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Abstract: One of the main aspects when testing floating offshore platforms is the scaled 

mooring system, particularly with the increased depths where such platforms are intended. 

The paper proposes the use of truncated mooring systems to emulate the real mooring system 

by solving an optimization problem. This approach could be an interesting option when the 

existing testing facilities do not have enough available space. As part of the development of 

a new spar platform made of concrete for Floating Offshore Wind Turbines (FOWTs), called 

Windcrete, a station keeping system with catenary shaped lines was selected. The test facility 

available for the planned experiments had an important width constraint. Then, an algorithm 

to optimize the design of the scaled truncated mooring system using different weights of lines 

was developed. The optimization process adjusts the quasi-static behavior of the scaled 

mooring system as much as possible to the real mooring system within its expected 

maximum displacement range, where the catenary line provides the restoring forces by its 

suspended line length. 
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1. Introduction 

Floating offshore wind energy research is focused on developing new platform concepts that fit  

the necessary requirements of the stability for a wind turbine design and also present competitive 

construction and operational costs. 

As in the Oil and Gas (O&G) Industry, into the design stage of the new platform concepts, the motion 

and loads of the platform have to be assessed and well predicted in several load combinations to ensure 

the reliability of the structure and the mooring system. The main approaches to predict the whole 

platform behavior are the numerical simulation and the physical scale models. However, it is still widely 

accepted in the offshore industry that model testing is the most reliable procedure to validate the results 

and to be the final benchmark for the design of a platform. 

The physical model testing is mainly performed in the ocean engineering basins, where the 

environmental conditions such as waves, currents and wind can be reproduced [1,2]. Furthermore, there 

are others facilities that can reproduce the ocean situations like wave flumes that are not commonly used 

due to their highly restrictive dimensions. On the other hand, the usage of these installations would help 

the development of the offshore wind technology allowing the performance of the model tests in more 

places and reducing costs in that research field. 

Some wind offshore platforms model tests have been performed in wave flumes despite their limited 

width dimension. One example is a Tension Leg Platform (TLP) prototype tested in the CEHINAV 

(Canal de Ensayos Hidrodinámicos) [3]. In this particular case, a flume is a suitable place for testing 

because of the inner configuration of a TLP, a buoyant platform moored with vertical tethers. Even a 

spread mooring system does not seem to fit well in a wave flume; Krawkosky et al [4] tested a spar scale 

model with a four line mooring system in a flume. The azimuthal angles between two adjacent mooring 

lines were of 90 degrees. The lines were scaled in two different ways, the lines placed in the longitudinal 

direction of the tank are well-scaled using proper tethers, while in the transverse direction the mooring 

lines are modeled as two constant forces. The forces were applied by two ropes hanging on both sides 

of the flume with weights on their extremes. However, this simplification does not allow changing the 

waves relative direction to the platform position because the scaled mooring system only works in the 

longitudinal direction. Furthermore, a three line mooring system could not be scaled in the same way 

because the different symmetry between the mooring system and the wave flume. Then, in order to 

perform tests with different wave directions using the same scaled mooring system, an equivalent system 

with shorter radius to anchor should be designed. In such a mooring system, the line length should be 

truncated to allow placing all mooring lines in the wave flume. Other scale models have been tested in 

bigger basins, [5] uses truncated mooring lines attached to springs because the depth of the basin does 

not match the model in the selected scale. Another solution to overcome the width basin constraint was 

adopted by [6], where the mooring line segment, constantly resting on the seabed during the tests, was 

removed. This lead to a shorter radius to anchor using the well scaled prototype mooring system. 
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Truncated mooring systems are a common scale method used in the O&G industry [7–10]. Since the 

tank basins sizes do not allow performing tests in the common scales for the upcoming ultra-deep waters, 

new systems have to be conceived to manage this challenge. The truncated passive system is the most 

widely used and feasible method of the hybrid model testing methods, which uses a combination of 

physical model tests and numerical modeling. In the passive method, all the model characteristics like 

platform properties, wave height, current velocity, etc., are well scaled except the working depth and the 

mooring shape. This method uses an equivalent truncated mooring system for the scale tests and the 

results are used to interpret and adjust the model in order to perform a full depth numerical model. 

