided vehicles (AGV), and automated rail-mounted gantry cranes (ARMG). Unlike the
“AQC + AGV + ARMG” loading and unloading system prevalent in most terminals, the
Nansha IV Terminal of Guangzhou Port in this study uses a system comprising a single-
trolley quay crane, intelligent guided vehicle (IGV), and single cantilevered rail crane. This
system, coupled with the advanced “5G + BeiDou” navigation method, achieves more
efficient and environmentally friendly operations. However, solely elevating the technolog-
ical level proves insufficient to meet the growing demand for energy-efficient operations.
Terminal operators are leaning towards devising advanced equipment scheduling solutions
to attain cost reductions and efficiency gains. Consequently, the significance of researching
relevant operational equipment scheduling issues has gained prominence. Currently, the
emphasis in related research has shifted from singular resource scheduling to integrated
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scheduling involving multiple pieces of equipment. However, existing research on the
integrated scheduling of QC and horizontal transportation equipment predominantly con-
centrates on the equipment itself, neglecting the influence of ship stowage and container
weight on equipment operation. Consequently, this research delves into the integrated
scheduling problem of QCs and IGVs in the Nansha Phase IV Terminal of Guangzhou Port.
It explores strategies for minimizing the operational energy consumption of QCs and IGVs.

1.2. Literature Review

In this section, we conducted a review of research pertaining to integrated scheduling
and energy conservation in container terminals. Regarding integrated scheduling, the
discussion is focused on quay cranes and horizontal transportation equipment, distinct
from other types of integrated scheduling research. A brief explanation is provided for
the modeling and algorithmic solution ideas associated with integrated scheduling. In
the domain of energy saving and emission-reduction research, the emphasis is on carbon
emissions and methods for energy conservation.

1.2.1. Integrated Scheduling in Container Terminal

(1) Integrated scheduling of QC and horizontal transportation equipment

In previous studies, Homayouni et al. [4] developed an integrated scheduling model
for QC and AGV, assigning QC loading and unloading tasks based on AGV availability.
They employed a simulated annealing algorithm (SA) to optimize the QC job sequence,
minimizing the maximum completion time. To evaluate the model’s accuracy, Homayouni
et al. [5] investigated the impact of three cooling processes and two sets of control parame-
ters on SA, ensuring optimal or near-optimal solutions across all experimental scenarios.
Additionally, Homayouni et al. [6] explored the use of genetic algorithms (GA) for similar
problems. Their GA incorporated a coding method generating task sequences according to
loading and unloading task priorities, yielding superior results in large-scale task examples
compared to other algorithms. Recent studies have considered more comprehensive factors.
Xiong et al. [7] addressed the influence of AGV power changes in integrated scheduling,
determining optimal AGV configurations and power-change thresholds through analy-
ses of different-scale instances. Yin et al. [8] established an integrated scheduling model
for QC and shuttle vehicles (SV) under ramp buffer capacity constraints, developing se-
quential insertion, greedy insertion, and improved genetic algorithms to solve scheduling
problems in medium and large-scale tasks. Zhao et al. [9] considered the capacity limita-
tions of QCs’ transfer platforms when constructing an integrated scheduling model for
dual-trolley quay cranes and AGVs. They designed a two-stage tabu search algorithm to
minimize operational energy consumption. In a similar vein, Yue et al. [10] designed an
integrated scheduling model for dual-trolley QC and AGV, incorporating factors such as
AGV endurance time. They utilized a genetic algorithm to minimize operational costs. Yue
et al. [11] further included customer satisfaction in the evaluation index system, creating
a multiobjective mixed-integer programming model to select scheduling schemes based
on customer satisfaction. However, previous studies tended to address QC and AGV
operations separately, diminishing their interaction. In contrast, Chen et al. [12] integrated
two stages, formulating a model with energy consumption and ship departure delay as
optimization objectives. They designed a genetic algorithm with an embedded tabu search
operator, yielding results superior to traditional genetic algorithms. Nevertheless, they
weighted the two objectives when implementing the solution method, posing challenges to
ensuring the reasonable allocation of objective weights. Duan et al. [13] established a multi-
objective integrated scheduling model targeting overall makespan and AGV unloading
time. They employed NSGA-II to obtain a noninferior solution set, demonstrating superior
results compared to the weighted method under a large number of tasks.

(2) Other integrated scheduling problems



J. Mar. Sci. Eng. 2024, 12, 376 3 of 26

It is valuable to consider modeling and solution approaches for other integrated
scheduling problems. In the context of QC, a prevalent focus lies on the integrated berth
and QC allocation and scheduling problem (BQCASP). Bouzekri et al. [14] integrated
Laycan, dynamic continuous berth allocation, and QC allocation problems to establish a
model, validating its feasibility using the Xpress-IVE optimizer. Some studies delve into
robust BQCASP. Xiang et al. [15] developed a BQCASP model with approximate robust
optimization (ARO) characteristics, employing mean objective and weighted maximum
penalty function. This ARO model adeptly handles uncertainty, reducing overall expected
cost and ship delay time compared to deterministic and fully robust models. Rodrigues
et al. [16] formulated a two-stage BQCASP robust model considering uncertainty in ship
arrival time. They introduced an exact decomposition algorithm to split the initial problem
into the main problem and the separation problem. Additionally, they utilized a heuristic
algorithm to streamline operation scenarios during separation-problem resolution, effec-
tively reducing ship time in port. Wang et al. [17], also working on a two-stage BQCASP
robust optimization model, initially established a complete baseline plan using a proactive
strategy. They then constructed a rescheduling model based on a response strategy, solving
it with the C&CG algorithm to obtain precise solutions. Nourmohammadzadeh et al. [18]
developed a multiobjective robust model for BQCASP considering QC breakdown. They
applied multiobjective simulated annealing (MOSA) and Pareto simulated annealing (PSA)
algorithms based on a new two-layer coding scheme with berth information to compre-
hensively optimize three objectives, including ship delay time. Another facet of research
encompasses major operational equipment such as QCs, AGVs, and yard cranes (YC). Xu
et al. [19] explored the cooperative scheduling problem involving three types of equip-
ment in a U-shaped terminal. They formulated a mixed-integer planning model with the
objective of minimizing operation time and designed an improved genetic algorithm in-
corporating a reinforcement learning mechanism, significantly enhancing AGV utilization
rates. Cahyono et al. [20] constructed a dynamic model integrating QC, internal trucks,
and YC operations based on the finite state machine (FSM) framework. They proposed a
model prediction algorithm (MPA) to obtain near-optimal solutions for equipment schedul-
ing and container storage location. To address cascading effects due to uncertainties in
the terminal, Cai et al. [21] introduced an evaluation index based on the entropy theory
of complex network structures. This index assesses cascading-effect resistance and the
robustness of the integrated scheduling scheme for QC, internal vehicles (IV), and YC
obtained via genetic algorithms. Naeem et al. [22] developed a model centered on the
integrated scheduling of YC and AGV, considering buffer capacity under QC limitations.
They verified the model’s feasibility using the Gurobi solver. Liu et al. [23] investigated
the coscheduling problem involving railroad gantry cranes (RCOGC), YC, and IV in an
intermodal container terminal. They formulated a multiobjective model and designed
an adaptive large neighborhood search (ALNS) algorithm combined with discrete event
simulation (DES) to address the problem.

