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Abstract: A model is developed for simulating changes in river bed morphology as a result
of bed scouring during the release of an ice jam. The model couples a non-hydrostatic
hydrodynamic model with the processes of erosion and deposition through a grid expansion
technique. The actual movement of bed load is implemented by reconstructing the river bed
in piecewise linear elements in order to bypass the limitations of the step-like approximation
that the hydrodynamic model uses to capture the bed bathymetry. Initially, an ice jam is
modeled as a rigid body of water near the free surface that constricts the flow. The ice jam
does not exchange mass or momentum with the stream, but the ice body can have a realistic
shape and offer resistance to the flow of water through the constriction. An ice jam release
is modeled by suddenly enabling the ice to flow and exchange mass and momentum with
the water. The resulting release resembles a dam break wave accelerating and causing flow
velocities to rise rapidly. The model is used to simulate the 1984 ice jam in the St. Clair
River, which is part of the Huron-Erie Corridor. The jam had a duration of 24 days, and its
release was accompanied by high flow velocities. It is speculated that high flow velocities
during the release of the jam caused scouring of the river bed. This led to an increase in
the river’s conveyance that is partly responsible for the persistence of low water levels in the
upper Great Lakes. The simulations confirm that an event similar to the 1984 ice jam will
indeed cause scouring of the St. Clair River bed.
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1. Introduction

The Great Lakes account for 20% of the Earth’s surface freshwater and for 90% of North America’s
surface freshwater [1]. These figures indicate the importance of these lakes as a freshwater reservoir.
Furthermore, the Great Lakes have great importance as an ecosystem. With respect to human activities,
they are a source of food, they encompass commercial routes for industry, they offer tourist attractions
and entire communities and recreational facilities are built around the Great Lakes. A general map of the
Great Lakes System can be seen in Figure 1.

Figure 1. Map of the Great Lakes System [2].

(8,620 ft3/s).  Higher and lower flows have occurred,
depending on the water level conditions on Lake
Erie and water requirements along the canal.  While
this diversion does not alter the long-term net total
water supplies to either Lake Erie or Lake Ontario, 
it does increase Lake Erie outflow conveyance and
thus lowers the long-term mean levels on Lake Erie
by 12 cm (4.7 in) and, to a lesser extent, by 4 cm
(1.6 in) on Lake Michigan-Huron.

• The New York State Barge Canal withdraws water
from the upper Niagara River and returns the
diverted water to Lake Ontario at several points in
upstate New York.  Given the location of the point
of withdrawal on the upper Niagara River and the
relatively small volume (about 31 m3/s or 1,100 ft 3/s
on an average annual basis), this diversion has negli-
gible effects on Lake Erie and Lake Ontario levels.

IMPACTS ON UPPER GREAT LAKES WATER LEVELS: ST. CLAIR RIVER24

Figure 2-4  Major Water Diversions in the Upper Great Lakes

(Source: modified from Great Lakes Commission and U.S. Army Corps of Engineers, 1999)

Table 2-2    Summary of Effects of Major Diversions in the Upper Great Lakes
(Increases/decreases in the long-term mean water levels of the lakes)

Great Lake Long Lac/Ogoki Lake Michigan/Chicago Welland Canal
Superior + 9 cm (3.5 in) 0 0
Michigan-Huron + 11 cm (4.3 in) - 6 cm (2.4 in) - 4 cm (1.6 in)
Erie + 7 cm (2.8 in) - 4 cm (1.6 in) - 12 cm (4.7 in)
(Source: Levels Reference Study Board, 1993)

Between 1963 and 2006, there has been a lake-to-lake head fall between Lakes Michigan-Huron and
Lake Erie of approximately 23 cm. A drop of the water level in the Great Lakes, in addition to translating
to a loss of colossal amounts of freshwater, can affect and change the shoreline and the communities that
have been built around the Lakes. It may affect the entire ecosystem and can also cause disruptions to
human activities, such as creating impediments for the passing of ships. Bathymetric studies indicate that
St. Clair River’s conveyance increased during the 1980s; four hydrodynamic models were used during
the development of a joint commission report, and all indicated an increase in conveyance [2]. Namely,
the models that were used were HEC-RAS (Hydrologic Engineering Centers River Analysis System),
RMA-2, HydroSed2D (2D Hydrodynamics and Sediment transport model) and TELEMAC-2D. It is
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speculated that the increase in conveyance was caused by a deepening of the river related to a major ice
jam in 1984 [3]. From the HydroSed2D model, it was estimated that under normal flow conditions, the
stresses at the bottom of the St. Clair River would not suffice to induce any bed erosion, considering
the bed composition. However, during episodic events, as in ice jam releases, high flow velocities may
induce scouring of the bed.