Stansberg [9] states the challenges for the development of the truncated passive methods. The new 

truncated mooring system set-up has to guarantee the following aspects: (1) the motion response should 

have the same behavior as the results of the full-depth mooring system and (2) the truncated mooring 

system should present the most similar physical properties as the full-depth system. To achieve the correct 

design of the truncated mooring system, Stansberg presents the following rules ordered by priority. 

 Model the total horizontal restoring force  

 Model the quasi-static coupling between vessel responses 

 Model a “representative” level of mooring and riser system damping, and current force 

 Model a “representative” single line tension characteristics (at least quasi-static) 

In the field of the truncated mooring system design, optimization models to better adjust the truncated 

system approach to the real one commonly solve the problem. Zhang [10] proposed an annealing 

simulation algorithm for hybrid discrete variables (ASFHDV) to optimize the static response of a single 

catenary and the whole catenary system static response in one direction. Further investigations propose 

an optimization model that accounts for the mooring-induced damping generated by the transverse 

motion of the mooring line due to the low-frequency surge oscillation using a genetic algorithm [7].  

In order to improve the behavior of the truncated mooring line, Qiao [8] proposes the connection of 

viscous dampers joined to the mooring line to simulate the whole damping of the real mooring line. 

These models have been validated and widely used, but the quasi-static approach could underestimate 

the tension in the mooring lines due to dynamics when those are important [11]. On the other hand, new 

methods have recently been developed to take into account the line dynamics and obtain a more realistic 

system behavior using the real scaled mooring line in the upper sections, where the line dynamics are 

more important, and using external actuators that replicate the truncated line segments behavior [12]. 

The main contribution of this paper is the design of a truncated mooring system to replace the 

prototype mooring system, which cannot be installed due to basin constraints. The truncated mooring 

system is designed as a simple mooring line composed of two materials without any other external 

systems as springs. This new mooring system allows the study of several wave approaching directions 

to the whole structure, float and moorings. Tests results and the comparison with numerical simulations 

are also presented. 

First, the real model and the scale model due to the basin constrains are presented. Then, the calculation 

of the static mooring forces and the optimization problem are described. Finally, the optimization and 

the experimental results, with the comparison with numerical simulations, are discussed. 
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2. Real Model 

The monolithic concrete spar, the so-called Windcrete [13], is a prototype floating platform for wind 

turbines developed in AFOSP (Alternative Floating Platform Designs for Offshore Wind Turbines using 

Low Cost Materials) within a KIC-InnoEnergy innovation project [14–16]. 

The spar prototype is designed as a monolithic concrete structure from the top of the tower to  

the bottom of the buoy, thus joints are avoided to ensure water-tightness and a good fatigue behavior.  

The structure, for a 5 MW wind turbine, is composed of three parts: first, the buoy, composed of  

a cylinder with a diameter of 13 m and a height of 120 m; second, the transition segment, which is a 

cone of 10 m high, these two parts are the submerged ones, therefore the total draft of the structure is 

130 m. The third part is the emerged tower that reaches 87.6 m above the SWL. A sketch of the concept 

and its hydrodynamic characteristics are shown in Figure 1 and Table 1. The moorings system is 

connected to the platform at the fairleads located 60 m above the bottom with a draft of 70 m, near the 

Centre of Gravity (COG) to reduce the coupling motions between the surge and pitch. 

In this study, the Windcrete is considered to be placed in a 265 m depth sea location. The mooring 

system is configured to provide enough restoring force to maintain the platform motion in a relative 

offset and to prevail over the wave and wind loads. In order to achieve simplicity in the model, the prototype 

mooring system is composed of three equispaced chain mooring lines with the same cross section.  

The main characteristics of the line are defined in the Table 2. 

