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Abstract: The design strategies for flood risk reduction in coastal towns must be informed by the
likelihood of flooding resulting from both precipitation and coastal storm surge. This paper discusses
various bivariate extreme value methods to investigate the joint probability of the exceedance of
thresholds in both precipitation and sea level and estimate their dependence structure. We present
the results of the dependence structure obtained using the observational record at Bridgeport, CT, a
station with long data records representative of coastal Connecticut. Furthermore, we evaluate the
dependence structure after removing the effects of harmonics in the sea level data. Through this com-
prehensive analysis, our study seeks to contribute to the understanding of the joint occurrence of sea
level and precipitation extremes, providing insights that are crucial for effective coastal management.

Keywords: dependence structure; extreme value analysis; harmonics; joint probability precipitation;
sea level

1. Introduction

Climate change and sea level rise play a major role in the risk of flooding in coastal
areas [1]. Coastal flooding and erosion can result from several factors such as storm surges,
tsunamis, subsidence, and high rainfall events, as discussed in [2,3]. Rising mean air
temperature and sea level will increase the expected frequency of these events [4], and
this has prompted the need for the development of designs for interventions to reduce
impacts. There is wide geographic variability in the relative importance of these flooding
mechanisms. Many coastal communities are located in bays or separated from the ocean
by islands and are, therefore, sheltered from the direct effects of long period and high
amplitude ocean waves. However, wind-driven storm surges freely propagate into bays to
cause coastal flooding. Many other towns have been established near the mouths of rivers
where they are vulnerable to flooding caused by high precipitation or snow melt in the
watershed. The construction of seawalls or levees is often considered as a flood defence
measure to address all three of these threats. However, a significant disadvantage of the
approach is that the management of storm water during high precipitation rates is made
more difficult. Retention basins and pumps are often employed and the system design
must be informed by the joint probability distribution of high rainfall rates and high water
level/wave heights.

Extreme value analysis ([5]) is usually employed to develop design criteria for hazard
mitigation projects. Univariate extreme value analysis has been extensively studied in
offshore and coastal safety by investigating the behavior of coastal wave heights [6,7], wind
speed [8], and precipitation [9,10]. Insurance companies are also interested in assessing
the risk from weather extremes, in order to design strategies to cope with, and adapt to,
increased risks and expected damages [11]. The most popular univariate extreme value
methods include Peaks Over Threshold (POT) by the Generalized Pareto Distribution
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(GPD), as well as the Block Maxima approach [5]. While univariate extreme value methods
are a useful tool to investigate extreme behavior of individual events, bivariate extreme
value methods should be employed when the co-occurrence of extremes in two processes
must be considered.

Modeling the joint behavior of two or more events provides valuable insights into
the likelihood and severity of extreme events, leading to more effective risk management
strategies. For instance, the authors of [12] discuss modeling wave extremes by capturing
the dependence among storm intensity, directionality, and intra-time distribution, offering
improved boundary conditions for wave and near-shore analyses. In particular, traditional
models for bivariate extremes are based on limiting joint distributions for the extreme
values in each margin of a bivariate sample. Bivariate extreme value theory has been well
developed and includes analogous extensions of the POT and Block Maxima approaches [5].
In addition, copulas [13] are also used as a popular choice to model the bivariate extremes.
Copulas have extensive applications in storm modeling [14–16], hydrology [17–19], and
coastal engineering [20,21]. For example, the dependence between observed water levels
and precipitation, including impacts of sampling methods and distribution fitting and the
resulting flood values, is explored using copulas in [22]. The joint distribution of rainfall
and storm surge based on the copula function is investigated in [23]. The effect of internal
climate variability on copula-based compound event analysis is studied in a case study
in the Netherlands by [24]. Ref. [25] provides a review of commonly used techniques for
estimating the tail dependence of a joint distribution. Ref. [26] discusses a tail dependence
matrix, where a multivariate dependence measure is constructed using this bivariate tail
dependence structure.