In this work, flow in the St. Clair River is simulated during the presence and the release of an ice jam
similar to the one in 1984. A hydrodynamic model is modified in such a way as to simulate the presence
of a jam and its subsequent release. A bedload transport model is developed and combined with the
hydrodynamic model, and a simulation of the 1984 ice jam release is carried out. The hydrodynamic
model is based on the Stanford Unstructured Non-hydrostatic Terrain-following Adaptive Navier–Stokes
Simulator (SUNTANS) project [4] and implements the finite volume method to solve the non-hydrostatic
Reynolds-averaged Navier–Stokes (RANS) equations on an unstructured z-coordinate grid. The free
surface is handled by depth-integration of the continuity equation. Recent ice jam models are based on
the St. Venant equations [5,6]. Liu [5] developed a 2D finite element model that treated ice as a separate
viscous-plastic continuum. Ice jam release simulations were run with and without the inclusion of ice,
and the authors concluded that the presence of ice has a dampening effect on the surge that follows the
release of an ice jam, but leads to higher flow velocities after the initial surge. Later, She [6] modified
the 1D finite element model by Hicks [7] to account for ice implicitly by adding a resistance term to
the momentum equation. Their results were similar to those of Liu [5]. This work marks the first time
a fully 3D, non-hydrostatic model was implemented for simulating the presence and release of an ice
jam. Complex turbulent structures and non-hydrostatic gradients may affect the stresses on the river bed
during the stay and release of an ice jam, and their capture is important in assessing the possible effects
on river bed scouring. Furthermore, the hydrodynamic model is computationally efficient at large scales,
which is essential in being able to run meaningful simulations in the physical domain involved. The ice
jam is modeled as a foreign rigid object in the flow field by setting all fluxes within the ice jam to zero. A
drag law is enforced on the underside of the jam to account for flow-induced friction. The ice jam release
is simulated by simply removing the zero-flux condition and releasing the initially still body of water in
the flow. Several bed scouring models have been developed recently, and all employ a non-hydrostatic
RANS solver and all, with the exception of one [8], employ adaptive gridding with continuous
meshing [9–13]; the exception being the model by Khosronejad [8] that uses the immersed
boundary method.

The scouring model developed in this work is unique in that it employs adaptive gridding without the
need for continuous re-meshing. It achieves this by adding or removing cells from the computational
domain and the flow field. Unlike the case of the immersed boundary method, the approach followed in
this work does not require interpolation for computing boundary flow velocities, since those are readily
computed in the finite volume scheme. The hydrodynamic model employs a z-coordinate grid, and the
bed is modeled with a step-like approximation. As such, angles of inclination are not readily available
for the bed, which are required in order to be able to solve the constitutive relations that give the bedload
fluxes. Two different methods for geometric modeling of the river bed are developed and successfully
implemented. The methods provide an approach for finding angles of inclination, as well as discretizing
the boundary domain in order to solve the Exner equation. Once the bed morphology is modeled, the
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approach by Roulund [10] is followed to compute the bedload fluxes. In this approach, the equations of
motion are solved for a representative bed particle, taking into account not only all the forces involved,
but also that the particle may be moving at an angle with the flow. Once the bedload fluxes are computed,
the Exner equation is solved numerically, so the approach is contingent upon the geometric modeling
methodology for the river bed.

A computational grid is constructed of the St. Clair River, and appropriate bathymetric data are
used, as obtained from the Great Lakes Environmental Research Laboratory of the National Oceanic and
Atmospheric Administration (NOAA). Boundary conditions are set appropriately, and an ice jam similar
to the one in 1984 is modeled. The jam geometric parameters are adjusted so that flow conditions agree
with recorded values. Normal flow conditions are also simulated. Finally, flow conditions are simulated
with the ice jam in place. Once the steady state is achieved, the stresses on the bed are computed. Then,
the ice jam is released, and the bed stresses are computed again.