1.2.2. Energy Saving and Emission Reduction in Container Terminal

In the exploration of the quay crane scheduling problem (QCSP), Tan et al. [24] aimed
to balance the operational efficiency and energy consumption of dual-trolley QCs by
calculating operational details, such as the minimum horizontal moving distance and the
minimum lifting height of the main trolley. Li et al. [25] developed a dual-objective model
focusing on minimizing the ship’s makespan and QC operation energy consumption. They
employed the branch delimiting method to identify the nondominated solution set. Zhong
et al. [26] constructed a multiobjective QC scheduling model, considering the safe operating
distance between heterogeneous QCs. They adopted a cooperative operation strategy
between QCs. In terms of multiequipment integrated scheduling, Yue et al. [27] used
an avoidance strategy to adjust QC operation sequences, reducing energy consumption
during QC waiting. They employed a genetic algorithm to find optimal AGV operation
sequences, maximizing AGV utilization and reducing empty-load energy consumption.
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Karam et al. [28] incorporated realistic factors, such as internal truck shortages and handling
time, into a model integrating berth, QC, and internal truck allocation, achieving energy
savings without increasing truck quantity. Hong et al. [29] addressed the integrated
scheduling problem of dual-trolley QC and driverless electric trucks (DETs) by using
a pooling strategy to schedule DETs to meet QC transportation service demand. This
achieved a more efficient scheduling scheme with lower energy consumption. Zheng
et al. [30] designed a three-dimensional coding method to integrate scheduling information
for three types of equipment, considering dependencies among the QC, truck, and YC. This
improved the search accuracy of the genetic algorithm and optimized energy consumption.
Zhong et al. [31] devised a two-layer genetic algorithm for the integrated scheduling
problem of QC, AGV, and YC, searching for the optimal scheduling scheme of QC and YC.
They proposed a conflict-free path-solving strategy, enabling AGVs to achieve minimal
operation energy consumption without the loss of utilization. Sun et al. [32] established
a multiresource integrated scheduling optimization model based on the principle of the
blocking hybrid flow shop problem (B-HFSP). Their objectives were to minimize QC
completion time and reduce energy consumption of AGV transportation, maintaining a
low QC idleness rate. Jiang et al. [33] constructed a robust integrated scheduling model for
multiple terminal berths and QCs, using the expected arrival time of the ship and average
operating efficiency plus slack as actual values. The goal was to minimize carbon emissions
from terminal operations. A concise literature summary of this section is shown in Table 1.

Table 1. A brief literature summary of energy saving in container terminal.

Literature Problem Objective Method

Tan et al. [24] QCSP Time and Energy CPLEX
Li et al. [25] QCSP Time and Energy Branch-and-bound Algorithm

Zhong et al. [26] QCSP Time and Energy EMOEA
Yue et al. [27] QASP Energy Enumeration Algorithm

Karam et al. [28] BACATAP Energy Lagrangian Solution
Hong et al. [29] BACATAP Time and Energy Genetic Algorithm
Zheng et al. [30] P_QAY Emissions Genetic Algorithm
Zhong et al. [31] P_QAY Energy Bi-level Genetic Algorithm

Sun et al. [32] P_QAY Time and Energy SA-GA
Jiang et al. [33] BQCASP Emissions Adaptive Genetic Algorithm

Abbreviations used in this table: EMOEA—enhanced multiobjective evolutionary algorithm; QCSP—quay crane
scheduling problem; QASP—quay crane and automated guided vehicles scheduling problem; BACATAP—berth
allocation crane assignment truck assignment problem; BQCASP—berth and quay crane assignment and schedul-
ing problem; P_QYY—problem of concurrently scheduling QCs, AGVs, and YCs; SA-GA—genetic algorithm
based on the operation of Simulated Annealing.

1.3. Research Gaps

Existing research on optimizing energy usage in the scheduling of QC and transport
vehicles exhibits the following gaps:

(1) To mitigate QC delay, some studies opt for an excessive number of horizontal trans-
port vehicles. However, this configuration provides limited actual effectiveness in
reducing QC delay, diminishes the utilization rate of transport vehicles, and elevates
transportation energy consumption;

(2) Previous studies have arbitrarily determined the loading order of containers, over-
looking the influence of the ship’s actual stowage on this order. When formulating the
ship’s stowage plan, constraints such as preventing heavy containers from exerting
pressure on lighter ones, heeling moment limitations, and avoiding placing containers
in midair significantly impact the loading sequence;

(3) Most studies uniformly define the loading and transportation speed of containers.
However, they overlook the impact of container weight on equipment loading rates.
The operational speed of equipment varies based on the weight category of containers;
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(4) Some studies address the operational process of QC and horizontal transportation
equipment in distinct stages. This approach undermines the linkage between the two
operational phases, hinders the flexible operation of equipment, and adversely affects
the quality of the final scheduling scheme.

To address issues identified in the previous research and further decrease the opera-
tional energy consumption of loading and transportation equipment in container terminals,
we consolidate the scheduling challenges of single-trolley QC and IGV in the loading
process under single-vessel operation surface mode. We quantify the operational energy
consumption of each equipment under various working conditions. Accounting for vessel-
stowage constraints and other limiting factors, we establish a mixed-integer planning
model with the optimization goal of minimizing overall operating energy consumption. We
analyze the comprehensive operating energy consumption and the time distribution of energy
consumption for each working condition under different equipment quantity configurations.

The subsequent structure of this paper is outlined as follows: Section 2 elucidates the
integrated scheduling problem involving QC and IGV, presenting the mathematical model
devised for its resolution. Section 3 introduces an algorithm devised to tackle the model.
Section 4 delineates variously sized arithmetic cases for experimental validation of the pro-
posed model and algorithm and subsequently analyzes the experimental outcomes. Lastly,
Section 5 consolidates the findings of this study and outlines future research directions.

2. Problem Description and Formulation
2.1. Problem Description

The integrated scheduling problem involving QCs and IGVs in an automated con-
tainer terminal aims to define the loading sequence of each container and assigns specific
equipment based on the loading and unloading process. This optimization targets specific
operational indices. When a container ship docks, terminal staff decide the number of QCs
and IGVs based on the ship’s required in-port time and stowage information. Figure 1
illustrates IGVs operating on the surface, serving all QCs. During loading, the IGV retrieves
containers from the storage yard, traverses the horizontal transport area, and delivers the
container below the QC. The QC lifts the container from the IGV to a designated bay on
the ship. The empty IGV returns to the yard for the next loading task. Upon scrutinizing
the operational intricacies of QC and IGV, it becomes apparent that the energy consump-
tion throughout the entire loading process is manifested in operational phases, including
IGV movement with a container, IGV movement without a load, IGV waiting due to QC
operation delays, QC container hoisting, QC movement, QC waiting due to adjacent QC
interference, and QC waiting due to IGV operation delays.