3. Scale Model 

Model tests were performed in the ICTS-CIEM (Investigation flume and offshore experimentation) 

inside LIM (Maritime Engineering Laboratory) at the UPC (Universitat Politècnica  

de Catalunya—BarcelonaTech). The flume is equipped with a wave generator that can generate waves 

from 10 cm up to 160 cm height. The flume is 100 meters long with a cross section 3.5 m wide and 5 m 

high. The flume and the wave paddle are shown in Figures 2 and 3, respectively. 

According to the prototype’s sizes and the flume height, the selected scale is 1:100. Then, the scaled 

depth would be 2.65 m. The flume width does not allow the direct scaling of the catenary lines because 

the common anchor radius should be between two and four times the total depth, requiring a 10 m wide 

channel. Furthermore, if several wave directions are studied, the mooring system should be able to rotate 

in z direction allowing the wave to impact on the platform from different relative direction with the 

mooring system. Then, the mooring system should not be connected through the flume wall. For these 

reasons, a truncated mooring system is used in the model scale test, reducing the radius to anchor 

distance, and therefore the total length of the lines. Figure 4 shows the cross section of the wave flume 

with both the scale prototype mooring system and the truncated one. 
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Figure 1. Sketch of Windcrete concept.  
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Table 1. Hydrostatic characteristics of Windcrete. 

Property Value 

Displaced Volume [m3] 1.69 × 104 
Draft [m] 130.0 

Concrete mass [kg] 8.71 × 106 
Ballast mass [kg] 8.34 × 106 

Wind turbine mass [kg] 3.50 × 105 
CM [m] 53.34 
CB [m] 63.97 

Metacentric height [m] 10.57 

Table 2. Prototype mooring line characteristics. 

Depth [m] 265 

Draft to fairlead [m] 70 
Mooring depth 195 

Radius to anchor [m] 660 
Line length [m] 732.93 

Line mass per unit length [kg/m] 150.3 

 

Figure 2. Wave flume. 

The truncated mooring system is defined by the radius to anchor, the line length and the materials 

that compose the different segments of the mooring line. The radius to anchor is previously defined as 

the maximum radius allowed by the channel width taking account the margins for a proper installation 

operation of the mooring system. Furthermore, if the truncated mooring line were composed of a unique 

cross section, the necessary weight to achieve the restoring forces of the prototype system would cause 

huge vertical forces on the floating platform. For this reason, two different chain sections are chosen to 

design the mooring line. The heaviest line section is positioned at the bottom, connected to the anchor, 

providing the restoring horizontal force. The upper section, a light segment connected to the platform, 
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reduces the total line payload due to its light weight. The exact properties of the lines are obtained 

through an optimization problem to fit the responses between the prototype mooring system and the 

truncated one, which is presented in next sections. 

 

Figure 3. CIEM wave paddle. 

 

Figure 4. Prototype vs. truncated mooring system. 

4. Static Mooring Lines Forces 

The static catenary line can be described by the equations deduced from applying equilibrium on the 

whole forces acting on a line segment. As is shown in Figure 5, a catenary segment is subjected to the 
inner line tensions ( )T , the gravity forces accounted by the weight per unit length of the line ( )  and the 

hydrodynamic forces, which are the transversal drag forces per unit length ( )F  and the normal drag 

forces per unit length ( )D . 

The static equilibrium of the line segment leads to the following equations: 

         
sin( ) F 1

T
dT ds

EA
 (1)
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          
∙ cos( ) 1

T
T d D ds

EA
 (2)

 

Figure 5. Segment line forces scheme. 

To solve Equations (1) and (2), the mooring line is discretized in n + 1 nodes forming n line elements. 
The nodes are described as  1 2 1[ , ,...,N ,..., ]i nN N N N  and the segments as  1 2[ , ,..., ,...,S ]i nS S S S .  

The properties that define each element are the weight per unit length i , its length il  and the longitudinal 

stiffness iEA . Figure 6 shows a sketch of the mooring line composed by n segments. 

 

Figure 6. Mooring line piecewise scheme. 