2. The Hydrodynamic Model

The hydrodynamic model used in this work is a non-hydrostatic, RANS solver that uses the finite
volume method on a triangular, z-coordinate staggered grid. It is based on SUNTANS, originally
developed by Fringer [4]. A typical cell comprising the grid can be seen in Figure 2.

Figure 2. Description of a 3D prismatic grid cell.

uj ! nj ¼ Uj: ð19Þ

Every Delaunay edge j with a normal nj has two neighboring cells defined by the Voronoi points that make up
the jth Voronoi edge. The indices to these two cells are given by the pointers G2j and G2j+1. The first index, G2j,
provides the index of the cell in the direction of nj, while G2j+1 provides the index of the cell in the opposite
direction. If xi and yi correspond to the Voronoi points of a given planform cell i, then we can define the
components of the normal vector nj = n1jex + n2jey with

n1j ¼
xG2j % xG2jþ1

Dj
; ð20Þ

n2j ¼
yG2j

% yG2jþ1

Dj
; ð21Þ

where the gradient distance is defined by

D2
j ¼ ðxG2j % xG2jþ1

Þ2 þ ðyG2j
% yG2jþ1

Þ2: ð22Þ

Because G2j+1 and G2j are indices to cells, if there are Nc triangular cells that make up the unstructured grid,
then for computational edges, 1 6 G2j 6 Nc and 1 6 G2j+1 6 Nc. By adopting the convention that face-
normals always point into the domain, boundary edges are identified by G2j+1 = %1.

Using the present notation, we can identify the upwind cell iiw corresponding to a given edge j with

iiw ¼
G2jþ1 Uj > 0;

G2j otherwise:

!
ð23Þ

We can also define gradients normal to an edge face using the G pointer. As an example, the magnitude of the
free-surface gradient $Hh in the direction of the normal nj and perpendicular to Delaunay edge j is given by

ðrHhÞj ! nj ¼
hG2j % hG2jþ1

Dj
þ Eg; ð24Þ

where Eg is the truncation error. If the grid is composed of equilateral triangles, then the truncation error Eg in
Eq. (24) is second order in Dj. Otherwise, face-normal gradients are not centered about the Delaunay edges.

The three outward-pointing normals of each cell can be defined by no1 ; no2 ; and no3, as shown in Fig. 3.
Rather than storing the components of each of these normals, we store the dot product of the outward normal
with the unique normal at every edge nj, and define this as

Nj ¼ noj ! nj ¼ '1: ð25Þ

This is also used to specify the gradient in the direction of the outward pointing normal at a cell face. Since the
gradient of a cell-centered quantity / in the direction of the unique normal n1 in Fig. 3 is defined as

ðn1 !r/Þn1 ¼
/G2j

% /G2jþ1

Dj
n1; ð26Þ

height=∆z 
U

U

w

Fig. 2. Depiction of a three-dimensional prismatic grid cell, showing the horizontal velocity U defined normal to the vertical cell faces and
the vertical velocity defined at the Voronoi points at the top and bottom of the cell with height Dz.

O.B. Fringer et al. / Ocean Modelling 14 (2006) 139–173 145

The solver computes the horizontal velocity at each vertical face, the vertical velocity at each
horizontal face, as well as the free surface height and the non-hydrostatic pressure. The two horizontal
momentum equations can be written as follows:

∂u

∂t
+∇ · (~uu) = − 1

ρo

∂p

∂x
− g∂h

∂x
+∇H · (νH∇Hu) +

∂

∂z
(νV

∂u

∂z
) (1)

and:

∂v

∂t
+∇ · (~uv) = − 1

ρo

∂p

∂y
− g∂h

∂y
+∇H · (νH∇Hv) +

∂

∂z
(νV

∂v

∂z
) (2)

where u and v are the horizontal x and y velocity components, p is the non-hydrostatic pressure, g is
the acceleration of gravity and h is the free surface height. νH and νV are the horizontal and vertical
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eddy viscosities, following the Boussinesq approximation. Combining the two horizontal momentum
equations and taking the dot product with the face normal, ~n, results in:

∂U

∂t
+ ~n · ∇ · (~u~u) = − 1

ρo

∂p

∂n
− g∂h

∂n
+∇H · (νH∇HU) +

∂

∂z
(νV

∂U

∂z
) (3)

where ∂
∂n

is the derivative in the direction of the normal and ~u is the flow velocity vector. The vertical
momentum equation is given by:

∂w

∂t
+∇ · (~uw) = − 1

ρo

∂p

∂z
+∇H · (νH∇Hw) +

∂

∂z
(νV

∂w

∂z
) (4)

In addition, the incompressibility condition is written as follows:

∇ · ~u = 0 (5)

The free surface is computed by depth-integrating the continuity equation. After enforcement of the
kinematic condition at the free surface, an evolution equation for the total depth of flow is obtained,
as follows:

∂h

∂t
+

∂

∂x
(

∫ h

−d

u dz) +
∂

∂y
(

∫ h

−d

v dz) = 0 (6)

where d is the depth measured from the undisturbed free surface. The two momentum equations, the
depth-integrated continuity equation and the incompressibility constraint form a set of four equations in
four unknowns, namely the face-normal velocity, U , the vertical velocity, w, the free surface height, h,
and the non-hydrostatic pressure, q. The velocities at the cell centers are found by interpolation.

The boundary condition at the river bed determines the flow resistance using the law of the wall and
can be written as follows:

νV
∂U

∂z

∣∣∣∣
z=h

= Cd,B|U |U (7)

where Cd,B is the drag coefficient for the bed.
In the numerical scheme for the momentum equations, the convection and horizontal diffusion terms

are discretized explicitly. Vertical diffusion terms are discretized semi-implicitly with the theta method.
The semi-implicit treatment of vertical diffusion terms, as opposed to the explicit treatment of other
diffusion and convection terms, allows for the use of smaller discretization scales in the vertical direction,
while keeping a relatively large time step. This makes SUNTANS suitable for simulations in estuaries,
rivers and oceans, where horizontal scales are much bigger than vertical ones.

The non-hydrostatic solver uses a predictor-corrector method. The velocity field is predicted based
on the non-hydrostatic pressure of the previous time step. The momentum equations are solved jointly
with the depth-integrated continuity equation, where the predicted horizontal velocity is used, to give
the predicted velocity field, as well as the free surface height at the next time step. The predicted
velocity field is then inserted into the local continuity equation, and a Poisson equation is solved for
the non-hydrostatic pressure correction term at the next time step. Once the correction term is computed,
the velocity and pressure fields are updated to those of the next time step.
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2.1. The Turbulence Model

Closure to the RANS equations is achieved with the Mellor and Yamada 2.5 model. The key
characteristic of the model is that it applies to situations where the horizontal scales are much bigger
than the vertical scales, and as such, it is assumed that turbulence is resolved only in the latter. Only the
vertical eddy viscosity is solved for, while the horizontal eddy viscosity is set to a constant in order to
preserve stability. The vertical eddy viscosity is given by:

νV = −lqSM (8)

where l is a length scale, q is the turbulent kinetic energy and SM is an algebraic function of the vertical
horizontal velocity gradients. The Mellor and Yamada model is a two-equation model. The equation for
the turbulent kinetic energy is given by:

D(q2/2)

Dt
− ∂

∂z
(lqSq

∂

∂
(
q2

2
) = Ps − ε (9)

where Sq is a constant and ε is the turbulent kinetic energy dissipation rate given by:

ε =
q3

B1l
(10)

The dissipation rate is inversely proportional to the length scale, since the latter represents an average
distance that a turbulent eddy travels before it is dissipated. The equation for the length scale is given by:

D

Dt
(q2l)− ∂

∂z
[qlSl

∂

∂z
(q2l)] = lE1Ps −

q3

B1

[1 + E2(
l

κL
)2] (11)

where Sl, E1 and E2 are constants, κ is the von Karman constant and L is the distance from the wall.