In this paper, we employ various bivariate extreme value methods to estimate the de-
pendence between sea level and precipitation based on their joint probability of exceedances.
By modeling the joint behavior of two variables, we can evaluate the dependence between
the two variables in their extremes. We discuss and summarize the results from various
bivariate extreme value analysis methods with respect to the bivariate sea level and precip-
itation data from Bridgeport, CT. Our goal in this study is to (i) explore various bivariate
extreme value methods to estimate the dependence structure on the bivariate data, and
(ii) compare the dependence structure between sea level and precipitation in the presence
and absence of tidal harmonics. Of course, at some sites, river flow and water level, or
wave conditions, may have to be considered, so in the discussion section we comment on
how the methods we have considered may be extended to more than two variables.

The format of this paper follows. Section 2 describes the bivariate daily maximum sea
level and precipitation data from Bridgeport, CT. Section 3 discusses different bivariate
extreme value methods for modeling the joint behavior of two variables and discusses the
dependence structure. In Section 4, we discuss the dependence structure between sea level
and precipitation after adjusting for sea level harmonics.

2. Data Description and Exploration

We analyze data with regard to two variables, sea level and precipitation, to investigate
the dependence in their extremes. Observations on sea level have been recorded at hourly
intervals from approximately 200 water level gauges across various locations in the United
States by the National Oceanic and Atmospheric Administration (NOAA) and predecessor
agencies. The data are shared through an interface at https://coastwatch.pfeg.noaa.gov/
erddap/tabledap/ accessed on 17 May 2023. The hourly data are measured with respect to
the North American Vertical Datum of 1988 (NAVD 88), which is the official vertical datum
of the United States used as a reference system by surveyors, engineers, and mapping
professionals to measure and relate elevations to the Earth’s surface [27] and is recorded in
meters. Therefore, the sea level data has negative values, corresponding to the observations
below the reference point.

Data on precipitation were obtained from the NOAA National Climatic Data Center,
which archives 24 h precipitation totals for numerous stations in the United States recorded

https://coastwatch.pfeg.noaa.gov/erddap/tabledap/
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/
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in inches. Ref. [28] describes the database known as the Global Historical Climatology
Network (GHCN)-Daily dataset, which contains daily data from over 80,000 surface stations
worldwide, about two-thirds of which are for precipitation alone.

We analyzed sea level and precipitation data from Bridgeport, CT for the years 1970–2015.
The sea level data are from the Bridgeport harbor, while the 24 h precipitation totals are
from the Sikorsky Memorial Airport in Bridgeport. The time series plot of the two variables
are shown in Figure 1. In the precipitation data, no precipitation was reported on 66% of
the days. The missing values in the daily maximum sea level data and the precipitation are
handled using linear interpolation using the R package (R version 4.3.2) imputeTS.
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Figure 1. Time series plots of the daily maximum sea level and precipitation data at Bridgeport, CT
for the years 1970–2015. The color in the time series plot indicates different years.

We consider exploratory investigations on the bivariate data using trend analysis
in Section 2.1. Next, we examine the tail behavior of each variable independently by
conducting univariate extreme value analysis in Section 2.2. Section 2.3 describes the
empirical joint behavior of sea level and precipitation.