Without taking into account the hydrodynamic forces, the tensions in each node are evaluated from 

the tensions of the previous node applying the external forces placed on the centre of each element. 
Equations (3)–(5) express the tensions of the (i+1)th node 


1( )iT  as a function of the tensions of ith node 


( )iT  in the 3DOF (Degrees of freedom) (Figure 7). 
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Figure 7. Force scheme of two consecutive nodes. 




1i iX XT T  (3)




1i iY YT T  (4)



 

1i iZ Z i iT T l  (5)

The position of the (i+1)th node 


1(r )i , as shown in Figure 7, can be expressed from the position  

of the ith node 

( )ir  (Equation (7)). Where 


,idv  (Equation (6)) is the directional vector, and ߝ௜  

(Equation (8)) is the strain of the element. 





i

i
d

i

T
v

T
 (6)

   
  

1 ,[(1 ) ]?i i i i d ir r l v  (7)

  i
i

i

T

AE
 (8)
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The computing procedure follows the scheme proposed by [7]. The position of the nodes are evaluated 
from the initial approach of the tension force in the node n + 1 1( )


nT  and the position of the anchor 1( )


r . 

If the assessed/estimated position of the fairlead 1( )

nr  is not close enough to the known value, a new 

approximation of 1( )

nT  is applied using a non-linear solving method. 

By using this method, the mooring line response is evaluated at any fairlead position and the forces 

on the top of the line are determined. This method can be modified to take into account the hydrodynamic 

forces in the static analysis. In addition, more complex geometries, such as delta connections, and 

external elements, such as clumps weights or buoys, can be included. 

The mooring system response is obtained by combining the forces on the fairleads of all mooring lines. 

5. Optimization Problem 

The objective of the optimization problem is to determine a new catenary system presenting a similar 

static behavior of the prototype when the radius to anchor is reduced. This kind of problem can be 

expressed as a minimization problem, where the static response of the truncated mooring system has to 

fit with the prototype ones in a non-scale scenario. Then the properties of the truncated mooring system 

will be well scaled for the tests. 

The optimization problem can be expressed mathematically as: 

 min ( )f X  (9)

Subjected to the constraints: 




( ) 0

( ) 0
i

j

g X

h X  (10)

where: 

݂ሺܺሻ:Թ௡ ⟶ Թ is the objective function to be minimized over the variables X  
( ) 0ig X ; 1,...,i m  are the inequality constraints 

( ) 0jh X ; 1,...,j p  j = 1,…,p are the equality constraints 

The design variables are the parameters that define the mooring line. In order to reduce the complexity 

of the optimization problem and the final design, the mooring truncated line would have two different 

segments. Each segment is defined by its lengths and chain diameter. Then, the design variables are the 
components of the vector X  defined as  1 2 1, 2[ , , ]X d d l l , where d is the diameter, l the segment length 

and the subscript defines the segment. The weight per unit length ( )  and the longitudinal stiffness (EA) 

of the segment line can be calculated from the chain diameter (d[mm]), using Equations (11) and (12). 

  20.1875 [N/m]d  (11)

 290000 [N]EA d  (12)

The objective function—to be minimized—is formulated from the prototype mooring line force 

responses ሺܨ௜ሻ that have to be emulated. The objective function is evaluated in several points of the surge 
work range	ሺݔ௝ሻ since it is the main movement direction. The responses emulated are the horizontal and 

vertical restoring forces of the mooring system and the line tension. As shown in Figure 8, the objective 
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function is expressed as the difference between the response of the prototype mooring system and the 

truncated one. This distance has to be minimized as a function of the mooring variables	ሺܺሻ. 

 

Figure 8. Prototype vs. truncated mooring system response. 

The objective function can be expressed as the sum of the single objective function of each property 

multiplied by a weight factor Equation (13). The sum of all weight factors is 1: 


 1
1

n

ii
. 