In the case of QC, insufficiently configured IGVs or excessive QC configurations
may lead to potential delays in IGV transportation operations, resulting in extended QC
waiting times. Regarding IGV scheduling, insufficiently configured QCs or excessive IGV
configurations may cause delays in QC loading tasks or lead to IGV queues, resulting in
excessively long IGV waiting times. This study is grounded in the following assumptions:

(1) The stacking yard is equipped with an ample number of yard cranes, eliminating the
need for IGVs to wait in the yard;

(2) Details including the destination port, weight, and quantity of the containers to be
loaded have been provided. All containers are of uniform size;

(3) All IGVs transport containers with uniform power. The operation process maintains a
consistent speed. Containers of varying weights are transported at distinct speeds.
Path conflicts among IGVs are not taken into account;

(4) All QCs load containers with uniform power and operate on a shared track. Load-
ing containers of varying weights incurs distinct time durations. QCs maintain a
minimum safe operating distance of one bay;

(5) Unforeseen circumstances such as equipment failure, adverse weather effects, and
temporary operational schedule adjustments are ignored.
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2.2. Definition of Notations and Variables

We define the notations and variables in Tables 2 and 3.

Table 2. Notations.

Notation Description

I The set of containers. S and E denote the start and the end of the loading operation,
respectively. IS = I ∪ [1]. IE = I ∪ [2,3].

i, j The index of each container.
Q The set of QCs.
q The index of each QC.
V The set of IGVs.
v The index of each IGV.

Ni The moment when a QC completes loading container i.
Oi The time required for a QC to load container i.
P The time it takes for a quay crane to traverse one bay width.
M A large enough positive number.
Ri The moment when a IGV completes transporting container i.

Sil
The time required for an empty IGV to move from the QC operating area to the yard
to receive container i.

Siu
The time required for a IGV to transport container i from the yard to the QC
operating area.

t1 The time required for a QC to load a light container.
t2 The time required for a QC to load a heavy container.
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Table 2. Cont.

Notation Description

v0 The moving speed of IGV with no load.
v1 The moving speed of IGV under light load.
v2 The moving speed of IGV under heavy load.
a The index of each bay.

UaS The start time of the operation on bay a.
UaE The end time of the operation on bay a.

A The set of bays. S and E denote the start and end of the operation at the bays.
AS = A ∪ [4]. AE = I ∪ [5].

AF The set of bays in the forward half of the ship.
AA The set of bays in the back half of the ship.
lq The first bay to be served by QC q.
B The set of stacks in a bay.
b The index of each stack.

BL The set of stacks on the larboard side.
BR The set of stacks on the starboard side.
C The set of layers in a bay.
c The index of each layer.

wi The weight of container i.
wab The weight of containers in stack b within bay a.

ei
Container i has a weight type, denoted by values 1 and 2, representing light and
heavy containers.

f The width of a container is 2.438 m.
g The gap between containers is 0.3 m.
α Moment sensitivity factor, taking the value of 10 t.

HM Heeling moment. HM = (B − 1) (f + g) α/2.
LG Maximum longitudinal weight difference.
E1 Energy consumption per unit time for QC loading.
E2 Energy consumption per unit time for QC waiting.

E3
Energy consumption per unit time during QC waiting, attributed to IGV delays or
disruptions by other QCs.

E4 Energy consumption per unit time for IGV transporting a container.
E5 Energy consumption per unit time for IGV movement without a load.
E6 Energy consumption per unit time during IGV waiting caused by QC delay.

Table 3. Decision variables.

Variable Description

Xq
ij

Equal to 1 if QC q loads container j immediately after loading container i,
and 0 otherwise.

Xq
i Equal to 1 if QC q loads container i, and 0 otherwise.

Xv
ij

Equal to 1 if IGV v transports container j immediately after transporting
container i, and 0 otherwise.

Xv
i Equal to 1 if IGV v transports container i, and 0 otherwise.

Xq
a Equal to 1 if QC q operates on bay a, and 0 otherwise.

Xq
aa′ Equal to 1 if QC q operates on bay a before bay a′, 0 otherwise.

Xabc
i Equal to 1 if container i is loaded in position (a, b, c) and 0 otherwise.

2.3. Mathematical Model

The mixed-integer planning model comprises an objective function representing
energy consumption during operation and constraint equations for each equipment type,
utilizing the notations and variables delineated in Tables 2 and 3. Specifically, the objective
function aggregates the energy consumption of all equipment across different operational
states. The constraints encompass operational limitations for IGVs and QCs, as well as
constraints related to ship stowage.
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2.3.1. Objective Function

The objective function represents the total energy consumption across six states,
namely QC loading, QC moving, QC waiting, IGV traveling empty, IGV traveling with
containers, and IGV waiting. The breakdown is as follows:

f1 = E1 · ∑
i∈I

∑
q∈Q

Xq
i Oi (1)

Equation (1) can calculate the energy consumption of all QCs during the container
loading process at the target bay.

f2 = E2 ·
(

∑
i∈I

∑
j∈I

∑
q∈Q

Xq
ij

∣∣∣∣∣∑b∈B
∑
c∈C

∑
a∈A

aXabc
j − ∑

b∈B
∑
c∈C

∑
a∈A

aXabc
i

∣∣∣∣∣
)
· P (2)

Equation (2) describes the energy consumption incurred by the QC during movement
along the ship.

f3 = E3 · ∑
q∈Q

∑
a∈A

(
∑

a′∈A
Xq

aa′
(
Ua′S − UaE −

∣∣a′ − a
∣∣ · P

)
+ Xq

a

(
UaE − UaS − ∑

i∈I
∑
b∈B

∑
c∈C

OiXabc
i

))
(3)

Equation (3) describes the energy consumption during QC waiting. The first term
represents energy consumption caused by neighboring QC interference during the wait.
The second term represents energy consumption when QC waits for the IGV.

f4 = E4 · ∑
i∈I

∑
v∈V

Xv
i Siu (4)

Equation (4) calculates the energy consumption during the travel process of the IGV
carrying the container to the position beneath the QC.

f5 = E5 · ∑
i∈I

∑
v∈V

Xv
i Sil (5)

Equation (5) describes the energy consumption incurred by the IGV during travel
without a load.

f6 = E6 · ∑
i∈I

∑
j∈I

∑
v∈V

Xv
ij

(
Rj − Sju − Sjl − Ri

)
(6)

Equation (6) is the energy consumption generated by the IGV waiting for the QC process.
The total operational energy consumption, as represented in Equation (7), can be

calculated by summing the energy consumption from the six aforementioned states.

f = f1 + f2 + f3 + f4 + f5 + f6 (7)

2.3.2. Constraints

(1) IGV operational constraints

The operational constraints of the IGV mainly involve limitations on transportation
capacity, operation sequence, and temporal relationships, as outlined below.

∑
i∈IS

Xv
ij = 1, ∀v ∈ V; j ∈ I (8)

∑
j∈IE

Xv
ij = 1, ∀v ∈ V; i ∈ I (9)

∑
v∈V

Xv
i = 1, ∀i ∈ I (10)
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Xv
j = ∑

i∈IS

Xv
ij, ∀j ∈ I; v ∈ V (11)

∑
v∈V

∑
j∈IE

Xv
ij = 1, ∀i ∈ I (12)

Equations (8) and (9) specify that every transportation task accomplished by the IGV
is preceded and followed by other tasks. Equation (10) guarantees that each container
is exclusively transported by a single IGV. Equation (11) states that if the IGV v handles
container i, the task is either the first transportation task for the IGV v or the immediately
following task for other containers. Equation (12) specifies that the IGV can transport only
one container at a time.

