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Abstract: The significance of the impulse product parameter P is reviewed, which is 

believed to be the most universal parameter for subaerial landslide tsunami (impulse wave) 

prediction. This semi-empirical parameter is based on the streamwise slide momentum flux 

component and it was refined with a multiple regression laboratory data analysis. 

Empirical equations based on P allow for a simple prediction of wave features under 

diverse conditions (landslides and ice masses, granular and block slides, etc.). Analytical 

evidence reveals that a mass sliding down a hill slope of angle 51.6° results in the highest 

waves. The wave height ―observed‖ in the 1958 Lituya Bay case was well predicted using P. 

Other real-world case studies illustrate how efficient empirical equations based on P 

deliver wave estimates which support hazard assessment. Future applications are hoped to 

further confirm the applicability of P to cases with more complex water body geometries 

and bathymetries. 

Keywords: hazard assessment; impulse wave; landslide; landslide tsunami; physical 

modelling; wave generation 
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1. Introduction 

An important class of tsunamis is caused by mass movements including landslides, rock falls, 

underwater slumps, glacier calving, debris avalanches or snow avalanches [1–5]; these are commonly 

referred to as landslide tsunamis or landslide generated impulse waves. Landslide tsunamis (impulse 

waves) typically occur in reservoirs and lakes, fjords or in the sea at volcanic islands or continental 

shelves [2,6–9]. The term landslide tsunami is sometimes also applied to waves generated in reservoirs 

and lakes [10] even though the term impulse waves would then be more correct. 

Irrespective of where these waves are caused, they are a considerable hazard and the total 

cumulative death toll of Unzen (1792), Ritter Island (1888), Vajont (1963) and Papua New Guinea 

(1998) alone is likely to exceed 22,100 [2,4,11]. Fortunately, landslide tsunamis (impulse waves) may 

nowadays be predicted with relatively high confidence (much better than an order of magnitude) by 

given slide parameters using both numerical [3,7,12–19] or physical [14,20–29] model studies. 

Subaerial landslide tsunamis are particularly challenging to predict because the mass, initially 

located above the water surface, impacts the water body and may entrain a large amount of air. Slide 

velocities of up to 128 m/s were estimated based on slide deposits [30], generating highly turbulent 

landslide tsunamis (impulse waves) if they interact with a water body. Fortunately, susceptible areas 

are often monitored, giving prior warning of a potential subaerial landslide tsunami (impulse wave). 

An active prevention of the wave generation is difficult to achieve so that passive methods, including 

early warning, evacuation, reservoir drawdown, or provision of adequate freeboards of dam reservoirs, 

are applied. A prediction of wave features is essential for the success of these methods, which must be 

conducted frequently, particularly in lakes [8,31] and during the planning and operational phases of 

reservoirs [6,31,32]. 

A common method for the assessment of this hazard is to conduct a physical model study in the 

laboratory environment. Generic physical model studies [20–24,26–29] systematically vary parameters 

(slide properties, hill slope angle, water depth) and express the unknown wave parameters (amplitude, 

height, period) as a function of these ―known‖ parameters. The most relevant parameters for subaerial 

landslide tsunamis (impulse waves) are shown in Figure 1. The developed empirical equations allow 

for first estimates of future events [8,31,33], and their application is often the most straightforward 

method if time is limited. The results also determine whether a more accurate prototype specific 

numerical [7,11,19] or physical [6,32] model study is required; these latter methods are costly and 

require considerable more time and resources. 

Herein, the significance of the impulse product parameter P is reviewed, which is believed to be the 

most universal parameter for generic landslide tsunami (impulse wave) predictions. Useful analytical 

derivations based on P are deduced and it is illustrated how P greatly simplifies hazard assessment 

through real-world predictions. 
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Figure 1. Definition sketch of subaerial landslide tsunami (impulse wave) generation 

(adapted from Heller and Hager [26], with permission from © 2010 American Society of 

Civil Engineers). 

