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Abstract: We study the modulation of atmospheric nonisothermality and wind shears on the
propagation of seismic tsunami-excited gravity waves by virtue of the vertical wavenumber, m
(with its imaginary and real parts, mi and mr, respectively), within a correlated characteristic
range of tsunami wave periods in tens of minutes. A generalized dispersion relation of
inertio-acoustic-gravity (IAG) waves is obtained by relaxing constraints on Hines’ idealized
locally-isothermal, shear-free and rotation-free model to accommodate a realistic atmosphere
featured by altitude-dependent nonisothermality (up to 100 K/km) and wind shears (up to 100
m/s per km). The obtained solutions recover all of the known wave modes below the 200-km
altitude where dissipative terms are assumed negligible. Results include: (1) nonisothermality
and wind shears divide the atmosphere into a sandwich-like structure of five layers within the
200-km altitude in view of the wave growth in amplitudes: Layer I (0–18) km, Layer II (18–87)
km, Layer III (87–125) km, Layer IV (125–175) km and Layer V (175–200) km; (2) in Layers I, III and
V, the magnitude of mi is smaller than Hines’ imaginary vertical wavenumber (miH), referring to an
attenuated growth in the amplitudes of upward propagating waves; on the contrary, in Layers II and
IV, the magnitude of mi is larger than that of miH , providing a pumped growth from Hines’ model;
(3) nonisothermality and wind shears enhance mr substantially at an∼100-km altitude for a tsunami
wave period Tts longer than 30 min. While Hines’ model provides that the maximal value of m2

r is
∼0.05 (1/km2), this magnitude is doubled by the nonisothermal effect and quadrupled by the joint
nonisothermal and wind shear effect. The modulations are weaker at altitudes outside 80–140-km
heights; (4) nonisothermality and wind shears expand the definition of the observation-defined
“damping factor”, β: relative to Hines’ classical wave growth with β = 0, waves are “damped”
from Hines’ result if β > 0 and “pumped” if β < 0. The polarization of β is determined by the angle
θ between the wind velocity and wave vector.

Keywords: seismic tsunami; gravity wave; nonisothermality; wind shears

1. Introduction

For more than 10 years, LiDAR has recorded both atmospheric nonisothermality (featured
with temperature gradients up to 100 ◦K per km) and large wind shears (e.g., 100 m/s per km)
between ∼85- and 95-km altitudes [1–5]. Spaceborne data revealed that the criterion of the wind
shear-related Richardson number, Ri ≤ 1/4, is only a necessary, but not sufficient, condition for
dynamic instability [6]. Hall et al. [7] obtained spatially-averaged Ri data, which appeared to
reach one at a 90-km altitude over Svalbard (78◦ N, 16◦ E). Importantly, measurements of airglow
layer perturbations in O(1S) (peak emission altitude ∼97 km) and OH (peak emission altitude
∼87 km) driven by propagating acoustic-gravity waves suggested an exponentially-growing wave
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amplitudes [8,9]: AO(1S) = AOH exp [(1− β)∆z/(2H)], in which AO(1S) and AOH are the amplitudes
at the O(1S) and OH emission lines, respectively; ∆z is the height difference between the OH and
O(1S) emission layers, and β is the so-called “damping factor”, which classifies waves with (1) β = 0:
free propagating without damping; (2) 0 < β < 1: weakly damped; (3) β = 1: saturated without
amplitude increase; and (4) β > 1: over-damped [9,10]. In addition, for the vertical wavelengths of
20–50 km, β is between zero and four, indicating that most waves were damping-dominated.

By contrast, in theoretical studies on acoustic-gravity waves, the earliest work focused on
an idealized atmosphere featured with an isothermal temperature, homogeneous horizontal wind
speeds, rotation free and dissipation free. For example, Hines [11,12] showed that A increases
with height (z) exponentially from the initial values A0 at z = 0: A = A0exp [z/(2H)], where
H = C2/(γg) is the scale height. Here, C =

√
γkBT/M is the speed of sound; γ is the ratio of specific

heat; g is the gravitational acceleration constant; kB is Boltzmann’s constant; T is the mean-field
temperature; and M is the mean molecular mass. The result was then extended to an isothermal,
but dissipative atmosphere [13,14]. It was found that growth A becomes attenuated due to the
introduction of the imaginary component (mi) of the vertical wavenumber (m), expressed by a similar
formula: A = A0 exp

∫ z
z0
(1/2H − |mi|)dz, in which mi increases in altitude. Above some height

(e.g., F2-peak altitude), it is approximately equal to 1/(2H), while at higher altitudes, it is larger than
1/(2H), leading to a decaying amplitude [15–18]. Based on a “multi-layer” approximation, Hines
and Reddy [19] calculated the coefficients of the energy transmission through a stratified atmosphere.
They argued that nonideal conditions, like vertically-changing temperature and wind speeds, do not
severely attenuate incident waves propagating upward through the mesosphere; however, stronger
attenuation can be indeed expected low in the thermosphere. In addition, Hines [20] found that the
shear-contributed anisotropic Richardson criterion, Ri ≤ 1/4, can well portend the onset of isotropic
atmospheric turbulence. However, for symmetric instabilities, it was claimed that the criterion
becomes Ri ≤ 1 ([21]).

From the 1970s, seismic tsunamis began to be recognized as a possible driver to excite
atmospheric gravity waves, which subsequently propagate to the upper atmosphere, where the
conservation of wave energy causes the wave disturbance amplitudes to be enhanced due to the
decrease of atmospheric density with increasing altitudes, based on the isothermal and shear-free
model [22,23]. Nevertheless, a realistic atmosphere does own temperature gradients and wind shears.
Serious concerns were naturally attracted towards such fundamental questions, like to what extent
the nonisothermality and wind shears influence the propagation of acoustic-gravity waves and what
the mechanism is for amplitude A to be modulated in wave damping or growing versus altitude.
Theoretically speaking, while mi has already been solved either with the linear wave approximation
(e.g., [24–29]) or with the numerical “full wave model” approach under the WKB approximation (e.g.,
[14,18,30–38]), the intrinsic connection between mi and A, as well as other parameters, like β and Ri,
is so complicated in the presence of nonisothermality and wind shears that no appropriate models
were proposed to account for the damping and growth of gravity waves.