2.1. Exploring Temporal Trend and Correlations

Although Figure 1 does not seem to indicate the presence of time trend, in general
one can use various methods for verifying the presence of time correlation in the data
summarized in Table 1. The Mann–Kendall test and Sen’s slope test for a monotonic trend
make minimal assumptions. Both the methods include an asymptotic z-test, where the null
hypothesis is that the data do not follow a monotonic trend. The Mann–Kendall test [29] is
a non-parametric, rank-based approach that determines the presence of a monotonic trend
in time series data by estimating Kendall’s τ. The Sen’s Slope [30] provides a nonparametric
alternative to ordinary least squares regression, calculating the median of all possible slopes
between pairs of data points of a given time series. As expected for precipitation, both
the Mann–Kendall test and Sen’s slope fails to reject the null hypothesis (with a p-value
of 0.5 for both methods), indicating an absence of a monotonic trend in the precipitation
data. For the daily maximum sea level data, the the Mann–Kendall test and Sen’s slope
rejects the null hypothesis (with p-values < 0.05), indicating a presence of a monotonic
trend. However, a Kendall’s τ of 0.1187 and a Sen’s slope of 0.000009 indicate a presence of
a slightly positive trend with a small non-negative slope. We also investigated the presence
of a time trend by conducting linear regression analysis, with day, month, and year as
predictors. The regression analysis on precipitation shows no effect of time trend with an
adjusted R-squared of 0.00152, while the regression analysis on daily maximum sea level
shows a slight effect of a time trend with an adjusted R-squared of 0.1056.
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We investigated the temporal correlation in the data using the auto-correlation func-
tion (ACF). Figure 2 shows the ACF plots for precipitation, squared precipitation, daily-
maximum sea level, and and squared daily-maximum sea level. The ACF precipitation
and squared precipitation do not show any pattern indicating an absence of temporal
correlation. The ACF of daily-maximum sea level and squared daily-maximum sea level
show a presence of temporal correlation in the data. The Hurst exponent [31] is also
estimated to measure long-range dependence in the time series, quantifying the series’
tendency to persist in a certain direction. The Hurst exponent H lies between 0 and 1,
where 0 < H < 0.5 indicates anti-persistent behavior, H = 0.5 corresponds to random
walk, and 0.5 < H < 1 corresponds to persistent behavior). The value of the empirical
Hurst exponent of 0.5805 indicates no persistent behavior in the precipitation data, while
an empirical Hurst exponent of 0.7281 indicates the presence of moderate persistence in the
daily maximum sea level data.
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Figure 2. ACF plots of the precipitation, squared precipitation, daily maximum sea level, and squared
daily maximum sea level data at Bridgeport, CT. The blue lines indicate values beyond which the
autocorrelations are (statistically) significantly different from zero.
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Table 1. Temporal trend and correlation analysis for precipitation and daily maximum sea level from
the Bridgeport data.

Variable Metric Value (Interpretation)

Precipitation

Mann-Kendall’s τ 0.004142 (No Trend)
Sen’s Slope 0 (zero slope)

Hurst exponent 0.5805 (No Persistence)

Daily Max Water Level

Mann-Kendall’s τ 0.1187 (Slight Trend)
Sen’s Slope 0.000009 (small non-negative slope)

Hurst exponent 0.7281 (Moderate Persistence)

2.2. Univariate Extreme Value Analysis of Sea Level and Precipitation

We investigated the univariate extreme behavior by analyzing the daily maximum sea
level and precipitation from 1970–2015 using the peaks over threshold (POT) by generalized
Pareto distribution (GPD) approach [5,32]. The POT approach models observations that
exceed a certain high threshold, say w. This consists of fitting a generalized Pareto (GP)
distribution to the tail of the data that exceed a threshold w with a cumulative distribution
function (c.d.f).

Fw(y) =


1 −

(
1 + ξ

y
σw

)
, ξ ̸= 0

1 − exp
(
− y

σw

)
, ξ = 0,

(1)

where y > 0, σw > 0, and ξ ∈ R (the real line). We implemented the POT method using the
extrememix [33] R package, which employs a Bayesian framework to model each univariate
data in order to estimate the GPD model parameters and threshold w. The maximum
likelihood estimates of the GPD scale (σ̂w), shape (ξ̂), and threshold (ŵ) for the sea level
and precipitation data are shown in Table 2.

Table 2. POT model estimates along with the standard errors based on the univariate extreme value
analysis of daily maximum sea level and precipitation.

Variable σ̂w ξ̂ ŵ

Sea level 0.10 0.15 1.44
Precipitation 0.36 0.22 0.11

Given the estimated GPD parameters, the return value, which is the value exceeded
on average once every m years (return period), is computed as

zm =


w +

σ̂w

ξ̂
[(mλ̂w)ξ̂ − 1], ξ̂ ̸= 0

w + σ̂w log(mλ̂w), ξ̂ = 0.

where λ̂w = P(Y > w). Figure 3 shows the return level plots for the sea level and
precipitation data, with return values zm plotted across different values of return period m.
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Figure 3. Return level plots for daily maximum sea level and precipitation.