 

2. The Impulse Product Parameter 

2.1. Derivation 

The semi-empirical impulse product parameter P was developed by Heller and Hager [26] from 

subaerial landslide generated impulse wave model tests in a laboratory wave channel (2D) (see 

description of method in Appendix A). It is defined as 

            co              (1) 

Equation (1) includes the slide Froude number F = Vs/(gh)
1/2

, the relative slide thickness S = s/h, the 

relative slide mass M = ms/(ρwbsh
2
) and the hill slope angle  . Figure 1 shows all parameters required 

for these dimensionless numbers, namely the slide impact velocity Vs, gravitational acceleration g, still 

water depth h, slide thickness s, slide mass ms, water density ρw and slide width bs. The parameter P is 

based on the square root of the streamwise slide momentum flux component, involving the bulk slide 

density ρs and slide discharge Qs, as [24] 

(ρsQsVscos )
1/2

 ≈ (ρssbsVs
2
cos )

1/2
 = ρs

1/2
s

1/2
bs

1/2
Vscos

1/2
  (2) 

The expression on the right hand side in Equation (2) was further refined with a multiple regression 

data analysis based on hundreds of 2D experiments, resulting in the establishment of P [26]. This 

refinement was conducted to minimize the data scatter in the prediction of the wave parameters. The 

analysis revealed that the relative effects of Vs and s are correctly retained in P, as predicted in 

Equation (2). Since a vertically impacting slide with cos(90°) = 0 would result in no impulse wave 

action, the term cos
1/2
  in Equation (2) was replaced by the empirical parameter {cos[(6/7) ]}

1/2
 

resulting in the smallest data scatter. The relative effect of ρs
1/2

 in the slide mass ms = ρsVs, with bulk 

slide volume Vs, was with ρs
1/4

 found to be less pronounced in the data analysis than predicted in 

Equation (2). 

Figure 2 shows P versus the relative maximum wave height HM/h resulting from the multiple 

regression data analysis. The average data scatter is ±30%, and the maximum scatter in the order of 

±40% is considerable smaller than in previous studies [21,23], involving +100/−50% maximum scatter 

relative to the relative wave amplitude a/h or height H/h. In addition, the parameter P considers wider 

parameter range  thereby applying to land lide  and ice ma  e , to hill  lope angle  30° ≤   ≤ 90°, and 
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to further conditions (Table A1). Heller and Spinneken [29] (see description of method in Appendix A) 

demonstrated that P, originally developed for granular slides, applies also to waves generated by block 

slides. Further, the study of Fuchs et al. [34] used P to describe underwater landslide characteristics. 

These diverse conditions under which P applies may establish P as the most universal parameter for 

landslide tsunami (impulse wave) hazard assessment. 

Figure 2. Example of prediction diagram based on P: Relative maximum wave height 

HM/h versus P for granular slides and best fit HM/h = (5/9)P
4/5

 (R
2
 = 0.82, Table 1) with 

±30% lines including most data points; the red arrows show the prediction for the 1958 

Lituya Bay case resulting in HM = 1.47h = 179 m; data indicated with * are too low due to 

non-negligible scale effects (adapted from Heller and Hager [26], with permission from  

© 2010 American Society of Civil Engineers). 

 

Table 1. Empirical equations based on P derived in 2D physical model studies by Heller 

and Hager [26] and Heller and Spinneken [29]; maximum wave height HM and period TM 

correspond to the identical wave and location xM where the maximum wave amplitude aM 

was measured; for block model slides the blockage ratio B = bs/b (0.88 − 0.98), the 

expression Φ = sin
1/2
φ (0.71 − 1.00) considering the slide front angle φ and the expression 

Ts = ts/{[h + Vs/(sbs)]/Vs} (0.34 − 1.00) considering the transition type are relevant, with  

ts = characteristic time of submerged landslide motion. 

Wave parameter Heller and Hager [26] Heller and Spinneken [29] 

Slide type granular block 

Maximum amplitude aM = (4/9)P4/5h (R2
 = 0.88) aM = (3/4)[PBΦTs

1/2]9/1°h (R2
 = 0.88) 

Streamwise distance at aM xM = (11/2)P1/2h (R2
 = 0.23) − − 

Maximum height (Figure 2) HM = (5/9)P4/5h (R2
 = 0.82) HM = [PBΦTs

1/4]9/1°h (R2
 = 0.93) 

Maximum period TM = 9P1/2(h/g)1/2 (R2
 = 0.33) TM = (19/2)[PTs

1/2]1/4(h/g)1/2  (R2
 = 0.24) 