Siu − Ri ≤ M(1 − Xv
Si), ∀i ∈ I; v ∈ V (13)

Rj − Sju − Sjl + M
(

1 − Xv
ij

)
≥ Ri ∀i ∈ I; j ∈ I; v ∈ V (14)

Rj + M
(

1 − Xq
ij

)
≥ Ni, ∀i, j ∈ I; q ∈ Q (15)

Equation (13) describes the initial transportation task of the IGV, which involves
directly carrying the container from the yard to be subsequently unloaded by the QC upon
arrival beneath it, thereby completing the entire transportation process. Equation (14)
describes the temporal relationship between the completion of the preceding transportation
task and the commencement of the subsequent task for the IGV. Equation (15) states that
the moment of completion for the current transportation task by the IGV is not earlier than
the moment when the QC completes the preceding loading task;

(2) QC operational constraints

QCs face limitations on loading capacity, operation sequence, and temporal dependen-
cies during operations. Moreover, a defined safety interval between QCs must be upheld.
The specific equations are outlined below:

∑
i∈I0

Xq
ij = 1, ∀q ∈ Q; j ∈ I (16)

∑
j∈IE

Xq
ij = 1, ∀q ∈ Q; i ∈ I (17)

∑
q∈Q

Xq
i = 1, ∀i ∈ I (18)

Xq
j = ∑

i∈IS

Xq
ij, ∀q ∈ Q; j ∈ I (19)

∑
q∈Q

∑
j∈IE

Xq
ij = 1, ∀i ∈ I (20)

Oi + P ·
∣∣∣∣∣∑b∈B

∑
c∈C

∑
a∈A

aXabc
i − lq

∣∣∣∣∣− Ni ≤ M
(

1 − Xl
Si

)
, ∀i ∈ I; q ∈ Q (21)

Nj − Oj − P ·
∣∣∣∣∣∑b∈B

∑
c∈C

∑
a∈A

(
aXabc

j − aXabc
i

)∣∣∣∣∣+ M
(

1 − Xq
ij

)
≥ Ni, ∀i ∈ I; j ∈ I; q ∈ Q (22)

Xq
i − Xq

a ≤ M

(
1 − ∑

b∈B
∑
c∈C

Xabc
i

)
, ∀i ∈ I; a ∈ A; q ∈ Q (23)

Xq
Si − Xq

Sa ≤ M

(
1 − ∑

b∈B
∑
c∈C

Xabc
i

)
, ∀a ∈ A; q ∈ Q; i ∈ I (24)
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Xq
iE − Xq

aE ≤ M

(
1 − ∑

b∈B
∑
c∈C

Xabc
i

)
, ∀a ∈ A; q ∈ Q; i ∈ I (25)

Xq
ij − Xq

aa′ ≤ M

(
1 − ∑

b∈B
∑
c∈C

Xabc
i Xa′bc

j

)
, ∀
∣∣a′ − a

∣∣ > 0; a, a′ ∈ A; i ∈ I; j ∈ I; q ∈ Q (26)

Equations (16)–(22) mirror the role for the QC as Equations (8)–(14) do for the IGV.
Equation (23) specifies that QC q operating on bay a loads the designated containers into
bay a. Equation (24) states that if container i is the first loading task assigned to QC q, and
it is designated to be loaded at bay a, then bay a will be the initial bay processed by QC
q. Equation (25) states that if container i is the final loading task assigned to QC q, and
it is designated to be loaded in bay a, then bay a will be the last bay processed by QC q.
Equation (26) specifies that if neighboring containers i and j to be loaded are not in the
same bay, the QC moves to the next bay a′ to load container j after completing the loading
of container i at the current bay a.

∑
q∈Q

Xq
a = 1, ∀a ∈ A (27)

∑
a∈AS

Xq
aa′ = 1, ∀q ∈ Q; a′ ∈ A (28)

∑
a′∈AE

Xq
aa′ = 1, ∀q ∈ Q; a ∈ A (29)

Xq
a′ = ∑

a∈AS

Xq
aa′ , ∀q ∈ Q; a′ ∈ A (30)

∑
q∈Q

∑
a′∈AE

Xq
aa′ = 1, ∀a ∈ A (31)

Ua′E − UaS ≤ M(Xaa′), ∀
∣∣a′ − a

∣∣ = 1; a, a′ ∈ A (32)

∑
q∈Q

q · Xq
a − ∑

q′∈Q
q′ · Xq′

a′ ≤ 0, ∀a < a′ ∈ A (33)

∣∣∣lq′ − lq
∣∣∣ ≥ 2, ∀

∣∣q′ − q
∣∣ = 1; q, q′ ∈ Q (34)

Equations (27)–(31) mirror the role for bay as Equations (16)–(20) do for QC. Equation (32)
states that the minimum operational spacing between QCs is one bay. Equation (33)
guarantees that the operational areas of the QCs do not overlap. Equation (34) ensures that
the initial operational spacing between adjacent QCs is at least one bay.

Ua′S − P ·
∣∣a′ − a

∣∣+ M
(

1 − Xq
aa′

)
≥ UaE, ∀a, a′ ∈ A; q ∈ Q (35)

Ni + M

(
1 − ∑

b∈B
∑
c∈C

Xabc
i

)
≥ UaS + Oi, ∀i ∈ I, a ∈ A (36)

Ni − UaE ≤ M

(
1 − ∑

b∈B
∑
c∈C

Xabc
i

)
, ∀i ∈ I; a ∈ A (37)

Equation (35) defines the start and end moments of each bay operation. Equation (36)
ensures that the loading of all containers is completed no earlier than the start of opera-
tions at the corresponding bay. Equation (37) ensures that the loading of all containers is
completed no later than the end of operations at the corresponding bay;

(3) Ship stowage constraints

Previous studies have failed to consider that the stowage plan imposes constraints
on the container loading sequence, thereby impacting the operational sequence of the QC
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and IGVs, potentially hindering the improvement of their operational efficiency. Stowage
constraints primarily address bay space limitations and ship stability.