The return values for m = 10, 50, 100 on daily maximum sea level and precipitation
are shown in Table 3. We can leverage the m-year return value estimates of the daily
maximum sea level (presented in Table 3) to examine precipitation behavior at time points
where daily maximum sea level exceeds zm. For instance, the first plot in Figure 4 shows
the distribution of precipitation on days when the daily maximum sea level exceeds the
25-year return value. Similarly, the second plot in Figure 4 shows the distribution of daily
maximum sea level on days when precipitation exceeds zm. In Figure 4, we see that the
days when the daily maximum sea level (or precipitation) exceeds the 10-year return value
does correspond to higher values in the precipitation (or daily maximum sea level) data.
Following the univariate exploration, we examine the empirical joint behavior of the two
variables, described in Section 2.3.
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Figure 4. Distribution of precipitation on days when the daily maximum sea level exceeds the 10-year
return value, and the distribution of daily maximum sea level on days when precipitation exceeds
the 10-year return value estimate.
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Table 3. m-year return value estimates.

m-Year Return Value Daily Maximum Sea Level Precipitation

m = 10 2.21 5.51
m = 50 2.60 8.54

m = 100 2.79 10.22

2.3. Empirical Joint Behavior of Sea Level and Precipitation

It is important to study the joint behavior of daily maximum sea level and precipita-
tions and investigate their dependence in order to characterize the likelihood of flooding
resulting from both precipitation and coastal storm surge. This information can help design
strategies for flood risk reduction due to sea level fluctuations and precipitation rates. We
investigated the empirical joint dependence between the sea level and precipitation using
Spearman’s rank correlation coefficient, a scatter plot, and a cross-correlation (CCF) plot.
Spearman’s rank correlation coefficient [34] is a non-parametric measure of rank correlation
that assesses the statistical dependence between the rankings of two variables and the
degree to which the relationship between two variables is monotonic. Spearman’s rank
correlation coefficient is estimated to be 0.1981 between precipitation and water level, indi-
cating a weak positive monotonic relationship. The scatter plot shown in Figure 5 between
the two variables does not show any linear trend. The cross-correlation plot shown in
Figure 6 indicates the strength of the linear relationship between daily maximum sea level
and precipitation at different lags. Figure 6 shows that the two variables have a maximum
correlation at lag 0 with a correlation value of 0.18. Thus, based on the empirical plots, the
overall linear association between the two variables is weak.

0

2

4

6

−1 0 1 2 3
Daily maximum sea−level

P
re

ci
pi

ta
tio

n

Scatter Plot of Daily maximum sea−level and Precipitation

Figure 5. Scatter plot between precipitation and daily maximum sea level.

In addition to the overall association, it is important to examine the co-occurrence
of high precipitation at times of anomalously high water level in order to determine if
the coastal project design needs to account for the potential consequences of extremely
unlikely events due to the joint occurrence of high rainfall and high sea level. Figure 7
shows the empirical joint probability distribution function denoted by P(X > x, Y > y) for
the daily maximum sea level and precipitation data. The joint probability of high values of
precipitation and rainfall is close to zero.
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Figure 6. CCF plot between precipitation and daily maximum sea level.

The dependence structure between two variables in the tail region can be evaluated
using bivariate extreme value methods. A brief overview of various bivariate extreme
value methods in the literature and the dependence measure obtained on the bivariate sea
level and precipitation data based on each of the methods is described in Section 3.

Figure 7. Empirical joint probability distribution function plot.

3. Bivariate Extreme Value Analysis of Sea Level and Precipitation

In this section, we discuss different methods for modeling the joint behavior of two
variables, including the bivariate threshold excess model, the copula-based approach, the
maxima approach, and the L-comoments approach. A tutorial providing a practical guide
on how to implement various bivariate extreme value approaches using R can be accessed
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from https://github.com/NamithaVionaPais/ accessed on 1 February 2024. Following
this tutorial, a user can gain a deeper understanding of bivariate extreme value analysis
and apply these methods to data of interest.

3.1. Bivariate Threshold Excess Model

Similar to the univariate POT by GPD approach discussed in Section 2.2, the goal of
the bivariate threshold excess model is to estimate the joint distribution in the tail region.
In the univariate case, the tail of the marginal distribution functions FX(x) and FY(y) is
approximated by a GPD distribution for suitable thresholds wx and wy with parameters
(σwx , ξx) and (σwy , ξy), respectively. In the bivariate framework [5,35], the transformations

X̃ = −
(

log

{
1 − ξx

[
1 +

ξx(X − wx)

σwx

]−1/ξx})−1

and

Ỹ = −
(

log

{
1 − ξy

[
1 +

ξy(Y − wy)