Merely for the Richardson number, it has different expressions under isothermal and
nonisothermal conditions: by definition, it is the ratio between the buoyancy (or Brunt-Väisälä)
frequency and the shear S. However, there exist two buoyancy frequencies, ωb (isothermal) and
ωB (nonisothermal) (e.g., [18,39,40]). Accordingly, there are two Richardson numbers:

Ri = ω2
b/S2 (isothermal), or, RI = ω2

B/S2 (nonisothermal) (1)

in which:

ω2
b = (γ− 1)

g2

C2 , ω2
B = (γ− 1)

g2

C2 +
g

C2
dC2

dz
, S2 =

(
dU
dz

)2
+

(
dV
dz

)2
(2)

where U and V are the zonal and meridional components of the mean-field horizontal wind with
velocity v0 = {U, V, 0}. Similar issues also exist when dealing with the cut-off frequencies of
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acoustic-gravity waves under different thermodynamic conditions. It deserves mentioning here
that the amended Ri-criterion given in [21] (i.e., for Ri < 0.25, the K-Hinstabilities dominate; for
0.25 < Ri < 0.95, the symmetric instabilities dominate; for Ri > 0.95, the conventional baroclinic
instabilities dominate) is valid even for a stratified shear flow in view of energy balance [41]; and
stepping further, a stably stratified turbulence can still survive for Ri � 1 [42].

How do atmospheric nonisothermality and wind shears influence the damping and growth of
seismic tsunami-excited acoustic-gravity waves? We are inspired to turn our attention to this subject
in the study of realistic atmospheres surrounding not only the Earth, but also other planets, like Mars.
The motivation to tackle this problem is the necessity of an effective physical model to demonstrate
the effects of the nonisothermality and wind shears on the modulation of propagating gravity waves
driven by hazard events, like tsunamis. We develop the study on the basis of the proper knowledge
of: (1) the vertical growth of gravity waves under nonisothermal, wind shear conditions; (2) the
relation among the wave period, β, and vertical wavelength; (3) the dependence of β on the zonal
and meridional wind shears; and (4) the filtering of waves due to background winds. The region
concerned is from sea level to a 200-km altitude within which the atmosphere is non-dissipative
(negligible viscosity and heat conductivity), and the ion drag and Coriolis force can be reasonably
omitted [14,43–45]. This is also a region that completely covers the lower airglow emission zone below
an∼100-km altitude. The structure of the paper is as follows: Section 2 formulates the physical model
used to expose the mean-field properties, which are obtained from the empirical neutral atmospheric
model, NRLMSISE-00 [46], and the horizontal wind model, HWM93 [47]. A generalized dispersion
relation of inertio-acoustic-gravity (IAG) waves under nonisothermal and wind shear conditions is
derived. Employing this dispersion relation under different conditions, Section 3 also extends all
of the classical wave modes contributed by previous models, including Hines’ locally-isothermal,
shear-free and rotation-free model [11], Eckart [48] and Eckermann’s [49] IAG model and Hines [20]
and Hall et al.’s [7] isothermal and wind shear model. In addition, this section also presents the
respective influences of nonisothermality, wind shears and the Coriolis parameter on propagating
waves. Section 4 offers the conclusion and a discussion.

2. Modeling

A Cartesian frame is suitable to be used for studying the propagation of acoustic-gravity waves
in the Earth’s spherically-symmetric gravitational field [50]. We choose such a local coordinate
system, {êx, êy, êz}, in which êx is horizontally due east, êy due north and êz vertically upward.
The neutral atmosphere is described by a set of hydrodynamic equations based on conservation laws
in mass, momentum and energy, as well as the equation of state. Considering that airglow emissions
happen at 80–100 km heights (e.g., [51–53]) and that below a 200-km altitude, the atmosphere
is non-dissipative, where the viscosity, heat conductivity and the ion drag can all be neglected
[14,43–45], we obtain these equations as follows (for the complete set of equations including these
terms, see, e.g., [25,45,50,54–57]):

Dρ
Dt = −ρ∇ · v
ρ Dv

Dt = −∇p + ρg + 2ρv×Ω
1
γ

Dp
Dt = −p∇ · v

p = ρRsT

 (3)

in which we still keep the Coriolis term alive so as to be convenient to test our model by a direct
comparison with the well-developed inertio-acoustic-gravity (IAG) model [58,59]. The parameters in
Equation (3) are defined as follows:

v, ρ, p and T: atmospheric velocity, density, pressure and temperature, respectively;
D/Dt = ∂/∂t + v · ∇: substantial derivative over time t;
g = {0, 0,−g}: gravitational acceleration;
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Ω = {0, Ωcosφ, Ωsinφ}: Earth’s Coriolis vector where Ω = 7.29× 10−5 rad/s and φ is latitude;
γ and Rs: adiabatic index and gas constant, respectively.

We adopt standard linearization by neglecting higher-order perturbations. The variables in
Equation (3) contain two types of ingredients: the ambient mean-field component to be denoted by
subscript “ 0” and the first-order quantity denoted by subscript “ 1”:

ρ = ρ0 + ρ1, T = T0 + T1, p = p0 + p1

v = v0 + v1 = {U, V, 0}+ {u, υ, w}(
ρ1
ρ0

, p1
p0

, T1
T0

, u
U , υ

V , w
)

∝ ei(k·r−ωt)

 (4)

where U and V are the zonal (eastward) and meridional (northward) components of the mean-field
wind velocity (note that the wind is horizontal, and thus, the vertical component W is zero),
respectively; u, υ, w are the three components of the perturbed velocity, respectively; and k = {k, l, m}
(in which m = mr+imi) is the wave vector, and ω is the wave frequency. Due to the existence of
the inhomogeneities in the mean-field properties in a realistic atmosphere, there exist the following
input parameters:

kρ = 1
Hρ

= d(lnρ0)
dz , kp = 1

Hp
= d(lnp0)

dz , kT = d(lnT0)
dz ;

ωv = S =

√(
dU
dz

)2
+
(

dV
dz

)2

 (5)

in which Hρ and Hp are the density and pressure scale heights, respectively, kρ, kp and kT are the
density, pressure and temperature scale numbers, respectively, satisfying kT = kp − kρ from the
equation of state. There also exists a simple relation among kp, g, and C: kp = −γg/C2. From
now on, we use ωv to replace S in order to expose the spatially-velocity-curl nature of wind shears.
Note that the unit of ωv is m/s per km. In dimensional analysis (a useful tool to check the validity of
the algebra of the modeling at the lowest level), this unit has the same physical dimension as that of
the wave frequency, rad/s. Thus, the unit of ωv is “m/s per km”, rather than “rad/s”.