3. The Bed Scouring Model

The boundary condition that the hydrodynamic model uses for the bed is given by Equation (7) and
is based on the law of the wall. It can be shown that the drag coefficient, Cd,B, is given by:

Cd,B = (
1

κ
ln
z

zo
)−2 (12)

where z is the distance from the bed at which the velocity is measured and zo is the theoretical distance
from the bed at which the velocity becomes zero. For rough boundaries, zo is given by:

zo =
ks
30

(13)

where ks is the equivalent roughness height. For typical river beds, ks can be taken as [14]:

ks ≈ 3.5d85 (14)

where d85 is the the 85th percentile grain diameter. Generally, d85 can be taken to be 1.5 times the median
grain diameter, d50, of the bed [15]. If the sediment size and type are known, the shear velocity can be
computed by measuring the flow velocity some distance z above the bed and taking:
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u∗ =

√
(
1

κ
ln

z
3.5∗1.5∗d50

30

)−2|U | (15)

The dimensionless Shields stress, θ, can then be calculated using the formula:

θ =
u2∗

(s− 1)gd50
(16)

where s is the specific gravity of the sediment. In the model, both the median sediment grain size, d50,
and the specific gravity can vary along the bed, with the resolution of the field distribution being limited
only by the resolution of the horizontal mesh.

The constitutive relations that couple the flow field with sediment movement at some point along
the bed require that the local angle of inclination of the bed at that location be known. SUNTANS
implements a step-like approximation of the bed, and as such, local angles of inclination are not readily
available. Two different approaches were developed in order to estimate the angle of inclination. In both
methods, the bathymetry is approximated by projecting the horizontal triangular mesh on the plane of
the bed. In the first method, each vertex of a triangle is assigned a depth equal to the weighted average
of the depths of the Voronoi points of triangles that share that vertex. Figure 3 shows a schematic of the
two-dimensional equivalent case.

Figure 3. Reconstructing the bed geometry: the 2D case. The red dotted line is the
reconstructed continuous surface.

As shown in Figure 4, the angle of inclination is just the inverse cosine of the z-component (nz) of
the normal vector, ~n. The direction of maximum slope, given by the vector, ~b, along which the weight
component acts, is given by:
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~b =
(êz × ~n)× ~n
|(êz × ~n)× ~n|

(17)

where êz is the unit vector in the z-direction. Once these important geometric parameters are known, i.e.,
the angle of inclination and the direction of maximum slope, the flow field can be coupled with sediment
transport. The key coupling factor is the shear velocity, which is essentially a measure of the stress on
the bed. The application of the constitutive relations follow the approach by Roulund [10], where a force
balance is applied to a representative sediment particle. The schematic shown in Figure 5 shows the
forces involved, as well as their geometric relationships.

Figure 4. Finding the bed inclination.

Figure 5. Forces on a bed particle and their geometric relationships.

A set of dynamic and kinematic non-linear algebraic relations are produced and solved in our model
by the Newton–Raphson method. The solution to the system of equations provides the velocity of the
representative particle, which is then extrapolated to compute the bed load fluxes along the bed. Once
the fluxes are known, a bed evolution equation is solved, also known as the Exner equation, given below:
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∂η

∂t
= − 1

1− n
∇ · ~qb (18)

where η is the bed elevation, n is the sediment porosity and ~qb are the 2D fluxes. Integrating over an
element and applying the divergence theorem gives:

A
∂η

∂t
= − 1

1− n

∫
∂A

~qb · ~n (19)

where ~n is the outward normal and A is the projected area of an element. Discretization of the last
equation yields:

∆ηi
∆t

= − 1

1− n
1

Ai

3∑
j=1

~qj · ~njlj (20)

where the index, i, refers to the cell number and the index, j, refers to the number of the side of the
cell. lj is the length of side j. In this method of geometric modeling of the bed, the fluxes are initially
computed at the cell centers. The fluxes at the sides are computed by simple interpolation.

The aforementioned model was used to simulate the scouring downstream of a sluice gate. The
specifics of the computational setup are given by [16]. The computed bed surface is shown in
Figure 6. While the results are qualitatively correct, a noticeable irregularity is present. The errors
are a direct result of the averaging process proposed above for the computation of the local angels
of inclination. Although artificial diffusion has been added to the Exner equation, the erratic bed
scouring persists.