σwy

]−1/ξy})−1

lead to variables (X̃, Ỹ) whose distribution function F̃(x, y) has margins that are an approx-
imately standard Fréchet distribution for X > ux and Y > uy. Then, the joint distribution
F̃(x, y) is approximated as

F̃(x, y) → G(x, y) = exp{−V(x, y)}, (2)

for x > wx, y > wy, where

V(x, y) = 2
∫ 1

0
max

(ω

x
,

1 − ω

y

)
dH(ω), (3)

and H is a distribution function on [0, 1] satisfying the mean constraint∫ 1

0
ωdH(ω) = 1/2. (4)

There are a few choices of parametric families for H on [0, 1] whose mean is equal to 0.5 for
every value of the parameter. These include the logistic, bi-logistic, negative logistic, and
Husler–Reiss families. The most popular choice is the logistic family defined by

h(ω) =
1
2
(α−1 − 1){ω(1 − ω)}−1−1/α{ω−1/α + (1 − ω)−1/α}α−2, (5)

for 0 < ω < 1. The logistic family is popular due to the interpretation of the dependence
between the variables using the parameter α, where α → 1 corresponding to independent
variables and α → 0 corresponding to perfectly dependent variables.

Given the choice of the parametric family H, the likelihood function (censored) is
given by

L(θ | (x1, y1), . . . (xn, yn)) =
n

∏
i=1

Ψ(θ | (xi, yi)), (6)

https://github.com/NamithaVionaPais/
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where

Ψ(θ | (x, y)) =



δ2F
δxδy

∣∣∣∣
(x,y)

, (x, y) ∈ [ux, ∞)× [uy, ∞)

δF
δx

∣∣∣∣
(x,uy)

, (x, y) ∈ [ux, ∞)× (−∞, uy)

δF
δy

∣∣∣∣
(ux ,y)

, (x, y) ∈ (−∞, ux)× [uy, ∞)

F(ux, uy), (x, y) ∈ (−∞, ux)× (−∞, uy)

(7)

The censored likelihood treats the marginal observations below their thresholds as being
censored at those thresholds. In R, there are several packages that can be used to conduct
the bivariate threshold excess model, including evd, evir, POT, and extRemes. In the bivariate
threshold excess model, we need to select appropriate thresholds wx and wy to evaluate
the joint behavior in the tail region.

One method of selecting the threshold u∗ is to consider a function r(z), where r(z) =

x1(z1) + x2(z2) and xj(zj) =
−1

log Fj(zj)
for j = 1, 2, and Fj is estimated empirically [36].

Then we can use a spectral measure plot, where integers k = 1, 2, . . . n − 1 are plotted
against (k/n)r(n−k). The largest value of k, denoted as k0, for which (k/n)r(n−k) is close
to 2, determines the pair of threshold values to be used. The R package evd provides the
function bvtcplot for creating a bivariate threshold selection plot. Another way to select
the threshold is to consider marginal distributions of POT modeled by a GPD approach
that generates thresholds independently for each variable. Alternate threshold selection
methods include the graphical diagnostic method [37], the probabilistic-based method [38],
and the mixture method [39].

We fit the bivariate threshold excess model using the evd package to the precipitation
and daily maximum sea level data by assuming a logistic family on H and a threshold
selected using the bivariate threshold choice plot. The threshold estimated using this
method is 0.19 for precipitation and 1.29 for the daily maximum sea level. The dependence
parameter estimated is shown in the first row of Table 4. The dependence parameter α
from the POT approach being closer to 1 indicates a weak dependence between the daily
maximum sea level and precipitation in the tail region. In particular, the value α → 1
indicates perfectly independent variables and α → 0 corresponds to perfectly dependent
variables. In addition to the dependence parameter, we can also obtain the return value
curves for probability levels p = 0.9, 0.95, 0.99 shown in Figure 8a.

Table 4. Dependence parameter obtained from POT, the maxima approach, the copula method, and
L-comoments.