Note that the linearization introduced above is different from the WKB approximation. The WKB
approach assumes linear wavelike solutions in time and 2D horizontal coordinates, but not in the
vertical direction only along which the mean-field properties are supposed to vary, while keeping
their homogeneities in the horizontal plane (e.g., [24]). A 1D vertical Taylor–Goldstein equation
(or, equivalently, a quadratic equation) can thus be derived in the presence of the height-varying
temperature and wind shears to describe the vertical propagation of tsunami-excited gravity waves.
For details, see, e.g., Equation (4) in [60].

2.1. Mean-Field Properties

The undisturbed mean-field parameters and wind components in the vertical direction up to
a 200-km altitude are calculated, as shown in Figure 1, by employing both the empirical neutral
atmospheric model, NRLMSISE-00 [46], and the horizontal wind model, HWM93 [47]. The chosen
heights cover the airglow layer well within which the peak emissions of O(1S) and OH are at ∼97 km
and ∼87 km, respectively. We arbitrarily choose a position at 60◦ latitude and −70◦ longitude for a
local apparent solar time of 1600 on the 172th day of a year, with the daily solar F10.7 flux index and
its 81-day average of 150. The daily geomagnetic index is four.

In the figure, (a) displays the atmospheric mass density ρ0 (pink) and pressure p0 (blue),
while (b) shows their gradients dρ0/dz (pink) and dp0/dz (blue), respectively. Density ρ0

decreases all the way up from 1.225 kg/m3 (or 2.55×1025 1/m3) at sea level to only
2.69× 10−10 kg/m3 (5.6× 1015/m3) at a 200-km altitude. Pressure p0 has a similar tendency to ρ0.
It reduces from 105 Pa at sea level to 7.9 × 10−5 Pa ultimately. Both dρ0/dz and dp0/dz die out
versus height and are nearly zero above an ∼50-km altitude. (c) exposes the density scale height
Hρ (blue) and pressure scale height Hp (pink), while (d) gives the three scale numbers in density,
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kρ (pink), pressure, kp (black), and temperature, kT (blue). Both Hρ and Hp are 8.64 km and 8.22 km,
respectively, at sea level, but soar to as high as 32.7 km and 39.3 km, respectively, when approaching a
200-km altitude (note that the two heights are not equal; only under the isothermal condition, kT = 0,
can Hρ = Hp or kρ = kp be valid); accordingly, the altitude profiles of kρ and kp are similar to those of
−Hρ and −Hp, respectively; by contrast, kT experiences adjustments a couple of times from negative
to positive and eventually keeps its positive polarization above the 100-km height, which is finally
inclined to zero.
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Figure 1. Altitude profiles of mean-field properties. (a) Mass density ρ0 (pink) and pressure p0

(blue); (b) density gradient dρ0/dz (pink) and pressure gradient dp0/dz (blue); (c) density scale
height Hρ (blue) and pressure scale height Hp (pink); (d) density scale number kρ (pink), pressure
scale number kp (black) and temperature scale number kT (blue); (e) temperature T0 (blue) and sound
speed C (pink); (f) temperature gradient dT0/dz; (g) zonal (eastward) wind U (blue) and meridional
(northward) wind V (pink); (h) zonal wind gradient dU/dz (blue) and meridional wind gradient
dV/dz (pink); in (e), a dashed line in red is given as a reference to show an ideal atmosphere, which
is isothermal at all altitudes.

(e) presents temperature T0 (blue) and sound speed C =
√

γRsT0 (pink) in the LHS one, while (f)
illustrates temperature gradient dT0/dz. Temperature T0 is 281 ◦K at sea level. It decreases linearly
to 224 ◦Kat 13 km and then returns to 281 ◦K at 47 km, followed by a reduction again to 146 ◦K
at 88 km. Above this height, the temperature goes up continuously at higher altitudes and reaches
an exospheric value of >1000 ◦K above a 190-km height (at 194 km, it is 1000 ◦K). As a reference,
a dashed line in red is depicted to show an ideal atmosphere that is isothermal at all altitudes; the
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magnitude of T0 stays the same as that at sea level. Sound speed C follows the variation of T1/2
0 . At

sea level, it is 337 m/s; at a 200-km altitude, it is 731 m/s. For dT0/dz, it transits twice from negative
to positive below a 100-km altitude, within 10 m/s per km, and monotonously returns to zero above a
120-km height. (g) exhibits the zonal (eastward) wind U (blue) and the meridional (northward) wind
V (pink), and (h) displays the zonal wind gradient dU/dz (blue) and the meridional one dV/dz (red).
Both of the horizontal wind components oscillate twice dramatically within ±51 m/s in amplitude,
and their gradients, dU/dz and dV/dz, are also featured with obvious undulations. For example,
the former jumps from ∼4 m/s per km–−5.5 m/s per km within only a 25 km-thick layer at about a
100-km altitude.

NRLMSISE-00 and HWM93 demonstrated that the horizontal gradients of ρ0, T0, p0, U and V
are always at least three orders smaller than those in the vertical direction. We consequently assume,
as previous authors did, that the mean-field parameters are uniform and stratified in the horizontal
plane, free of any inhomogeneities, i.e., ∂/∂x ' 0, ∂/∂y ' 0 and ∇ ∼= (∂/∂z)êz. Besides, we take
350-km and 50-km horizontal wavelengths in our model, based on the data of the relations between
horizontal wavelength and wave periods during the SpreadFExcampaign [61].