∑
i∈I

Xabc
i ≤ 1, ∀a ∈ A; b ∈ B; c ∈ C (38)

∑
a∈A

∑
b∈B

∑
c∈C

Xabc
i = 1, ∀i ∈ I (39)

∑
i∈I

Xab(c−1)
i − ∑

i∈I
Xabc

i ≥ 0, ∀a ∈ A; b ∈ B; c ∈ C\{1} (40)

∑
i∈I

Xab(c−1)
i · ei − ∑

i∈I
Xabc

i · ei ≥ 0, ∀a ∈ A; b ∈ B; c ∈ C\{1} (41)

wab = ∑
c∈C

∑
i∈I

wi · Xabc
i , ∀a ∈ A; b ∈ B (42)

∣∣∣∣∣ ∑
b∈BR

wab ·
B + 1 − 2b

2
· ( f + g)− ∑

b∈BL

wab ·
2b − B − 1

2
· ( f + g)

∣∣∣∣∣ ≤ HM, ∀a ∈ A (43)

wa = ∑
b∈B

∑
c∈C

∑
i∈I

wiXabc
i , ∀a ∈ A (44)

∣∣∣∣∣ ∑
a∈AF

wa − ∑
a∈AA

wa

∣∣∣∣∣ ≤ LG (45)

Equation (38) specifies that each container position can accommodate only one con-
tainer. Equation (39) states that each container must occupy a distinct position. Equation (40)
ensures that containers are not suspended. Equation (41) ensures that heavier containers
are not positioned above lighter ones. Equation (42) represents the total weight of con-
tainers in each stack. Equation (43) represents the heeling moment constraint for each
bay. Equation (44) represents the total weight of containers for each bay. Equation (45)
represents the constraint on the longitudinal weight difference of the ship.

3. Solution Design

The integrated scheduling problem involving QC and horizontal transportation equip-
ment is an NP-hard problem [34]. Previous heuristic algorithms struggled to meet the
requirements for solving these problems [35]. In recent years, the sparrow search algorithm
(SSA) has demonstrated significant advantages in addressing these issues.

3.1. Standard Sparrow Search Algorithm

SSA is an algorithm that mimics the foraging and antipredation behavior of sparrow
populations. It offers advantages such as strong search ability, few control parameters,
and a relatively simple structure. Based on the fitness advantages and disadvantages,
SSA divides the sparrow population into finders and followers, then randomly selects
some individuals as scouts. Finders with higher fitness values share foraging information
with the population, while followers use this information to locate food. Scouts alert
the population in case of predator encounters. The three types of sparrows update their
positions during foraging, each employing its own strategy to obtain food.

If there are n sparrows in the D-dimensional search space, the position of the entire
sparrow population can be denoted by Equation (46).
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X =



x11 x12 · · · x1d · · · x1D
x21 x22 · · · x2d · · · x2D

...
...

. . .
...

. . .
...

xi1 xi2 · · · xid · · · xiD
...

...
. . .

...
. . .

...
xn1 xn2 · · · xnd · · · xnD


(46)

In this equation, i = 1, 2, . . ., n; d = 1, 2, . . ., D; xid represents the position of sparrow i
along dimension d.

In SSA, the sparrow with a more advantageous position will be the first to locate the
food and share information about its direction with the follower. Upon detecting a predator,
the sparrow issues a warning message and adjusts its position based on the severity of the
warning signal, as per Equation (47).

Xt+1
id =

{
Xt

id · exp
(
− i

α·itermax

)
, R2 < ST

Xt
id + Q · L, R2 ≥ ST

(47)

In this equation, t represents the current iteration number. itermax indicates the max-
imum number of iterations of the algorithm. α is a random real number in the interval
(0, 1]. Q follows a normal distribution as a random number. L is a 1 × D matrix with
all element values equal to 1. R2 ∈ [0, 1] and ST ∈ [0.5, 1] represent the warning value
and the safety threshold, respectively. When R2 < ST, no predators are detected near the
sparrow population, allowing the finder to expand the search. When R2 ≥ ST, predators
are detected by some sparrows. In this scenario, the finder must issue an early-warning
message and guide other sparrows to a safe area.

Followers will move to the food location based on the message sent by the finders and
compete with them for the food. If followers succeed, they take over the food location from
the finders; otherwise, they fly to another area for foraging. Followers update their location
according to Equation (48).

Xt+1
id =

Q · exp
(

Xworst−Xt
id

i2

)
, i > n/2

Xt+1
p +

∣∣∣Xt
id − Xt+1

p

∣∣∣ · A+ · L, i ≤ n/2
(48)

In this equation, Xworst represents the global worst position in the current population.
Xt+1

p denotes the current best position of the finders. Matrix A is a 1 × D matrix with

elements randomly assigned to either 1 or −1 and A+ = AT(AAT)−1. If i > n/2, follower i
is in the worst position fails to obtain food and must relocate to another region for foraging.
If i ≤ n/2, follower i will forage near the current best position Xt+1

p .
Finally, 10% to 20% of individuals in the population are randomly chosen as scouts,

tasked with vigilance and predator avoidance. Scouts adjust their positions based on
Equation (49).

Xt+1
id =


Xt

best + β
∣∣Xt

id − Xt
best

∣∣, fi > fg

Xt
id + K

(
|Xt

id−Xt
worst|

( fi− fw)+ε

)
, fi = fg

(49)

In this equation, Xbest represents the location of the current global optimum individual.
β follows a normal distribution with a mean of zero and a variance of one, regulating the
individual’s step size. K is a random number within the range [−1, 1], controlling the
direction of the individual’s movement and serving as the control parameter for the step
size. fi denotes the fitness value of scout i. fg and fw denote the current global optimum
and worst fitness values, respectively. ε is a very small constant used to avoid division by
zero. When fi > fg, the individual is at the periphery of the sparrow population and highly
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susceptible to predators. When fi = fg, the individual is alerted to the danger and must seek
proximity to other individuals to evade predator attacks.

3.2. Improved Sparrow Search Algorithm

SSA faces challenges in preventing decreasing convergence accuracy and is prone to
trapping in local extremes. To enhance the optimization performance of the algorithm,
we propose the dimension-by-dimension mutation sparrow search algorithm (DMSSA)
with an introduced cat mapping initialization method and an adaptive t-distribution
mutation perturbation. DMSSA, compared to SSA, enhances initial population diversity
using cat chaotic mapping and adaptively adjusts search preferences at different stages
using t-distribution variation, thereby enhancing the solution quality of the integrated
scheduling problem.

3.2.1. Cat Chaotic Mapping

The stochastic nature of the SSA population initialization results in drawbacks like
uneven distribution and low diversity in the initial population. Hence, we incorporate
cat mapping to enhance the initial population distribution. Cat mapping possesses the
advantage of a relatively simple structure and is less likely to form small loops or fixed
points. Thus, the cat mapping defined by Equation (50) is employed to initialize the
sparrow population, promoting a more even distribution in the search space and enhancing
the diversity of the initial population. In this equation, a1 and b1 represent arbitrary real
numbers, where mod1 denotes the fractional part of a1.[

Xi+1
Yi+1

]
=

[
1 a1
b1 a1b1 + 1

][
xi
yi

]
mod1 (50)

The cat map integrates the inverse solution within the feasible domain to generate the
initial chaotic sequence as follows. Equation (40) is utilized to randomly generate a feasible so-
lution for the current sparrow population, denoted as {X = [xi1, xi2, · · · , xid]; xid ∈ [uid, vid]}.
The resulting inverse solutions are denoted as X′

i =
[
x′i1, x′i2, · · · , x′id

]
and xid = l(uid − vid)−

xid. In the formulas, uid and vid represent the upper and lower bounds of individual spar-
rows in the d-dimensional search space, with l as a real number following a uniform
distribution on the interval [0, 1]. The inverse solution information incorporated into cat
mapping enhances the algorithm’s search capability, thereby preventing entrapment in
local extreme value regions [36,37].