Method Dependence Parameter

POT 0.8910

Maxima approach 0.7500

L-comoments τ
[12]
2

0.3161

L-comoments τ
[21]
2

0.2628

Gaussian copula (Kendall’s τ ) 0.1738
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Figure 8. Return value curves for probability levels p = 0.9, 0.95, 0.99 using (a) the POT approach
on original data, (b) the maxima approach on original data, (c) the POT approach after removing
harmonic effects, and (d) the maxima approach after removing harmonic effects.

3.2. Maxima Approach

The maxima approach in bivariate extreme value analysis models the joint distribution
of two random variables by focusing on their maxima over a defined block. We define M∗

n =

(M∗
x̃,n, M∗

ỹ,n) =
(

max
i=1,2,...,n

{Xi}/n, max
i=1,2,...,n

{Yi}/n
)

as the scaled vector of componentwise

maxima over a block size n. The goal of the maxima approach is to estimate the distribution
of M∗

n as n → ∞. Following the standard univariate results of the block maxima approach,
the marginal distribution of M∗

x̃,n and M∗
ỹ,n is standard Fréchet. Then, following Theorem

8.1 in [5], the joint distribution function P{M∗
x̃,n ≤ x, M∗

ỹ,n ≤ y} is approximated as

P{M∗
x̃,n ≤ x, M∗

ỹ,n ≤ y} d→ G(x, y), (8)

where G is a non-degenerate distribution function and has the form

G(x, y) = exp{−V(x, y)}, x > 0, y > 0 (9)

where

V(x, y) = 2
∫ 1

0
max

(ω

x
,

1 − ω

y

)
dH(ω), (10)

and H is a distribution function on [0, 1] satisfying the mean constraint
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∫ 1

0
ωdH(ω) = 1/2 (11)

We fit the maxima approach using the evd package where the maximum is taken over six
days, and we considered a (symmetric) logistic extreme value distribution to estimate the
parameters of the joint distribution. The duration that a single storm system dominates
the weather in the study area ranges between three and five days; consequently, a block
size of six days ensures that all the extreme events are caused by independent events. The
dependence parameter α from the maxima approach shown in the second row of Table 4
is closer to 1, indicating a weak dependence between the daily maximum sea level and
precipitation over the block maxima of six days. In addition to the dependence parameter,
we can obtain the return value curves for probability levels p = 0.9, 0.95, 0.99 shown in
Figure 8b.

3.3. L-Comoments—Multivariate Extensions of L-Moments

Multivariate L-moments, also known as L-comoments, extend the concept of L-
moments to multivariate distributions. The L-comoment ratios [40] provide insights into
the multivariate relationships, dependencies, and higher-order moments between the differ-
ent components of the observed data. In the univariate setup, the rth population L-moment
is defined as

λr = r−1
r−1

∑
k=0

(−1)k
(

r − 1
k

)
E(Xr−k:r), (12)

where Xk:n represents the kth order statistic in a sample of size n.
Similarly in the bivariate setup, the rth population L-comoment of X[1] wrt X[2] is

defined as

λ
[12]
r = r−1

r−1

∑
k=0

(−1)k
(

r − 1
k

)
E(X[12]

r−k:r), (13)

where X[12]
r−k:r indicates the element of {X(1)

1 , X(1)
2 , . . . , X(1)

n } that is paired with X(2)
r:n and

E(X[12]
r−k:r) = nE(X(1)

1 | X(2)
1 = X(2)

r:n ). An unbiased sample estimator for λ
[12]
r [41] is given by

λ̂
[12]
r =

1
n

n

∑
j=1

w(r)
j:n x[12]

j:n , (14)

where x[12]
j:n is the ordered sample, and the weights w(r)

j:n are computed as

w(r)
j:n =

min j−1,r−1

∑
i=1

(−1)r−1−i
(

r − 1
i

)(
r − 1 + i

i

)(
j − 1

i

)
/
(

n − 1
i

)
. (15)

Similar to λ
[12]
r , one can define the estimator for the rth L-comoment of X[2] with

respect to X[1] denoted as λ
[21]
r . It should be noted that λ

[12]
r and λ

[21]
r are not necessarily

symmetric. The L-comoment ratios defined as τ
[12]
r = λ

[12]
r

λ
[1]
2

or τ
[21]
r = λ

[21]
r

λ
[2]
2

for r ≥ 2 are

analogous to the univariate L-moment ratios, τr. Specifically, when r = 2, τ
[12]
2 represents

the L-correlation of X[1] with respect to X[2].
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The lmomco package in R can be used to estimate the dependence measure, i.e., L-
correlations τ

[12]
2 and τ

[21]
2 . The L-comoments is fit to the bivariate precipitation and sea

level data to estimate the dependence measure, i.e., L-correlations τ
[12]
r and τ

[21]
r shown in

Row 3 and 4 of Table 4. These values indicate a weak association between the two variables.