2.2. Generalized Dispersion Relation

Acoustic-gravity waves originate from small perturbations away from their mean-field
properties and propagate in a stratified atmosphere [62]. Employing Equation (4) to linearize
Equation (3) yields the following set of perturbed equations:

∂ρ1
∂t + v0 · ∇ρ1 + v1 · ∇ρ0 + ρ0∇ · v1 + ρ1∇ · v0 = 0

∂v1
∂t + v1 · ∇v0 + v0 · ∇v1 = − 1

ρ0
∇p1 +

ρ1
ρ0

g + 2v1 ×Ω + 2 ρ1
ρ0

v0 ×Ω
∂p1
∂t + v0 · ∇p1 + v1 · ∇p0 = −γp0∇ · v1 − γp1∇ · v0

p1
p0

= ρ1
ρ0

+ T1
T0

 (6)

which provides the following dispersion equation:

ω k l m− ikρ 0

0 ω −i f i dU
dz k

0 i f ω i dV
dz l

−ig 0 0 ω m− ikp

0 k l m− i kp
γ

ω
C2





ρ1
ρ0

u

v

w

p1
p0


= 0 (7)

from which a generalized, complex dispersion relation of inertio-acoustic-gravity (IAG) waves is
derived in the presence of nonisothermality and wind shears, if and only if the determinant of the
coefficient matrix is zero:

ω4
∗ −

(
C2K2 + f 2 + gkT

)
ω2
∗ + (C2m2 + gkT) f 2−

−(γ− 1)gkhω∗ωv cos θ + C2k2
hω2

B =

= iC2m
[

γg
C2

(
ω2
∗ − f 2)− khω∗ωv cos θ

]
 (8)

in which f = 2Ωsinφ is the Coriolis parameter (where φ is the latitude); θ is the angle between
horizontal wave vector kh and mean-field wind velocity v0, defined by:

cos θ =
kh · v0

kh
√

U2 + V2
(9)
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and,
ω∗ = ω− k · v0, K2 = k2

h + m2, k2
h = k2 + l2 (10)

For simplicity, we omit “∗” attached to ω in following texts.
Because m is complex, use (mr+imi) instead of m in Equation (8). This yields the final expression

of the dispersion relation:

mi = −kg

[
1− ω2

2(ω2− f 2)
ωv

kgVph
cos θ

]
;

ω4 −
(

C2k2
h + f 2 − 2−γ

2 g ωv
VpH

cos θ
)

ω2 −
(
C2m2

r + ω2
A
) (

ω2 − f 2)+
+C2k2

hω2
B

(
1− 0.25

RI
ω2

ω2− f 2 cos2 θ
)
= 0

or, alternatively,

m2
r =

ω2−ω2
A

C2 + k2
h

[
ω2

B−ω2

ω2− f 2 − 1
2

ω2
vω2

(ω2− f 2)
2

(
2−γ

γ
ω2− f 2

k2
hVpVph

+ 1
2 cos θ

)
cos θ

]


(11)

in which:

kg = γg
2C2 , k2

gT = gkT
C2 , k2

G = k2
g + k2

gT ; RI =
ω2

B
ω2

v
= Ri +

gkT
ω2

v
, Ri =

ω2
b

ω2
v

;

Vph = ω
kh

, Vp = ωv
kp

; ω2
a = C2k2

g = γ2

4(γ−1)ω2
b , ω2

A = C2k2
G = ω2

a + C2k2
gT

 (12)

where Vph is the horizontal phase speed and RI is the updated expression of Ri in a nonisothermal
atmosphere.

Figure 2 illustrates the vertical profiles of these parameters for a tsunami period of 33.3 min and
horizontal wavelengths of (k, l) = (400, 2000) km. (a) reveals that the isothermal Richardson number,
Ri (as represented by its inverse, 1/Ri in blue), is mostly larger than the nonisothermal one, RI (as
represented by its inverse, 1/RI in pink), below the 85-km altitude, while it is smaller above the 85-km
altitude. This is due to the mostly negative kT below the height and the positive kT above the height.
The maximal value of 1/Ri is 0.197, much less than four, indicating that the velocity shear is far
incapable of overcoming the tendency of a stratified fluid to remain stratified, and thus, instabilities
are sufficiently suppressed (e.g., [20,63]).

In the lower four panels, (b) shows the curves of k2
gT (black), k2

g (pink) and k2
G (blue).

Take a reference from the kT-curve in Figure 1. Due to the double polarities of kT versus altitude,
the value of k2

gT can be either positive or negative, depending on the changes of kT . The values of k2
g

and k2
G are always positive. However, the influence of k2

gT on k2
G cannot be neglected, though the two

lines of k2
g and k2

G appear to be twins: between 20 and 50 km and above 90 km, k2
G > k2

g; while in other
regions, k2

G < k2
g. This feature is important due to the fact that k2

g and k2
G are directly correlated with

the two acoustic cut-off frequencies, ωa and ωA, under isothermal and non-isothermal conditions,
respectively. Have a glance at (c). Here, two pairs of curves are presented: the above-mentioned ωa

(dash pink) and ωA (thin pink); and, the two gravity-wave cut-off frequencies, ωb (dash blue) and
ωB (thin blue), under isothermal and non-isothermal conditions, respectively. At all altitudes, ωa is
always larger than ωb; and below an ∼180-km altitude, ωA is always larger than ωB. That is to say,
the buoyancy frequency can never be larger than the cut-off frequency in either the isothermal case or
the non-isothermal one up to an∼180-km altitude. Nevertheless, this result does not exclude at some
altitudes, when we compare the difference of the isothermal and nonisothermal cases, ωa < ωB (say,
above a 90-km altitude) or ωA < ωb (e.g., 60–80 km). This warns us to be cautious about the different
isothermal conditions when using the two sets of frequencies in applications. Some authors confused
them by using the nonisothermal ωB as the buoyancy frequency, but the isothermal ωa as the cut-off
frequency. Frequencies under the two conditions should not be mixed up, especially in wave analysis
and data-fit modeling.
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Figure 2. Vertical profiles of input parameters in Equation (11). (a) Richardson number Ri (blue) and
RI (pink); (b) k2

gT (black), k2
g (pink) and k2

G (blue); (c) buoyancy frequencies ωB (thin blue) and ωb
(dash blue) and cut-off frequencies ωA (thin pink) and ωa (dash pink); (d) cosθ (blue) and ωv (pink);
(e) the four periods, τB (thin blue), τb (dash blue), τA (thin pink) and τa (dash pink), corresponding to
the four frequencies in the upper right panel.