 
1

( ) ( )
n

i i
i

f X f X  (13)

Each single objective function (Equation (14)) is expressed as the root mean square value (rms) of 

the dimensionless difference between the prototype response and the truncated one, which are evaluated 

in the n selected surge points: 



 
   

 


2

i, i,

1 i,

( ) F ( , )1
( )

( )

n
prototype j truncated j

i
j prototype j

F x x X
f X

n F x
 (14)

The optimization problem is solved using the GlobalSearch Algorithm in Matlab [17], which uses a 

scatter-search mechanism for generating start points. From the starting points, GlobalSearch examines 

the trial points and choose the ones that can generate a better solution. Then, the chosen points are evaluated 

by a local minimization solver. The process ends when all the trial-points have been evaluated [18]. 

6. Truncated Mooring System Design for Windcrete 

The truncated mooring system was designed for a radius to anchor of 140 m. The objective function 

was evaluated for a surge excursion ranging from −40 to 25 m. Surge excursion is the main platform 

motion that depends on the mooring system response. The surge interval ensures a horizontal response 

for a 600 kN mean wind force. The asymmetry of the mooring system (Figure 9) produces an asymmetry 

response in surge. 
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Figure 9. Mooring system sketch. 

The chosen characteristics of the prototype to be minimized in the multi-objective function are: the 

tension of one line, the horizontal mooring system response and the vertical mooring system response. 

Therefore the multi-objective function can be described as Equation (15). 

    , , , ,( ) ( ) ( ) ( ))T T x s x s z s z sf X f X f X f X  (15)

where Tf  is the function to optimize the tension of a line; and ,x sf  and z,sf  are the functions which 

describe the difference between the response prototype and truncated mooring system in x  and z  

direction, respectively. Since the surge response is mainly depends on the mooring system, the largest 
weight factor  ,x s  is given to it. Selected weights are consistent with the references [7,10]. The 

weighting factors used for the multi-objective problem are 0.2, 0.6 and 0.2 for T   ,x s  and  ,z s  

respectively. A sensitivity analysis of the variation of the weight factors was performed. It confirmed 

that low variations of the weight factors lead to a similar solution of the optimization problem. 

The constraints applied to the problem are the length of the line, which is defined between its taut 

(Equation (16)) and completely slack (Equation (17)) shape. These constraints are expressed as a 

function of the radius to anchor and the mooring depth. Other constraints are the minimum and maximum 

diameter of the lines, defined by Equations (18) and (19), respectively, which are fixed to get a feasible 

scalable chain for the tests. 

   2 2
1 2 140 195 240.1l l m  (16)

   1 2 140 195 335l l m  (17)

min 60d mm  (18)
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max 250d mm  (19)

The solution of the optimization problem yields to a truncated catenary system composed by lines of 

two different segments with different weight per unit length. The segment a is the lower one and is linked 

to the anchor, while the segment b is the upper one and is connected to the platform. The segment a is 

heavier and shorter than segment b. With this configuration, the stiffness of the restoring force of the 

catenary system is mainly provided by the segment a, while the segment b contributes to reduce the 

suspended weight of the mooring line. The properties of each segment of the mooring line as a result of 

the optimization problem are shown in the Table 3. 

Table 3. Truncated mooring line characteristics. 

Segment a 
Diameter [mm] 200.1 

Length [m] 80 
Line mass per unit length [kg/m] 878.6 

Segment b 
Diameter [mm] 58.4 

Length [m] 177 
Line mass per unit length [kg/m] 74.7 

The response of the optimized catenary system is presented in Figures 10 and 11. Figure 10 shows 

the comparison between the horizontal and the vertical response on both mooring systems. The horizontal 

response of the truncated system fits well with the prototype response. However, for large offsets, the 

responses start to diverge. The mooring system vertical force component is larger for the truncated one. 

The reduction of the radius to anchor implies an increment of the suspended weight on the platform for 

a similar horizontal force. Then, a deeper draft would be expected in the platform during the tests: of 

about 0.5 m. The line tension is well fitted along the whole surge excursion studied in the optimization 

problem (Figure 11). 

 

Figure 10. Mooring system response curves. 
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Figure 11. Traction mooring line response. 

7. Experimental Results 

The model is scaled at 1:100 factor using the Froude similitude. The platform model is made of 

aluminum to adjust the density of the material to be close to concrete, simplifying the fit of the rest of 

the platform parameters. The mooring lines are composed of two chain segments that adjusted to fit the 

weight per meter length computed in the optimization problem. The scale model placed inside the flume 

attached to the mooring system is shown in Figure 12. 