The population size is 1000, with upper and lower boundaries set to 0 and 1.
Figures 2 and 3 depict the distribution and frequency statistics of population generated by
both methods. It is evident that populations from random initialization are concentrated
in the latter half of the chaotic value interval. Conversely, the population distribution
achieved through cat mapping is more uniform and exhibits greater diversity.

3.2.2. Adaptive t-Distribution Mutation

The t distribution, also known as the student distribution, is described by its probability
density function in Equation (41). Varying the degrees of freedom parameter, denoted as n
in the formula, lead to different forms of the distribution function curve.

p(x) =
Γ
(

n+1
2

)
√

mπ × Γ
( n

2
)(1 +

x2

2

)− n+1
2

(51)

In Figure 4, when the degree of freedom n = 1, t(n = 1) → C(0, 1) , and the function
curve coincides with the Cauchy distribution. As the degree of freedom n approaches
infinity, t(n → ∞) → N(0, 1) , and the function curve approaches a Gaussian distribution.
Consequently, the Cauchy and Gaussian distributions serve as the boundary distributions
for the t distribution.
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The optimal individual in each generation of the sparrow population undergoes
mutation through the adaptive t-distribution operator. We set the number of iterations
iter to be the parameter of the degrees of freedom of the mutation operator. The best
individual sparrow is denoted as Xbest =

[
x1

best, x2
best, · · · , xd

best

]
. Each dimension value

of the individual is modified according to Equation (42) to generate a new individual,
Xnew =

[
x1

new, x2
new, · · · xd

new

]
. In the equation, t(iter) is the value of the corresponding

t-distribution function. The fitness values of Xbest and Xnew are compared, and individuals
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with smaller values are retained for subsequent calculations. The t-distribution mutation,
being bounded by the Cauchy and Gaussian distributions, behaves similarly to the Cauchy
mutation when the degree of freedom is small initially, gradually resembling the Gaus-
sian mutation as the degree of freedom increases. The Cauchy mutation enhances the
algorithm’s global search capability and sustains population diversity, while the Gaussian
mutation improves local search performance and accelerates algorithm convergence. There-
fore, with an increase in the number of iterations, the algorithm progressively transitions
from reinforcing global search in the initial stages to escaping local extremes, and later
intensifies local search to expedite convergence speed.

xd
new = xd

best + xd
best · t(iter) (52)

3.3. Encoding and Decoding

In the intelligent optimization algorithm aimed at solving the integrated scheduling
problem, each individual in the population represents a solution vector. To efficiently ad-
dress the scheduling problem, we encode the solution vectors and establish decoding rules.
Encoding involves assigning key scheduling information to individuals, while decoding re-
trieves feasible scheduling solutions from the encoded information. To determine the index
and loading order of containers for each QC and bay, real number encoding is employed
to create a solution vector that documents the target loading bays for all containers. Each
individual is represented as an I-dimensional array, denoted as X = [x1, x2, · · · , xI ], with I
representing the number of containers. The variable xi assumes real numbers within the
range (0, B). Assuming 12 containers are to be loaded onto a vessel with six bays and three
QCs, we derive the initial loading scheme detailed in Table 4. A set of 12 real numbers
within the range (0, 6) is generated and subsequently rounded up, yielding the decoding
results that represent the initial target bay for each container.

Table 4. Initial loading scheme.

Container 1 2 3 4 5 6 7 8 9 10 11 12

xi 0.12 0.34 0.32 0.67 1.44 1.56 2.87 2.64 3.54 3.78 4.22 5.33
bay 1 1 1 1 2 2 3 3 4 4 5 6

Due to technical limitations during the loading operation, corrections are required for
the initial decoding results to ensure precise loading information for each bay. Rectify loading
information that surpasses the container capacity limit for bays using Equations (32) and (33).
Transfer containers from the bay exceeding the capacity limit to the bay with the lightest
load. Equations (38) and (39) constraints are employed to ensure the ship’s maximum
longitudinal weight difference does not exceed 30 tons. Containers are shifted from the
overloaded half of the bays to the other half to derive the corrected loading information
presented in Table 5.

Table 5. Revised loading scheme.

Container 1 2 3 4 5 6 7 8 9 10 11 12

bay 1 5 1 6 2 2 3 3 4 4 5 6

Once the final target bays for all containers are determined, the next step involves
organizing a rational loading order for each bay and assigning an appropriate number of
QCs. When establishing the loading order, it is imperative to adhere to the constraints,
ensuring heavy containers do not exert pressure on lighter containers, and consider the
heeling moment specified in Equations (35) and (37).

The procedure for loading containers into each bay, based on the principle depicted in
Figure 5, is outlined as follows.
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Step 1: Categorize the sequence of containers intended for loading in the current bay
into two groups: one for heavy containers and the other for light containers;

Step 2: If heavy containers are designated for loading, choose the lowest position in the
row near the centerline of available spaces on the larboard side to load a heavy container. If
there are no heavy containers, proceed to load light containers using the same method as
for heavy containers;

Step 3: Compare the heeling moments on the larboard and starboard sides. If the
heeling moment on the larboard side exceeds that on the starboard side, load the starboard
side using the same procedure as for the larboard side; otherwise, load the larboard side;

Step 4: Complete the loading of the remaining containers according to the above rules.
Finally, considering the nonoverlapping nature of the operating areas and the initial

operating intervals outlined in Equations (28) and (29), consecutive bays are allocated to
each QC for operation, following the left-to-right operating pattern depicted in Figure 6.
The resulting scheduling scheme is presented in Table 6.
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Figure 6. Operation area of QCs.

Table 6. Ultimate scheduling scheme.

Bay 1 2 3 4 5 6

QC 1 2 3
Loading sequence in bay 1→3 6→5 8→7 9→10 2→11 4→12
Loading sequence at QC 1→3→6→5 8→7→9→10 2→11→4→12

3.4. Overall Flow of DMSSA

Integrating the analysis above, the algorithm’s overall flow unfolds as follows.
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Step 1: Instances initialization. Input parameters such as energy consumption per unit
of equipment, container weight, etc.;

Step 2: Algorithm initialization. Utilize cat chaotic mapping to generate the initial
sparrow population. Decode the result to obtain the initial scheduling scheme;

Step 3: Modify the initial scheduling scheme according to the loading rules mentioned above;
Step 4: Following the procedure outlined in Figure 7, the fitness value of the population

is computed to derive the total energy consumption for each scheduling scheme;
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Figure 7. Flow of objective function calculation.

Step 5: Classify the sparrow population into explorers and followers based on their
fitness values. Subsequently, update the positions of explorers, followers, and sparrows
that are aware of danger individually;

Step 6: Employ adaptive t distribution for mutating the optimal sparrow, resulting
in a new individual Xnew. Compare the fitness values between the current global optimal
position Gbest and Xnew and retain the superior individual;

Step 7: Assess if the iteration number requirement is met. If so, proceed with Step 8;
otherwise, revert to Step 5;

Step 8: Output the global optimum and acquire the optimal scheduling solution.
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4. Numerical Experiments

To assess DMSSA’s performance in addressing the integrated scheduling problem of
QC and IGV, we designed 12 numerical instances of varying scales (small, medium, and
large) for testing. Each instance is characterized by distinct quantities of containers, QCs,
and IGVs, denoted as I/Q/V. The obtained results are compared with those from standard
SSA, MSSA [38], SHSSA [39], GWO [40], and other algorithms [41,42]. The programming
and testing processes were executed on the Intel Core i5-1035G1 CPU @ 1.00GHz and RAM
16GB platform using Python 3.10.