Figure 6. Scouring under a sluice gate.

To avoid the irregularities that result from the geometric modeling technique, an alternative method
was developed and used in the simulations. Figure 7 explains schematically the proposed method. It
involves the division of each element in three parts and the assignment of a different angle of inclination
to each part. The angle is shared by the corresponding part of the adjacent cell, depending on the depth
difference between the two cells.
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Figure 7. The geometric scheme followed in order to find the bed inclination.

The constitutive relations are then solved separately for each part of the cell, but always using the
shear velocity derived at the center of the cell. Therefore, each part of the cell has a different flux
assigned to it. Fluxes at the edges are computed by simple interpolation, and the Exner equation is
solved accordingly, following the procedure presented above.

Figure 8 depicts scouring under a sluice gate, under the same flow conditions, i.e., those used to
produce the results in Figure 6. The superiority of the alternative method is obvious, as no irregularities
appear in the solution of the Exner equation, and no artificial diffusion is needed.

Figure 8. Scouring under a sluice gate (not shown) with the latter modeling scheme. No
irregularities are present.
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While the bed morphology used for bed scouring is not exactly interpreted by the hydrodynamic
model, since it implements step-like approximation, the z-coordinate meshing offers an advantage over
other existing models. An algorithm was developed and implemented, whereby the grid adapts to
the changing bed by shrinking or elongating the cells nearest to the bottom when the change in bed
elevation is small. However, when the change in bed elevation exceeds a certain threshold, cells are
added or removed from the computational grid. This allows the grid to adapt to any change in bed
morphology, however great that may be, by not having to re-mesh the entire domain and by avoiding
any grid distortions if the change is significant. At the same time, velocities at the center of cells are
readily available from the hydrodynamic model, which allows for easy computing of the shear velocity
without the need for any interpolation, as would be the case in an immersed boundary method. Overall,
with the hydrodynamic model being well-suited for large-scale flows and the scouring model being able
to accommodate for changing bathymetry without significant computational cost, the combined model
is well suited for scouring simulations in rivers.

4. Ice Jam Release Scenario

The 1984 ice jam in the St. Clair River was chosen as a case scenario. Simulations were first run under
conditions where an ice jam was not present. The boundary conditions used were fixed stage elevations
at the entrance and exit of the river, no slip at the banks and the law of the wall for the bed. The effect
of wind-induced stresses was neglected. The entrance and exit of the river were constructed to be very
wide in our grid, as can be seen in Figure 9, and the flow velocities at the cells forming the boundaries
of the entrance and exit were set to zero. Weak boundary conditions were enforced at the entrance and
exit to allow for mass flow, as dictated by the difference in stage elevations.

The bathymetry was determined from data obtained from NOAA, along with the sediment size
distribution in the river [17]. The bathymetric data had a resolution of approximately 60 m, which
was comparable to the resolution of the grid(s) used. Varying the size of the sediment along the river bed
allowed for variation in the bed drag coefficient. The stage elevation difference between the entrance of
the St. Clair River and its estuary remains almost constant over the seasons and equal to approximately
1.4 m. The seasonal variation in flow rates is due to the water level in the river. The bathymetric data
obtained from NOAA were adjusted by adding approximately 15 cm uniformly to the depth of the river
in order to achieve a flow rate of approximately 4800 m3/sec, which is a reasonable estimate for the
month of April. The flow rates obtained from NOAA were based on year-averaged values. Furthermore,
it was found that varying the depth of the river in our model within the limits of measured average
seasonal variations caused flow rates to vary within the range of reported seasonal values with a 95%

approximate accuracy; this agreement added credibility to the hydrodynamic model, as well as the bed
roughness values used, dependent on the sediment size distribution. Under average flow conditions, it
was found that there are three regions of elevated stresses along the river, as can be seen in Figure 10.
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Figure 9. Grid used for our simulations.

Figure 10. Stress distribution (Shields stress values) in the St. Clair River under average
flow conditions. There are three regions of elevated stresses on the bed (yellow and
red colors).