 

Figure 12. Scale model inside the flume. 
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The scaled prototype mooring line response were validated by checking the horizontal line response 

for a depth of 1.95 m and an excursion between 90 and 180 cm from the anchor. The results obtained in 

the static verification and the numerical results are plotted in Figure 13. The figure shows good agreement 

between both responses. 

 

Figure 13. Comparative horizontal force response. 

Dynamic tests were carried out in several sea states with regular and irregular waves, and an almost 

constant wind force on the top of the nacelle. The experimental results were measured from the nacelle 

motion by an optical system which can track the 6 DOF [19]. 

Figure 14 shows the surge and heave response comparison between the experiment, the simulation 

with the truncated lines and the simulation of the platform equipped with the prototype mooring system. 

These responses correspond to a regular wave of 14 cm height and a period of 1.5 s, and a constant force 

on the top of the platform of 0.6 N to simulate the wind. The experimental results show good agreement 

between the test and the numeric simulation with the truncated lines in terms of mean offset, mean draft 

and also with the wave amplitude movement. However, some differences can be seen due to a low frequency 

movement that occurred during the test. This disturbance was produced by a long wave reflection in the 

longitudinal direction of the flume. In the transverse direction, no reflections were noticed. The simulation 

of the prototype mooring system shows a shorter total surge excursion than the truncated one. This 

difference is explained by two effects. First, the stiffness of the prototype mooring system for positive 

excursions is higher than the truncated ones, as is shown in Figure 10. Second, there is a loss of stiffness 

due to a draft increase of about 0.5 cm. In this situation, the lower depth of the fairlead position requires 

an increased excursion to achieve the same horizontal force. The draft increase can be noticed in the 

heave response (Figure 14b) as a decrease of the mean heave position of the truncated mooring compared 

to the prototype one. 
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Figure 14. Comparison surge (a) and heave (b) nacelle motion response. 

The results of a Fast Fourier Transform (FFT) of the surge and heave platform responses are shown 

in Figure 15. Both diagrams show clearly the peak motion due to the wave excitation at a frequency of  

0.66 Hz (period of 1.5 s) and the amplitudes match very well.  

The main differences between the simulations and the experimental results are the excitation of  

the low frequency surge motion of the platform during the experiments, as already discussed. This affects 

the heave response, which FFT (Figure 15b) presents as two small peaks: at 0.05 Hz, the natural surge 

frequency, and at 0.337 Hz, the heave natural frequency. 
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Figure 15. Surge (a) and heave (b) motion Fast Fourier Transform functions.  

8. Conclusions 

This paper describes and assesses the use of a truncated mooring system to emulate the real one in 

scaled experiments when there is a limitation of the available width in the flume. In this case, where the 
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radius to anchor has to be reduced, an optimization problem based on the static mooring system response 

helped to fit the horizontal and vertical mooring responses and the traction line. The optimization 

problem is evaluated in the surge work range because is the main platform motion that depends on the 

mooring system response. 

The truncated mooring line stiffness is obtained by using two different line sections: the bottom one 

is the heaviest and provides the horizontal mooring line stiffness. The upper section is lighter than the 

prototype mooring and reduces the vertical force over the platform. 

The truncated catenary presents almost the same traction response as the completed prototype 

mooring system (differences less than 5%). On the other hand, the horizontal stiffness of the truncated 

system differs from the prototype, particularly for large excursions. In addition, the truncated mooring 

system presents a higher vertical force on the platform that lead to an increment of the draft.  

Experiments are compared to numerical simulations with the real and prototype mooring system.  

The experimental results show good agreement with the numerical simulations. Some differences are 

noticed in the mean surge excursion of the truncated mooring system, which is larger. This is a 

consequence of the lower surge stiffness and an extra loss of stiffness due to the increase of the draft. 

Despite this, surge and heave responses due to wave loads are well predicted. 
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