3.4. Copula Approach

Copulas are a powerful tool for modeling the dependence between two or more
variables. A bivariate copula is a function that links together univariate distribution
functions of the two variables to model the joint bivariate distribution function. Sklar’s
Theorem in [42] provides the mapping from the individual distribution functions F(x), F(y)
to the joint distribution function F(x, y) as

F(x, y) = C(F(x), F(y)),

where C is the copula function. Table 5 describes the different copulas and provides the
relation between Kendall’s τ and the parameter values associated with the copula [43].

Table 5. Table describing different family of copulas and their association to Kendall’s τ.

Copula Cα(u, v) Relation to Kendall’s τ

Gumbel Copula
exp

{
− [(− ln u)α + (− ln v)α]

1
α
}

1 − 1
α

Gaussian Copula Φα(Φ−1(u), Φ−1(v)) 2
π

arcsin(α)

Student t Copula tα(t−1(u1), t−1(u2))
2
π

arcsin(α)

Frank Copula 1
α

ln
(
1 +

(eαu − 1)(eαv − 1)
eα − 1

)
1 − 4

α
{D1(−α)− 1}

Clayton Copula
(
u−α + v−α − 1

)−1/α α

α + 2

We fit the bivariate copula using the copula package in R to the bivariate daily maxi-
mum sea level and precipitation data. We fit various copulas using maximum likelihood
estimation, and we chose the Gaussian copula as a suitable copula using the BIC criterion.
The Kendall’s τ measure obtained from the Gaussian copula is shown in Row 5 of Table 4
and indicates a weak linear association between daily maximum sea level and precipitation.

Overall, the dependence measure obtained from various bivariate methods indicate a
weak relationship in the bivariate daily maximum sea level and precipitation data. However,
it is important to further examine the dependency after removing the periodic variations in
the sea level data. Figure 9 shows a smoothed periodogram and auto-correlation function
(ACF) plot of the hourly sea level data. These plots detect the presence of distinct periods,
with the most prominent being 12.42065, as shown in the periodogram. Therefore, it is
crucial to further investigate the dependence once the influence of harmonics from hourly
sea level data is removed. The results from the bivariate precipitation and daily maximum
sea level after removing the effect of harmonics are presented in Section 4.
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Figure 9. Smoothed periodogram and ACF plot of the hourly sea level data.

4. Dependence between Sea Level and Precipitation after Adjusting for Sea
Level Harmonics

Tidal oscillations in ocean water level arise from the gravitational attraction between
the earth, moon, and sun, and the centrifugal acceleration due to the rotation of earth around
the center of mass of the earth–moon–sun system. The periods of the earth’s rotation and
orbit around the sun, as well as the moon’s orbit, are reflected in the oscillations of the
sea surface. Other more subtle effects, like the the oscillation of the axis of rotation of the
earth, and the ellipticity of the orbits of the earth and moon add to the number of tidal
frequencies, or tidal harmonics [44–46]. In shallow coastal areas, tidal oscillations are further
complicated by nonlinear dynamic interactions that generate additional harmonic and
sub-harmonic frequencies. More than a hundred harmonics can be detected, though most
have a very small amplitude. The amplitude and phase of each frequency varies spatially,
largely due to local bathymetric and coastal geometry effects, but once estimated from
observations, accurate predictions can be made. By identifying and removing the effect
of tidal harmonics in water level observations, one can further examine the dependence
structure between the storm-forced sea level variations and precipitation.