In accordance with these four frequencies, (e) depicts the four different periods: τB (thin blue)
and τb (dash blue); τA (thin pink) and τa (dash pink). The shortest cut-off period occurs at an ∼95-km
altitude in the nonisothermal case, only τA =3.3 min. The longest period occurs at a 200-km altitude,
τb =12 min. Finally, (d) gives the profiles of both cosθ and ωv. Obviously, cosθ is not constant versus
height, but oscillates twice up to a 200-km altitude. The wind shear ωv is always larger than the
Coriolis frequency Ω. It peaks at a 123-km altitude, 6.09 m/s per km, ∼84 Ω.

Compared to Hines’ idealized atmospheric model with a local isothermality (i.e., the vertical
temperature gradient is assumed zero) and a uniform horizontal wind field (i.e., the vertical wind
sheared effect is neglected), the NRLMSISE-00 and HWM93 empirical models provide us a more
realistic model, which shows that the atmosphere is neither locally isothermal (i.e., the vertical
temperature gradient is nonzero), nor uniform (i.e., the wind shear exists in the vertical direction).

3. Results

Equation (11) provides a generalized dispersion relation of realistic atmosphere below a 200-km
altitude, where the atmosphere is inviscid, nonisothermal and wind sheared. As mentioned
previously, the ion drag, viscosity, heat conductivity and Coriolis effect can be reasonably neglected
within this region, as already discussed in detail in early work (e.g., [14,43–45]). To test our model
by the full IAG formalism for an isothermal and windless atmosphere (e.g., [59]), we include the
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Coriolis term. It is interesting to note that: (1) the non-isothermal effect, as represented by the the
vertical derivative of the log of temperature kT , never influences the vertical growth rate, mi; (2) if
the horizontal wave vector is perpendicular to the wind velocity, i.e., kh ⊥ v0 (or θ = 90◦), the wind
shear effect disappears; (3) only in the presence of wind shears can horizontal phase speed Vph come
into play. It influences both the vertical wavenumber mr and the vertical growth rate mi, inferring
that the wave growth is not only dependent on the scale height, but the wave frequency ω, as well.

Equation (11) recovers all of the previous classical wave modes under locally-isothermal and
shear-free conditions, i.e., vertical gradients in both wind velocity and temperature are not considered.
As follows, we obtain these modes directly from Equation (11) and extend the isothermal results to
non-isothermal ones by relaxing these constraints. Then, we pay attention to the influence of the
nonisothermality and wind shears on the propagation of gravity waves from sea level to a 200-km
altitude, and we present the exact analytical expression of β.

0

50

100

150

200

-1.5 -1.2 -0.9 -0.6 -0.3 0.0

 Cases 1-3
 Case 4

 

 

mi ( 1 / 10km )

z (k
m)

Figure 3. Imaginary vertical wavenumber, mi (1/10 km), of different tsunami-excited wave modes
propagating in an atmosphere. Case 1: Hines’ locally-isothermal and shear-free model; Case 2:
the extended Hines’ model under nonisothermal conditions; Case 3: inertio-acoustic-gravity waves
under nonisothermal conditions; Case 4: acoustic-gravity waves under nonisothermal and wind shear
conditions. In Cases 1–3, mi-curves are superimposed upon each other (in blue); in Case 4, the mi-band
fluctuates upon those of Cases 1–3 (in pink). As a reference, a red straight line is shown in the figure
to represent the result of mi for an ideal atmosphere, which is isothermal at all altitudes in response to
the constant T0 in Figure 1.

3.1. Case 1: Hines’ Locally-Isothermal and Shear-Free Model

In this basic situation, the atmosphere was assumed locally-isothermal (kT = 0) and shear-free
(dU/dz = dV/dz = 0) in the absence of the Coriolis term (i.e., rotation-free with f = 0). Under these
conditions, Equation (11) reduces to the following:

mi = −kg = miH, m2
r =

ω2 −ω2
a

C2 + k2
h

(
ω2

b
ω2 − 1

)
(13)

which is the exact dispersion relation of Hines’ classical acoustic-gravity waves [11], where miH
denotes Hines’ imaginary wave number. Note that in this locally-isothermal case, the acoustic
cut-off frequency and the buoyancy frequency are ωa and ωb, respectively. When the horizontal
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wavenumber kh has an opposite sign, the solutions of both mi and m2
r in Equation (13) do not change,

respectively, as demonstrated by, e.g., Equation (10.29) of [64]. The profiles of mi and m2
r are illustrated

in Figures 3 and 4, respectively, together with the additional three cases to be introduced below in the
following subsections.

Case 1

Figure 4. Squared real vertical wavenumber, m2
r (1/km2), of different tsunami-excited wave modes

propagating in an atmosphere. Case 1: (a) Hines’ locally-isothermal and shear-free model; Case 2:
(b) the extended Hines’ model under nonisothermal conditions; Case 3: (c) inertio-acoustic-gravity
waves under nonisothermal conditions; Case 4: (d) acoustic-gravity waves under non-isothermal
and wind shear conditions. Note that there exists a “quasi-straight line” of m2

r = 0 in every panel
throughout all altitudes at ∼4 min in the tsunami period. This line separates the acoustic waveband
of <4 min in wave periods from the gravity waveband of >4 min in wave periods. In (a), there are
three straight lines in red, which are located at z1 ∼ 12 km, z2 ∼ 50 km and z3 ∼ 90 km, respectively,
to separate the space into three regions; in (b), there are three additional straight lines in blue, which
are located at z′1 ∼ 4.5 km, z′2 ∼ 75 km and z′3 ∼ 110 km, respectively.

Equation (13) says that the imaginary vertical wavenumber, mi, does not rely on tsunami wave
frequency (ω; or period Tts). The blue curve in Figure 3 displays the vertical profile of mi (in units
of 1/10 km). Note that this curve is superimposed upon those of Cases 2 and 3. As a reference, a
red straight line is shown in the figure to represent the result of mi for an ideal atmosphere, which is
isothermal at all altitudes. It is a constant; the magnitude is that obtained by using the atmospheric
temperature at sea level. A direct impression lies in the fact that, relative to the reference line, the
profile of Hines’ mi changes in the same way as that of atmospheric temperature T0. Check the
mean-field temperature in Figure 1. Clearly, it is T0 that dominates the vertical profile of mi.