The ice jam was simulated by setting all fluxes to zero in the flow field region occupied by the jam.
The size of the zero-flux region was adjusted so that flow conditions agree with the recorded values
during the 1984 ice jam. In the final days of the jam, the water flow through the river was reduced by
approximately 65% and the water level in Lake St. Clair dropped by approximately 0.6 m. In our model,
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the stage elevation at the exit of the river was reduced by 0.6 m and the size and the thickness of the jam
was adjusted so that the flow rate become approximately 1700 m3/s. The adjusted ice jam configuration
and the resulting flow rate served as an initial condition for the ice jam release simulation. The ice jam
in our model, in its final form, had a head thickness of 2 m and gradually thickened to reach a thickness
of 4 m at its toe, which is a shape similar to that of an actual ice jam. Detailed information on the shape
of the 1984 ice jam is lacking. The length of the ice jam was in accordance to field observations of
the 1984 ice jam [3]. In its final days, the ice jam covered about a third of the river, its upstream end
starting a little below St. Clair and its downstream end reaching Algonac. A drag law was imposed on
the under side of the ice jam, to account for friction between the flow and the ice. A friction coefficient
in accordance with published data was chosen [18]. It was found that the stresses on the bed under the
still ice jam were lower than those when an ice jam was not present. This is in disagreement with the
assertion that scouring would happen under the toe of the fully developed ice jam.

The ice jam was released by removing the zero-flux condition. Figure 11 shows the stress evolution
on the river bed following the release.

Figure 11. Evolution of stresses on the river bed following the release of a jam.

It can be seen from the figure that the stresses in three regions are particularly high. These are the
regions that experience high stresses when an ice jam is absent, according to the model. A critical
Shields stress value of 0.03 was chosen. The critical Shields stress value varies depending on the
kind of sediment that comprises the surface layer of the bed. For a bed with a uniform grain size, the
nominal value of 0.047 is given [19,20]. However, based on experimental studies and field observations
of bedload transport in rivers, for beds with mixed grain composition, a value of 0.03 is more
accurate [21–23]. The critical Shields stress was adjusted for the local angle of inclination at each
computational cell. It was found that critical stress values were exceeded in the three regions of elevated
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stresses on the river bed, with ensuing scouring. Most scouring occurred near the exit of the river.
Figure 12 depicts the depth change caused by scouring during the first 1.4 h following the release.

Figure 12. The change in depth along the river caused by scouring.

The net amount of sediment displaced during that period was approximately 10,000 cubic meters.
Most of the scouring occurred near the estuary in Lake St. Clair, at the exit of the river. It is concluded
that in the case of an ice jam similar to the one in 1984, scouring is highly probable following the
release of the ice jam. While our results do not constitute proof that scouring of such an extent will
happen, they provide a strong indication. The results are based on a particular hydrodynamic model
and a particular turbulence model; other hydrodynamic and turbulence models should be implemented
before drawing final conclusions. Three different grids were used as part of grid refinement studies: One
with approximately 600,000 cells, one with approximately one million cells and the most refined, which
had approximately two million cells. The three grids had a horizontal spacing of approximately 55, 45
and 35 m, respectively, while the vertical grid spacing ranged from 1 m to 75 cm. The results in terms
of scouring were similar for all three grids.

5. Conclusions

A bed scouring model was developed and incorporated in a hydrodynamic model that implements a
z-coordinate grid with step-like approximation of the river bed. An algorithm that expands or contracts
the grid to follow changes in bed morphology without the need for re-meshing the entire grid was also
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developed. Ice jams were modeled by creating a rigid body of water in the flow field by ignoring the
fluxes in the cells that comprise the region of the ice jam. The release was simulated by removing the
zero-flux condition and releasing the initially stationary body of water into the flow field. The 1984 ice
jam in the St. Clair River was simulated by adopting flow and boundary conditions that replicate the
conditions during the jam. It was found that in the scenario of a jam like the one in 1984, scouring
occurs that amounts to significant net amounts of displaced sediment, especially near the river exit. The
effect of such a change in bed morphology on the river’s conveyance needs to be ascertained, and the
sensitivity of the system to changes in depth in the locations affected by the ice jam release remains a
subject of future research. The present model provides a framework for the prediction of extreme events
in the Huron-Erie Corridor and for designing mitigation measures.
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