Amplitude evolution a(x) = (3/5)[P(x/h)−1/3]4/5h (R2
 = 0.81) a(x) = (11/10)[P(x/h)−1/3BΦTs

3/4]9/1°h (R2
 = 0.85) 

Height evolution H(x) = (3/4)[P(x/h)−1/3]4/5h (R2
 = 0.80) H(x) = (3/2)[P(x/h)−1/3BΦTs

1/2]9/1°h (R2
 = 0.89) 

Period evolution T(x) = 9[P(x/h)5/4]1/4(h/g)1/2 (R2
 = 0.66) T(x) = (13/2)[P(x/h)5/4Ts

1/3]1/4(h/g)1/2 (R2
 = 0.53) 

Table 1 summarizes the most relevant empirical equations based on P, all derived from wave 

channel (2D) tests. This includes the maximum wave amplitude aM (with its location xM), height HM 
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and period TM (Figure 1) and their evolutions a(x), H(x), T(x), with distance x from the slide impact 

point for both granular [26] and block slides [29]. All these wave parameters simply contain P and the 

majority of these empirical equations result in large coefficients of determination R
2
 > 0.80. 

2.2. Analytical Aspects 

The parameter P allows for the derivation of theoretical aspects which are as universally applicable 

as P itself. The slide centroid impact velocity Vs on a constant slope defined by   and the dynamic bed 

friction angle δ may be approximated with an energy balance between the slide release and impact 

location [30] as 

Vs = [2gΔzsc(  − tanδcot )]
1/2

 (3) 

The parameter Δzsc is the slide centroid drop height distance between slide release and the impact 

location. Equations (1) and (3) result with A = (2Δzsc)
1/2

s
1/2

[ms/(ρwbs)]
1/4

/h
3/2

 and  

f( ) = (1 − tanδcot )
1/2

{cos[(6/7) ]}
1/2

 in 

P = A(1 − tanδcot )
1/2

{cos[(6/7) ]}
1/2

 = Af( ) (4) 

Figure 3 shows f( ), for a typical dynamic bed friction angle range of 10° ≤ δ ≤ 35°, versus the hill 

slope angle  . The function f( ) is proportional to P and as such directly proportional to the maximum 

wave amplitude aM, height HM and period TM and their evolutions a(x), H(x), T(x) with distance x 

(Table 1). Figure 3 reveals that the hill slope angles resulting in maximum P are in the range  

39. ° ≤  max ≤  5. °. A  expected, no impul e wave i  generated for   < δ where the slide remains at 

rest. Further,  max corresponding to the maximum P value increases with increasing δ. For a hill slope 

angle   → 90° (glacier calving, rock fall), the effect of the friction angle δ is negligible so that  

f( ) = 0.47, irrespective of the value of δ. 

Figure 3. f( ) ~ P according to Equation (4) for different dynamic bed friction angles δ (°); 

the typical value δ = 20° results in a slope angle  max = 51.6°. 

 

The values for  max are analytically derived by differentiating Equation (4) with respect to   and set 

to zero, resulting in 

(tanδ/sin
2
 ) = (1 − tanδcot )tan[(6/7) ]6/7 (5) 
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For the typical value δ = 20°, Equation (5) results in  max = 51.6° under otherwise constant 

conditions, which is in agreement with Figure 3. Impulse waves at   ≈ 50° were indeed witnessed, 

namely in the Alps [8]. Mass movements on such steep mountain flanks, with   close to  max, in 

combination with the confined water body geometries of lakes and reservoirs, contribute to the high 

relevance of landslide generated impulse waves in mountainous regions. The probability for landslides 

is typically highest at   = 36° to 39° [35]. Even then, only about 10% smaller waves may be expected 

(for δ = 20°) as compared with the maximum due to the moderate change of f( ) with   between 35° 

and 75° (Figure 3). 