By contrast, the features of mr do rely on wave periods. (a) in Figure 4 exposes the squared real
vertical wavenumber, m2

r (in units of 1/km2), of Hines’ mode. Note that there exists a “quasi-straight
line” m2

r = 0 in the panel throughout all altitudes (z) at ∼4 min in the tsunami period (Tts). This line
separates the acoustic waveband of <4 min from the gravity waveband of >4 min. This tells us that,
for tsunami-excited gravity waves with a typical phase speed (Vph) of 200 m/s, a period of Tts =(4–60)
min corresponds to a horizontal wavelength of λh =(48–720) km.
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It deserves to stress here that the “quasi-straight line” shown in the panel to separate the acoustic
and gravity wave bands is not a “constant line”, as a matter of fact, over the whole range of altitudes.
This is exposed in (e) of Figure 2, where the feature of the cut-off frequencies varying with altitude is
displayed to tell us that a wave with a period less than ωb under isothermal conditions (or ωB under
nonisothermal conditions) would not propagate vertically as it becomes evanescent. However, in the
timescale up to 60 min used in Figure 4, several minutes of the cut-off periods are so contracted in the
panels as to appear as an expression of “quasi-straight lines”, although they are actually “curves”.
In addition, measured tsunami-excited waves are characterized by wave periods that are longer than
the cut-off periods and, thus, in the regime of gravity waves only. Consequently, to deal with the
tsunami-excited gravity waves in this paper, we concentrate on the gravity wave branch in Figure 4,
and so on, in the rest of the text. The narrow acoustic wave band in the figure is presented to provide
a direct comparison of the m2

r -features between the two different wave regimes, rather than to help
to show the transition between the two regimes (a different topic beyond the scope of the present
work). Note that between the cut-off frequencies, ωb and ωa, under isothermal conditions (or ωB
and ωA under nonisothermal conditions), there might exist evanescent waves that do not propagate
vertically, but are allowed to propagate horizontally.

A wave becomes evanescent if m2
r → 0 (or infinite wavelength λz). After enlarging the panel

in the figure, we see that this condition applies approximately for regions of Tts ∼ (4–20) min and
z > 150 km. Thus, Hines’ model allows tsunami-excited gravity waves to be alive for Tts > 20
min and z < 150 km. By contrast, in the acoustic wave regime, m2

r > 0 is always valid, and waves
never disappear, except in the adjacent region close to Tts = 4 min. For waves propagating up to
z ∼ 150 km, they can be either partially reflected back from the wind jet into the lower atmosphere
(e.g., [65] and the references therein) or dissipated away via terms, like ion drag, kinetic viscosity
and/or heat conductivity (e.g., [66] and the references therein).

Furthermore, there are three red straight lines in (a) at z1 ∼ 12 km, z2 ∼ 50 km
and z3 ∼ 90 km, respectively, to separate the space into three regions. At z1, z2 and z3, the contours
on the plane with fixed Tts are featured with either crests or troughs in m2

r . The maximal value of
m2

r = 0.03889 (1/km2) occurs at an 88-km altitude for Tts = 60 min. This gives λz = 31.4 km.
For Tts =33.3 min, 0.00151 < m2

r < 0.00492 (1/km2), giving 90 < λz < 157 km.

3.2. Case 2: Extended Hines’ Model under Non-Isothermal Condition

Hines’ local isothermal model excludes the influence of temperature gradient in altitudes on the
propagation of acoustic-gravity waves, i.e., kT = 0. When this constraint is relaxed to kT 6= 0, and
keeping other conditions unchanged, Equation (11) offers a nonisothermal model:

mi = −kg = miH m2
r =

ω2 −ω2
A

C2 + k2
h

(
ω2

B
ω2 − 1

)
(14)

where the acoustic cut-off frequency, ωA, and the buoyancy frequency, ωB, are updated from ωa and
ωb, respectively, in Equations (13) by taking into account the kT-effect. Apparently, Equations (13)
and (14) have the same appearance. However, the former represents the most basic model under
the locally-isothermal condition; while the latter describes a more realistic atmosphere where the
temperature gradient brings about impacts on the dispersion relation. Note that mi stays unchanged,
still following Hines’ locally-isothermal result, as shown in Figure 3, where the vertical profile of mi
(in blue) follows exactly that in Case 1. This indicates that the temperature inhomogeneity does not
affect the vertical growth rate of wave amplitudes.

(b) in Figure 4 illustrates the m2
r contours of this non-isothermal model. Generally speaking, the

development of m2
r is roughly the same as that in (a). For example, the three characteristic heights, z1,

z2 and z3, are still alive to characterize the features of Hines’ locally-isothermal model. However, there
exist a couple of obvious differences: (1) there exist three additional heights, z′1 ∼ 4.5 km, z′2 ∼ 75 km
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and z′3 ∼ 110 km, as given by the straight lines in blue, respectively; at these altitudes, the contours
are influentially disturbed in view of wave frequency; (2) there exists a shift of all of the contours from
longer wave periods (or lower wave frequencies) to shorter ones (or higher wave frequencies) at all
altitudes. This shift reduces the evanescent regions of Tts < 20 min in (a). For instance, starting from
Tts = 4 min, the magnitude of m2

r increases at all altitudes. This indicates that waves can propagate
upward to higher altitudes in this case than in Case 1.

3.3. Case 3: Inertio-Acoustic-Gravity Waves under Nonisothermal Condition

In the presence of the rotational Coriolis effect ( f 6= 0), while the atmosphere stays
locally-isothermal (kT = 0) and shear-free (kU = kV = 0), Equation (11) reproduces the
inertio-acoustic-gravity (IAG) modes [58]:

ω4 −
(

C2K2
∗ + ω2

a + f 2
)

ω2 + C2k2
hω2

b +
(

C2m2
r + ω2

a

)
f 2 = 0 (15)

which reproduces Equation (14) of the IAG formulation in [59]. Related formulae were also given
in [48,49].