4.1. Instances Generation and Parameters Setting

Using the Guangzhou Port Nansha Phase IV Automated Container Terminal as an
example, we examine the loading operations of ships at the port. Figure 1 illustrates the
overall terminal layout and the traffic flow direction of IGVs. The terminal features 12 berths
for 2000-ton inland-waterway vessels, a shoreline length of 984 m, a front operating strip
width of 75 m, a yard arranged parallel to the shoreline, and a land depth of 650~840 m.
It is equipped with a total of 120 IGVs for transportation. There is a need to load a river
container liner with a capacity of 300 TEU in port. All containers designated for loading
are situated within the eight blocks depicted in Figure 1. The precise coordinates of these
containers and loading nodes are illustrated in Figure 8. The number of equipped QCs and
IGVs is limited to 5 and 10 units, respectively. The relevant operational equipment and
vessel parameters are detailed in Table 7.
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iterations iter is set to 200. The parameters of the DMSSA algorithm have a warning value 
of ST = 0.6, a finder’s ratio of PD = 0.7, and a scout’s ratio of SD = 0.2. Each algorithm 
underwent 10 independent runs on each of the 12 instances, and the average value was 
recorded as the test result. The top-three results of each instance are highlighted by 
bolding, italicizing, and underlining, respectively. The test results for all algorithms are 
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Figure 8. Coordinate system of terminal layout.

4.2. Results and Analysis

The population size popsize for all algorithms is set to 100. The maximum number of
iterations iter is set to 200. The parameters of the DMSSA algorithm have a warning value
of ST = 0.6, a finder’s ratio of PD = 0.7, and a scout’s ratio of SD = 0.2. Each algorithm
underwent 10 independent runs on each of the 12 instances, and the average value was
recorded as the test result. The top-three results of each instance are highlighted by bolding,
italicizing, and underlining, respectively. The test results for all algorithms are presented in
Table 8, while the energy-consumption optimization results are depicted in Figure 9.
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Table 7. Parameters of equipment and vessels.

Parameter Value Unit Parameter Value Unit

v0 350 m·min−1 C 5 -
v1 280 m·min−1 E1 90.24 kWh·(h·veh)−1

v2 210 m·min−1 E2 70.18 kWh·(h·veh)−1

t1 111 s E3 49.6 kWh·(h·veh)−1

t2 92 s E4 21 kWh·(h·veh)−1

A 10 - E5 14 kWh·(h·veh)−1

B 6 - E6 9 kWh·(h·veh)−1

Table 8. Comparison of test results for each instance.

Instance Size I/Q/V
Energy Consumption (kWh)

DMSSA SSA MSSA SHSSA PSO WOA GWO SOA

1

Small

30/2/3 133.056 133.073 133.096 132.953 133.007 133.097 133.119 133.073
2 30/2/4 133.410 133.333 133.207 133.482 133.696 133.802 133.762 133.811
3 30/3/4 132.342 132.379 132.320 132.299 132.357 132.495 132.350 132.495
4 30/3/5 131.651 131.682 131.632 131.692 131.828 131.570 131.772 131.739

5

Medium

100/3/4 432.873 433.008 433.362 433.498 433.107 433.202 433.121 433.153
6 100/3/6 436.097 436.618 436.510 436.745 436.627 436.412 436.389 436.438
7 100/4/6 430.709 431.175 430.920 431.370 430.958 430.978 431.050 430.837
8 100/4/8 434.398 434.442 435.208 435.142 434.661 434.924 434.444 434.550

9

Large

250/5/6 1082.168 1082.977 1083.385 1083.148 1083.841 1083.242 1083.287 1083.191
10 250/5/7 1075.953 1076.656 1076.820 1077.068 1078.063 1077.120 1077.055 1077.175
11 250/5/8 1076.705 1077.349 1076.810 1077.641 1079.315 1077.335 1078.541 1077.305
12 250/5/10 1086.418 1088.097 1088.156 1088.103 1090.878 1087.487 1088.109 1087.907

Meaning of marked values: The optimal value for each instance is shown in bold, followed by the second-best
value in italics, and the third-best value is underlined.
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All algorithms achieve varying degrees of energy-optimization effects across differ-
ent arithmetic cases compared to the original energy-consumption values before optimi-
zation. DMSSA emerges as the top performer overall, demonstrating the best results in 
medium- and large-scale algorithmic tests and achieving superior energy savings com-
pared to all other algorithms. Even in small-scale case tests, DMSSA exhibits commenda-
ble performance, with an energy-consumption reduction ranging from 0.83% to 1.28%. 
Small-scale instances, constrained by container numbers, exhibit significantly lower time 
complexity in encoding, decoding, and objective function operators compared to medium 
and large-scale instances, favoring algorithms emphasizing local search performance. 
Consequently, PSO and MSSA, featuring multidirectional learning strategies, exhibit a 
slight performance edge over DMSSA in this context. However, the growing container 
throughput in modern ports makes medium and large-scale instances more relevant for 
practical production operations. In these instances, time complexity grows exponentially, 
demanding greater algorithm population diversity and emphasizing the randomness of 
the generated solution vectors. Algorithms excelling in global search performance yield 
superior results. Thus, DMSSA calculations, with a more uniform initial population dis-
tribution biased towards Cauchy mutation in the early stage, outperform other algo-
rithms, achieving minimum values of 430.709 kWh and 1075.953 kWh, respectively. Ad-
ditionally, Figure 10 depicts the iterative variations of all algorithms for medium- and 
large-scale instances. The iterative curves of DMSSA exhibit a slight dip as they stabilize 
in the later stage of the search. This suggests that an increase in degrees of freedom aligns 
the individual mutation mode closer to Gaussian mutation, reinforcing the algorithm’s 
local search capability and optimizing the solution results further. 

Figure 9. Energy-consumption optimization results of all instances. (a) Instance 1. (b) Instance 2.
(c) Instance 3. (d) Instance 4. (e) Instance 5. (f) Instance 6. (g) Instance 7. (h) Instance 8. (i) Instance 9.
(j) Instance 10. (k) Instance 11. (l) Instance 12.