3. Real-World Applications 

The well documented 1958 Lituya Bay case [1,16,36] shown in Figure 4 is used to provide an 

example of a real-world prediction based on P. The T-shaped Lituya Bay is located near the St. Elias 

Mountains in Alaska, where the main bay is about 12 km long and 1.2 km to 3.3 km wide, except for 

the 300 m wide exit to the Pacific Ocean. On 9 July 1958, an 8.3 moment magnitude earthquake 

initiated a rock slide with a grain density of ρg = 2700 kg/m
3
 sliding from a maximum altitude of  

914 m above sea level on a slope of   = 40° (Figure 4). The parameters in P are taken from Heller and 

Hager [26], namely the slide impact velocity Vs = 92 m/s, still water depth h = 122 m, maximum slide 

thickness s = 92 m, mean slide width bs = 823 m and slide mass ms = 82.62 × 10
9
 kg. These result in a 

slide Froude number F = 2.66, a relative slide thickness S = 0.75, a relative slide mass M = 6.74, a hill 

slope angle   = 40°, so that P = 3.37. The rock slide at Lituya Bay generated an impulse wave with a 

maximum run-up height of R = 524 m on the opposite shore at a distance x ≈  350 m and a run-up 

angle β = 45°. 

Figure 4. Arti t’  impre  ion of  958 Lituya Bay rock lide generating a t unami of ~162 m 

in height destroying forest up to maximum run-up height of 524 m (adapted from Heller 

and Hager [26], with permission from © 2010 American Society of Civil Engineers). 

 

Fritz et al. [36] investigated the Lituya Bay case in a physical model study and measured an  

up-scaled wave height of H = 162 m and a wave amplitude of a = 152 m close to the opposite shore at 

x = 885 m. This wave height is in excellent agreement with the inversely computed value H = 162 m in 

front of the opposite shore computed with the solitary wave run-up equation of Hall and Watts [37] 

and R = 524 m. 
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The prediction of HM shown in Figure 2 results in a maximum wave height of HM = 179 m just in 

front of the opposite shore (xM = 1232 m based on empirical equation in Table 1) compared to the 

―ob erved‖ wave height of H = 162 m. The small difference is explained with the lateral spread of 

wave energy (Figure 4), in contrast to the laboratory tests, where any spread was prevented by the side 

boundaries of the 2D setup. Further, the empirical equation in Table 1 for aM results in aM = 143 m, 

which is in good agreement with a = 152 m measured at x = 885 m in the physical model [36]. 

The following examples show that empirical predictions based on P are often conclusive enough to 

replace expensive prototype specific physical or numerical model studies, or at least to provide well 

founded recommendations on whether a more expensive investigation is required. Heller et al. [31] 

provided a generic hazard assessment methodology based on P applicable in both 2D (Table 1) and 

3D, including wave generation, propagation and run-up on shores or dams. Fuchs and Boes [8] 

calibrated and validated this method [31] with a rock fall generated impulse wave observed in 2007 at 

Lake Lucerne, Switzerland, and predicted then potential future waves at the same location. Preliminary 

estimates based on P for the planned Kühtai reservoir and hydropower dam in Austria suggested that 

an impulse wave due to a snow avalanche may overtop the dam so that a detailed prototype specific 

study was recommended. This was realized by Fuchs et al. [32] at scale 1:130, indicating that the wave 

only moistens the dam crest without overtopping. Cannata et al. [33] implemented the method of 

Heller et al. [31] in the open source GIS software GRASS, along with a considerable more time 

consuming shallow-water equation approach. A comparison of the run-up based on the two approaches 

for a case study at Lake Como, Italy, resulted in a general agreement of the wave height magnitude. 

BGC [38] predicted the wave parameters in the slide impact zone based on P for slope failure scenarios 

in the Mitchell Pit Lake, Canada. The wave propagation and potential dam overtopping were then 

numerically modelled with TELEMAC-2D with these initial predictions as input values. These 

examples provide evidence that the parameter P is an efficient tool for first estimates in real-world 

predictions and for hazard assessment in general. 

4. Limitations 

Whereas P was developed for subaerial landslide tsunamis (impulse waves), it does not apply to 

submarine landslide tsunamis [5,9,25,39–41]. Although some slide parameters are significant for both 

phenomena, other parameters not considered in P, including the initial slide submergence, are only 

relevant for underwater landslide tsunamis. Further, parameters applicable for both cases may not 

necessarily be relevant in the same ranges and their relative importance for submarine slides may also 

not be reflected by Equation (1). Finally, subaerial slides often result in considerable air entrainment, 

in contrast to underwater slides. The application of P to partially submerged slides is currently  

not investigated. 