Now, remove the isothermal limit by allowing kT 6= 0. Equation (11) produces:

mi = −kg = miH; m2
r =

ω2 −ω2
A

C2 + k2
h

ω2
B −ω2

ω2 − f 2 (16)

from which we see that the temperature gradient term influences both the high-frequency
acoustic branch:

ω2 ∼ C2K2
∗ + ω2

A + f 2 (17)

where K2
∗ = k2

h + m2
r , and the low-frequency gravito-inertial branch (Equation (1a) of Marks and

Eckermann 1995),

ω2 =
k2

hω2
B +

(
m2

r + k2
G
)

f 2

K2∗ + k2
G + f 2

C2

(18)

which contains two modes, namely the gravity mode and the inertial mode in nonisothermal
situations, as expressed respectively by:

ω2 =
k2

hω2
B

K2∗ + k2
G

, ω2 =

(
m2

r + k2
G
)

f 2

K2∗ + k2
G + f 2

C2

(19)

the second formula of which says that at low latitudes (φ ∼ 0◦), the inertial mode can be neglected.
The expression of mi in Equation (16) is the same as that in Case 1. Thus, the vertical profile of mi

(in blue) in Figure 3 does not change from that of Case 1 or Case 2. The contours of m2
r in Equation (16)

are portrayed in (c) of Figure 4. We see that, relative to Case 2, the effect of the rotational Coriolis term,
f 2, is not recognizable based on the comparison between the two panels. Let us check the magnitude
of the time scale Tf of the Coriolis parameter, f : at φ = 60◦, Tf ≈ 13.9 h, 25-times Tts = 33.3 min.
Thus, f 2 is 625-times smaller than ω2, and thus, ω2 − f 2 ≈ ω2 in Equation (16). This means the
inertial term can be reasonably omitted in dealing with nonisothermal inertio-acoustic-gravity (IAG)
modes with wave periods of tens of minutes.

3.4. Case 4: Acoustic-Gravity Waves under Nonisothermal and Wind-Shear Conditions

In the presence of wind shears (dU/dz 6= 0 and dV/dz 6= 0), many authors discussed the
measure of the static stability of an isothermal (kT = 0), irrotational ( f = 0) atmosphere due
to the destabilizing effect of the shears by virtue of the dimensionless Richardson number, Ri
(e.g., [7,20,39,67,68]). These studies assumed that both the horizontal wavevector and the wind
velocity are one-dimensional, say along the x-direction. In this case, kh = k and |v0| = U).
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The criterion was found to be Ricr = 0.25; below the value, dynamic instabilities and turbulence were
expected. By adopting this 1D model, we obtain directly the same Ri-threshold from Equation (11):

mi = −kg

(
1− ωv

2kgVph

)
(20)

and:

ω4 −
(

C2K2
∗ + ω2

a −
2− γ

2
g

ωv

VpH

)
ω2 + C2k2ω2

b

(
1− 0.25

Ri

)
= 0 (21)

in which cos θ = 1 (or θ = 0) is applied (note that this result also fits the situation where U � V
below an ∼85-km altitude, as shown in (g) of Figure 1). Clearly, the shear term is introduced in both
mi and the quartic dispersion equation of ω. Different from the previous three cases where mi is only
a function of altitude, Equation (20) expresses that mi also depends on wave frequency ω through
Vph. Besides, Equation (21) tells us that for Ri < 0.25, ω2 will always be negative, and the atmosphere
is convectively unstable, leading to dynamic instabilities and turbulence; on the contrary, if Ri > 0.25,
the atmosphere may stay stable. If Ri = 0.25, acoustic modes may just be maintained with:

ω2 = C2K2
∗ + ω2

a −
2− γ

2
g

ωv

VpH
(22)

Nevertheless, in a realistic atmosphere, the isothermal condition is broken. Taking into account
kT 6= 0, we obtain an extended dispersion relation from Equation (11) as follows:

ω4 −
(

C2k2 + ω2
A −

2− γ

2
g

ωv

VpH

)
ω2 + C2k2

hω2
B

(
1− 0.25

RI

)
= 0 (23)

Interestingly, this is a result that needs only replacing Ri with RI , and ωa,b with ωA,B, respectively,
in Equation (21). Notice that mi still keeps its expression in Equation (20).

In fact, it is not always valid to assume θ = 0 in a realistic atmosphere due to the arbitrary
directions of the waves in propagation relative to the mean-field wind velocity. We have to relax
this condition in physical modeling. For an arbitrary θ in the absence of the inertial f term,
Equation (11) gives:

mi = −kg

(
1− 1

2
ωv

kgVph
cos θ

)
6= miH (24)

m2
r =

ω2 −ω2
A

C2 + k2
h

[
ω2

B −ω2

ω2 − 1
2

ω2
v

ω2

(
2− γ

γ

ω2

k2
hVpVph

+
1
2

cos θ

)
cos θ

]
(25)

Clearly, θ influences both mi and mr.
In Figure 3, the pink band attached to the blue curve of Cases 1–3 demonstrates the vertical

profile of mi expressed by Equation (24). Though the band follows the development of that in the
previous three cases, it fluctuates on the LHS or RHS of the blue curve specifically depending on
different altitudes. The fluctuations divide the atmosphere into five layers. In the three of them, i.e.,
below 18 km, 87–125 km and above 175 km, the pink band lies on the RHS of the blue curve with
mi > miH ; by contrast, in the rest of the two layers of 18–87 km and 125–175 km, it is on the LHS
with mi < miH . A comparison between mi and miH tells us that it is the wave frequency ω that brings
about the mi-variations: we scan ω in simulations with (0–60) min in the wave period, Tts = 2π/ω.
Due the presence of Vph = ω/kh in Equation (24), the change in ω influences mi at all altitudes. This
ω-effect is zero only at the four following altitudes: 18 km, 87 km, 125 km, 175 km; it is maximal at
80–90 km and 110–150 km, where the fluctuations of mi are up to miH ± 0.15.

(d) in Figure 4 demonstrates the effect of wind shears on m2
r . Relative to Case 2, which is in the

absence of the shears, the whole envelop has an obvious elevation upward, especially in the region
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of Tts > 20 min and 80–130-km altitudes; on the contrary, above 140-km altitudes, the m2
r -contours

become flattened to lower magnitudes. See m2
r at 90–110-km altitudes in both Case 2 and Case 4.

It goes up from < 0.1 (1/km2) in Case 2 to 0.2 (1/km2) in Case 4. It is predictable that wind shears
make it more difficult for gravity waves to transmit to higher altitudes. In other words, the shears
play a screening role for gravity waves that only those waves of sufficient energy can propagate
upward to higher altitudes. A following paper on ray-tracing studies of gravity wave propagation in
the atmosphere will introduce the criterion of the energy level in wave transmission and reflection.