All algorithms achieve varying degrees of energy-optimization effects across different
arithmetic cases compared to the original energy-consumption values before optimization.
DMSSA emerges as the top performer overall, demonstrating the best results in medium-
and large-scale algorithmic tests and achieving superior energy savings compared to all
other algorithms. Even in small-scale case tests, DMSSA exhibits commendable perfor-
mance, with an energy-consumption reduction ranging from 0.83% to 1.28%. Small-scale
instances, constrained by container numbers, exhibit significantly lower time complexity in
encoding, decoding, and objective function operators compared to medium and large-scale
instances, favoring algorithms emphasizing local search performance. Consequently, PSO
and MSSA, featuring multidirectional learning strategies, exhibit a slight performance edge
over DMSSA in this context. However, the growing container throughput in modern ports
makes medium and large-scale instances more relevant for practical production operations.
In these instances, time complexity grows exponentially, demanding greater algorithm
population diversity and emphasizing the randomness of the generated solution vectors.
Algorithms excelling in global search performance yield superior results. Thus, DMSSA
calculations, with a more uniform initial population distribution biased towards Cauchy
mutation in the early stage, outperform other algorithms, achieving minimum values of
430.709 kWh and 1075.953 kWh, respectively. Additionally, Figure 10 depicts the iterative
variations of all algorithms for medium- and large-scale instances. The iterative curves
of DMSSA exhibit a slight dip as they stabilize in the later stage of the search. This sug-
gests that an increase in degrees of freedom aligns the individual mutation mode closer to
Gaussian mutation, reinforcing the algorithm’s local search capability and optimizing the
solution results further.
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In the context of energy consumption, increasing the number of QCs to three reduces 
overall energy consumption by 1.068 kWh when handling 30 containers. Further, increas-
ing the number of QCs to four reduces overall energy consumption by 5.388 kWh when 
handling 100 containers. The increase in the number of QCs allows IGVs to unload con-
tainers in more areas of the QC’s operation, thereby reducing the time IGVs spend waiting 
in line under the QC. However, the number of QCs cannot be increased indefinitely due 
to two primary reasons. Firstly, Equations (32) and (33) constrain the operational space 
for QCs. Secondly, the addition of new QCs entails higher initial investment and operating 
costs. Therefore, optimized scheduling becomes crucial for cost and energy-consumption 
reduction in an integrated manner while maintaining the original terminal operating con-
ditions. IGVs must replenish containers in a timely manner for QC to avoid additional QC 
waiting situations, necessitating a corresponding increase in the configured number of 
IGVs. However, a diminishing effect occurs when the number of IGVs surpasses a certain 
threshold, leading to an overall increase in energy consumption rather than a decrease. 
Hence, it is crucial to determine the optimal number of configured IGVs relative to the 
QCs. Examining the results of large-scale instance tests reveals that configuring seven 
IGVs for five QCs results in the lowest overall energy consumption of 1075.953 kWh. Con-
figuring six IGVs leads to an increase in QC waiting time due to insufficient IGVs, resulting 
in elevated waiting energy consumption for QCs. Configuring more than eight IGVs in-
creases the IGV queuing wait time due to excessive configuration, leading to higher IGV 
waiting energy consumption. Consequently, for loading 250 containers, the optimal num-
ber of IGVs configured relative to five QCs is seven, representing a difference of two from 
the number of QCs. The optimal ratios for QC and IGV are 3:5 and 4:6 for small and me-
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In the context of energy consumption, increasing the number of QCs to three reduces
overall energy consumption by 1.068 kWh when handling 30 containers. Further, increasing
the number of QCs to four reduces overall energy consumption by 5.388 kWh when
handling 100 containers. The increase in the number of QCs allows IGVs to unload
containers in more areas of the QC’s operation, thereby reducing the time IGVs spend
waiting in line under the QC. However, the number of QCs cannot be increased indefinitely
due to two primary reasons. Firstly, Equations (32) and (33) constrain the operational
space for QCs. Secondly, the addition of new QCs entails higher initial investment and
operating costs. Therefore, optimized scheduling becomes crucial for cost and energy-
consumption reduction in an integrated manner while maintaining the original terminal
operating conditions. IGVs must replenish containers in a timely manner for QC to avoid
additional QC waiting situations, necessitating a corresponding increase in the configured
number of IGVs. However, a diminishing effect occurs when the number of IGVs surpasses
a certain threshold, leading to an overall increase in energy consumption rather than a
decrease. Hence, it is crucial to determine the optimal number of configured IGVs relative
to the QCs. Examining the results of large-scale instance tests reveals that configuring
seven IGVs for five QCs results in the lowest overall energy consumption of 1075.953 kWh.
Configuring six IGVs leads to an increase in QC waiting time due to insufficient IGVs,
resulting in elevated waiting energy consumption for QCs. Configuring more than eight
IGVs increases the IGV queuing wait time due to excessive configuration, leading to higher
IGV waiting energy consumption. Consequently, for loading 250 containers, the optimal
number of IGVs configured relative to five QCs is seven, representing a difference of two
from the number of QCs. The optimal ratios for QC and IGV are 3:5 and 4:6 for small and
medium scale instances, respectively, with a configuration difference of two in both cases.

To further validate the appropriateness of this configuration, we analyze the distri-
bution of operating times for devices in various states in the large-scale example depicted
in Figure 11. In Instances 10 and 11, configuring 7 to 8 IGVs for the five QCs results in
continuous alternation of orange and green segments, representing IGVs traveling empty
and with containers for most of the time. The individual blue segment, indicating QCs in
the loaded state, lasts a long time. The red and purple segments, representing QCs and
IGVs with significantly less waiting time than other states, suggest that devices handle
the loading task with minimal waiting, either not waiting for each other in most cases or
for only a short period. The red and purple segments, representing QCs and IGVs with
significantly less waiting time than other states, suggest that devices handle the loading
task with minimal waiting, either not waiting for each other in most cases or for only a
short period. QC5, situated on the right side and facing a substantial task volume, lacks
sufficient IGVs that can be promptly called in. Consequently, this QC fails to complete
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loading tasks for the current bay when QCs on the left side need to move. In Instance 12,
configuring as many as 10 IGVs effectively reduces the overall makespan to less than 7000 s.
However, the red segments representing the IGVs waiting last longer, leading to increased
IGV waiting energy consumption.
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Therefore, the analysis indicates that, to minimize energy consumption, it is optimal
to configure a specific number of QCs with two to three additional IGVs compared to the
number of QCs.

5. Conclusions

This study aims to effectively reduce the operating energy consumption in container
terminals by considering constraints in the actual loading-operation process. It constructs
an integrated scheduling model for QCs and IGVs. We design a DMSSA with cat map-
ping and adaptive t-distribution mutation to efficiently solve the model. The algorithm
encodes the sparrow population using the target bays of containers as key information, and
decoding takes into account QC operations and ship stowage constraints. Multiple sets
of comparative tests confirm that the DMSSA produces a more evenly distributed initial
population. It effectively balances global search in the early stage and local mining ability
in the late stage, leading to superior optimization results compared to other algorithms in
most operational scenarios. Additionally, the study analyzes the time distribution of each
device in different states through tests that gradually increase the number of devices. This
analysis identifies the optimal configuration that significantly reduces overall energy con-
sumption. Under the condition of appropriately increasing the number of QCs, configuring
two to three more IGVs than QCs optimizes the overall energy-consumption index.
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This study still has some limitations. Future research on the integrated scheduling
problem of a QC and an IGV will focus on the following areas: including makespan in the
model to analyze its impact on energy consumption during actual operations; considering
factors such as charging demands, path conflicts, and other scenarios affecting IGV oper-
ations; and conducting research on robust scheduling to address uncertainty factors like
equipment failures, adverse weather conditions, and temporary operational adjustments.
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