The parameter P was thus far mainly tested for wave channel (2D) rather than for wave basin (3D) 

geometries. Even though 2D geometries can reflect real-world cases (e.g. narrow reservoirs, lakes or 

fjords), the wave propagation is commonly of 3D nature. Transformation methodologies of results 

from 2D to 3D were presented by Huber and Hager [20], Heller et al. [31] and Heller et al. [42] in 

which the two latter studies already included P. Several 3D real-world predictions were based on this 

transformed form of P [8,32,33]. An ongoing project aims to further investigate the transformation of 
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2D results based on P to other idealized geometries, and future real-world applications are hoped to 

further confirm the applicability of P to cases with more complex water body geometries  

and bathymetries. 

5. Conclusions 

The relevance of the semi-empirical impulse product parameter P was reviewed, which is believed 

to be the most universal parameter to predict subaerial landslide tsunamis (impulse waves). The 

parameter P includes all relevant slide parameters affecting the wave generation process in wide test 

ranges such as densities heavier and lighter than water or slide impact angles between 30° and 90° 

(Table A1). The parameter P is based on the streamwise slide momentum flux component and it was 

refined with a multiple regression data analysis of granular slide tests conducted in a laboratory 

channel (2D) and further confirmed with 2D block model slide tests. Empirical equations based on P 

allow for a simple prediction of the maximum wave amplitude aM, height HM and period TM and their 

evolutions a(x), H(x) and T(x) with propagation distance (Table 1). Analytical evidence based on P 

revealed that the highest waves occur for a slide impact angle of   = 51.6°. The landslide probability is 

highest for hill slope angles of   = 36 to 39° where only about 10% smaller waves may be expected. 

Despite the fact that P was derived under idealized conditions, it is considered a useful and effective 

parameter for estimates in real-world cases. This was demonstrated for the 1958 Lituya Bay case, 

where a good agreement between the ―ob erved‖ and predicted wave heights resulted. Four further 

real-world studies conducted by other authors involving rock falls at Lake Lucerne, Switzerland; snow 

avalanches in the planned Kühtai reservoir in Austria; rock falls at Lake Como, Italy; and potential 

slope failures in Mitchell Pit Lake in Canada, provided evidence that first estimates based on P are 

often conclusive enough to replace expensive prototype specific physical or numerical model studies, 

or at least provide well founded recommendations on whether a more expensive investigation is required. 

The parameter P applies to subaerial and potentially to partially submerged landslide tsunamis 

(impulse waves); however, it does not apply to submarine slides. A further limitation of P is its 

derivation for wave channel (2D) tests. Equations for waves propagating in 3D were proposed based 

on 2D to 3D transformation methods including P, and real-world applications showed that these 

equations result in realistic values. In the light of this success, the application of P to more complex 

water body geometries is the subject of an ongoing research effort. 
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Appendix A: Experimental Methodology 

The 2D experiments were conducted in two prismatic wave channels, namely the granular slide 

tests in an 11 m (L) × 0.500 m (W) × 1 m (H) wave channel at ETH Zurich [26] and the block model 

slide tests in a 24.5 m (L) × 0.600 m (W) × 1.0 m (H) wave channel at Imperial College London [29]. 

The channel bottoms consisted of glass sheets and the walls of glass and steel sheets (ETH Zurich, 

Zurich, Switzerland) or only glass sheets (Imperial College London, London, UK). The parameter 

ranges of both studies are reported in Table A1 and the coordinate origin (x; z) is defined at the 

intersection of the still water surface with the hill slope ramp (Figure 1). 

Table A1. Limitations of P: Parameter ranges of physical model studies of Heller and 

Hager [26] and Heller and Spinneken [29]. 