To obtain the daily maximum sea level after removing the effect of harmonics, we
investigated the behavior of the hourly sea level data to check for the presence of harmonics.
We conducted a harmonic analysis on the hourly sea level data using the UTide Matlab (ver.
R2021b) toolbox [47]. The unified tidal analysis can handle record times that are irregularly
distributed and suitable for multi-year analyses. Once the harmonic analysis is conducted,
we considered the daily maximum over the residuals from the harmonic analysis along
with the precipitation as the input data for the bivariate extreme value analysis. The results
from the bivariate precipitation and daily maximum sea level after removing the effect of
harmonics is presented in Table 6. We observed a stronger dependence structure between
the bivariate sea level and precipitation data when the harmonic effects from the sea level
data have been removed.

Since we have a long time series available (daily data from 1970–2016), we also as-
sessed the temporal evolution of dependence between the precipitation and daily maximum
sea level extremes with and without removing harmonics. To do this, we used the bivariate
threshold excess model (outlined in Section 3.1) on a series of data subsets. Each subset
represents bivariate data encompassed within a 10-year window. This moving window
analysis is considered with a step size of five years. Figure 10 shows the temporal evo-
lution of dependence, clearly showing an overall stronger dependence when we remove
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harmonic effects from the sea level data. The period from 1995 to 2005 shows the strongest
dependence, with a value of 0.7757.

Table 6. Dependence parameter obtained from POT, the maxima approach, the copula method, and
L-comoments.

Method Dependence Parameter

POT 0.7984

Maxima approach 0.7234

L-comoments τ
[12]
2

0.5229

L-comoments τ
[21]
2

0.3358

Gaussian copula (Kendall’s τ ) 0.2900
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Figure 10. Temporal evolution of dependence from the bivariate threshold excess model between the
precipitation and daily maximum sea level extremes with and without removing harmonics.

5. Discussion and Summary

This study presents the results of analyzing the dependence structure between sea
level and precipitation extremes using bivariate data from Bridgeport, CT. We explored
various bivariate extreme value methods, including the bivariate threshold excess model,
the maxima approach, L-moments, and copulas. Our analysis shows no evidence that the
occurrence of extreme values of high sea level and 24 h precipitation are correlated in the
observational record at Bridgeport, CT, a station with long data records representative
of coastal Connecticut. The largest surges occur in Southern New England when winds
are from the east or northeast [48] due to the passage of extratropical cyclones in the
colder months (November–April), or tropical cyclones in late summer. However, high
precipitation rates are associated with winds from the south [49]. As both types of cyclones
propagate across Southern New England, the winds from the northeast generally follow the
conditions when precipitation is likely, and this may explain why the correlation is low. We
further investigated the dependence structure after adjusting the effect of harmonics on the
hourly sea level data to remove the periodic influences of tidal processes. These repeating
patterns, while natural and significant, can obscure the underlying trends and anomalies
crucial for understanding long-term sea level changes and their implications. We observed
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that the dependence structure between the daily maximum sea level and precipitation
demonstrates a stronger dependence after adjusting for the effect of harmonics.

It is critical to note that, though the methods demonstrated here are applicable to
other sites, the fact that the occurrence of extreme rain rates and coastal water levels is
uncorrelated is a site-specific result. Since the character of precipitation statistics varies
regionally, and tides and storm surges are sensitive to the geometry and bathymetry of the
regional coastline, it seems likely that the results may apply across Southern New England.
However, additional data analysis is necessary to assess that. In other parts of the world,
the extremes may be much more correlated. The methods we used could also be applied to
examine the relationship between extreme wave height and surge level. These may show
high correlations at some sites.

The IPCC 2021 [50] concluded that it is “virtually certain” that global mean sea
level will rise throughout the 21st century. They also report that for the eastern United
States, there is high confidence in the predictions of an increase in the occurrence of
high precipitation, and medium confidence that the wind speed during storms will also
increase. However, the rate of change in extremes that we should anticipate is unclear. It is
straightforward to assess the impact of a change in the mean sea level based on our results,
and regional estimates of that are available. An analysis of the effect of global warming
on the correlation between extreme winds and precipitation at the scales at which project
information is required still needs to be conducted.

Future work could focus on investigating and applying extreme value methods to three
or more variables. Extensions of the peaks-over-threshold approach [51], L-comoments [41],
and the copula approach [52,53] in a multivariate framework have been developed. One
could also investigate the dependence measure in a spatial framework by statistically
modeling spatial extremes using max-stable processes [54], spatial copula [55], or Bayesian
hierarchical models [56].
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