Name Symbol Dimension Heller and Hager [26] Heller and Spinneken [29] 

Slide model type − − granular block 

Channel width b (m) 0.500 0.600 

Still water depth h (m) 0.150–0.675 0.300, 0.600 

Slide thickness s (m) 0.050–0.249 0.120 

Grain diameter dg (mm) 2.0–8.0 − 

Streamwise distance x (m) 0–8.90 0–17.7 

Slide impact velocity Vs (m/s) 2.06–8.77 0.59–3.56 

Bulk slide volume Vs (m3) 0.0167–0.0668 0.0373 

Bulk slide density ρs (kg/m3) 590–1,720 1,534 

Slide mass ms (kg) 10.09–113.30 57.23 

Slide width bs (m) 0.500 ~0.588, ~0.578, 0.526 

Slide front angle φ (°) not systematic investigated 30, 45, 60, 90 

Transition type − (−) none none and circular shaped 

Hill slope angle   (°) 30–90 45 

Slide Froude number F (−) 0.86–6.83 0.34–2.07 

Relative slide thickness S (−) 0.09–1.64 0.20–0.40 

Relative slide mass M (−) 0.11–10.02 0.27–1.21 

Relative streamwise distance x/h (−) 0–59 0–40 

Impulse product parameter P (−) 0.17–8.13 0.16–1.19 

Number of tests i (−) 434 144 

The granular slide material in the 434 tests at ETH Zurich (Zurich, Switzerland) was accelerated in 

a box with up to 8 bar air pressure with a pneumatic landslide generator [22]. Once the box reached its 

maximum velocity, its front flap opened, the slide left the box, slid down on a 3 m long hill slope ramp 

and generated the impulse waves. The whole pneumatic landslide generator was adjustable to various 
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still water depths h and slide impact angles   and the box height and length was also adjustable such 

that various bulk slide volumes Vs and slide heights s could be investigated (Table A1). The pneumatic 

landslide generator allowed for a systematic and independent variation of all governing parameters 

included in P. The granular slide materials, made of barium-sulphate (BaSO4) and polypropylene (PP), 

consisted of four cylindrically shaped grains of diameter of dg = 2 to 8 mm of densities heavier  

(ρs ≈    0 kg m
3
) and lighter (ρs ≈ 590 kg m

3
) than water. Mixtures of different grain diameters and 

densities were also included in the test program. However, the grain diameter and grain size 

distribution were found to have a negligible effect on the wave features and are not included in P. A 

small fraction of the tests was conducted at a small water depth h = 0.150 m where scale effects 

relative to the wave amplitude and height, in comparison with the remaining model tests, may be up to 

about 15% [43]. Figure 2 supports this statement showing that these tests resulted in a slightly smaller 

maximum wave height than predicted by the corresponding empirical equation in Table 1. The main 

measurement techniques included two Laser Distance Sensors (LDS) [44] to scan the slide profiles 

(estimated accuracy ± 0.5 mm) at 100 Hz, seven capacitance wave gauges to record the wave profiles 

(±1.5 mm) at 500 Hz at relative distances of up to x/h = 59.0 and Particle Image Velocimetry  

(PIV) [45] for determining the velocity vector fields in the slide impact zone. All three measurement 

systems were triggered simultaneously with the start bottom of the pneumatic landslide generator [26]. 

The 144 block model slide experiments at Imperial College London (London, UK) involved a hill 

slope ramp of constant front angle   =  5° (Table A ). The ramp’  front  urface con i ted of  VC 

sheets and a stainless steel guide in the center matching a groove in the slide bottom to assure that the 

slide stayed in the channel center during impact. The four slides, one for each slide front angle φ, were 

also made of PVC. They were moved in the raised position with a pulley system and released with a 

mechanism fitted to the slide surface. The glass bottom in the immediate slide impact was protected 

with a 1 m long rubber sheet covered with a thin stainless steel plate. The slide was either brought to 

an immediate rest at the slope bottom with mastic sealant or it run out further over a circular-shaped 

transition made of an aluminum sheet bent to an eighth of a circle of radius 0.400 m. The test program 

included three specific block model parameters, namely three blockage ratios B = bs/b = 0.88, 0.96 and 

0.98 (varied with PVC additions mounted at the sides of the slides), four slide front angles φ = 30, 45, 

60 and 90° and two transition types, in addition to different slide parameters (Table A1). The slide 

impact velocity Vs was measured with a LDS [44]. A PVC strip with holes at constant intervals was 

bounded on the surface of each slide and this strip was scanned at 128 Hz with the LDS. The slide 

velocity was then calculated with the information about the spatial and temporal intervals between 

neighboring holes. The wave features (±1.5 mm) were measured with seven resistance type wave 

gauges at 128 Hz at a relative distances of up to x/h = 40.0 (Table A1) [29]. 
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