3.5. Case 5: IAG Waves under Nonisothermal and Wind Shear Conditions

By taking into consideration the rotational Coriolis f -term, the acoustic-gravity modes under
nonisothermal and wind shear conditions discussed in the last subsection extend to the most
generalized inertio-acoustic-gravity modes, as expressed by Equation (11), rewritten as follows:

mi = −kg

[
1− ω2

2(ω2 − f 2)

ωv

kgVph
cos θ

]
(26)

and:

m2
r =

ω2 −ω2
A

C2 + k2
h

[
ω2

B −ω2

ω2 − f 2 −
1
2

ω2
vω2

(ω2 − f 2)
2

(
2− γ

γ

ω2 − f 2

k2
hVpVph

+
1
2

cos θ

)
cos θ

]
(27)

As mentioned previously, in the regime of gravity waves, the f -effect is infinitesimal and can
be reasonably omitted. Thus, Equations (26) and (27) are equivalent to Equations (24) and (25),
respectively, for tsunami-excited gravity waves, the periods of which are within 4–60 min. In Figure 5,
the 3D mi-envelop in (a) represents the 2D pink band in Figure 3. Now, it is clear to see that the
fluctuations in the pink band originate from the summation of variations in mi versus different Tts

values at any specific altitudes. For the m2
r -envelop in (b), it has no difference from (d) in Figure 4,

also because of the negligible f -effect.
Both the pink band in Figure 3 and (a) in Figure 5 exhibit that the atmosphere has five layers

concerning polarized mi-fluctuations below the 200-km altitude: Layer I (0–18) km; Layer II (18–87)
km; Layer III (87–125) km; Layer IV (125–175) km; and Layer V (175–200) km. Layers I, III and V own
a relation of |mi| < |miH |, indicating that the growth of propagating waves in realistic atmospheric
situations is attenuated from Hines’ idealized atmospheric model; on the contrary, Layers II and IV
have |mi| > |miH |, referring to the fact that the amplitude of propagating waves is driven from the
lower Hines’ model to a higher level. For a clear look at the attenuating or damping characteristics in
wave propagation, we write the error, E , caused by the nonisothermality and wind shears defined as
follows:

E =
mi −miH

miH
× 100% (28)

which turns out to be nothing else but the “damping factor”, β, after some simple algebra to connect
the theoretical work (e.g., [13,14]) with the modeling of the airglow layers perturbed by waves
(e.g., [8,9]). A straightforward manipulation with the mi-expression in Equation (26) and the
kg-expression in Equation (12) yields:

E = β =
ω2

2(ω2 − f 2)

ωv cos θ

kgVph
→ H

ωv

Vph
cos θ if f = 0 (29)

in which H = −Hp = 1/(2kg)[= C2/(γg)] is used. Figure 6 provides β-contours (or, alternatively,
E -contours) versus Tts and z. (a) is for the special case of θ = 0, and (b) is for the generalized case of
θ 6= 0.

For the special case of θ = 0, i.e., kh‖v0, (a) reveals that β0 is always positive. As a result, the
wave growth is always damped from the growth rate of Hines’ classical model. By contrast, in the
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general case where θ 6= 0, (b) presents the five layers introduced above: in Layers I, III and V, it is
always valid that β > 0, validating the previous argument that the growth of propagating waves in
realistic atmospheric situations is attenuated from Hines’ idealized atmospheric model; in Layers II
and IV, the relation of β < 0 refers to the amplitude growth of the propagating waves being pumped,
rather than damped, from Hines’ model. We point out here that the proposed free-propagating state
with β = 0 [8,9] only appears at some specific altitudes, say, 18 km, 87 km, 125 km and 175 km.

(a)

Figure 5. Imaginary and squared real vertical wavenumbers, mi (1/10 km) and m2
r (1/km2), in Case 5

of IAG waves under non-isothermal and wind shear conditions. (a) mi-envelop; and (b) m2
r -envelop.

Note that due to the negligible f -effect, (a) gives the pink band in Figure 3; while (b) has no difference
from (d) in Figure 4.

Equation (29) shows that the polarities of β are determined by cosθ, as shown in (d) of Figure 2: in
the bottom layer, Layer I, cosθ is positive; in Layer II, it is negative; in Layer III, it is positive; in Layer
IV, it is negative; and, in the top layer, Layer V, it is positive. In addition, the equation demonstrates
that β is inversely proportional to wave frequency ω via Vph and, thus, proportional to the wave
period Tts. This feature can be recognized in the two panels of Figure 6: the larger the value of Tts,
the higher the magnitude of β0 or β. Furthermore, the equation discloses that β has a linear relation
with the scale height, H (or −Hp). See (c) of Figure 1. The magnitude of H oscillates twice till about a
100-km altitude and then increases monotonically upward. This offers a vibrating feature in β0 or β

below the altitude, followed by an enhancement in amplitudes above it, as displayed in Figure 6.
Therefore, the observation-defined “damping factor”, β, is found not always to bring about a

“damping”(or attenuation) effect in wave amplitude A. This is because:

A ∼ e−
∫

midz = e
∫
(1−β)kgdz = e

∫
(1−β)dz/(2H) (30)

where Equations (4), (26) and (29) are used. Clearly, for β = 0, Equation (30) reduces to Hines’
classical result, AHines ∼ ez/(2H); for β > 0, AHines is damped or the wave is attenuated; for β < 0,
AHines is amplified or the wave is intensified or pumped. This gives results in concordance with the
above discussions.
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Figure 6. Contours of the “damping factor”, β (or, alternatively, the error, E ) versus Tts and z. (a)
special case with θ = 0; and (b) generalized case with θ 6= 0.

3.6. Influence of Phase Speed Vph

Equation (11) reveals that, in the above five cases, phase speed Vph = ω/kh influences wave
propagation through modulating mi and m2

r simultaneously, except the identical mi in Cases 1–3.
Particularly, in Cases 4 and 5, Vph also has impacts on mi and m2

r through wind shears, as denoted by
ωv. The relationship between Vph and wave propagation thus needs necessary attention.

Observations provided that the characteristic Vph is about 150–160 m/s ([69]). We choose Vph
varying from 80 m/s–240 m/s to display how mi and m2

r are influenced by Vph at a characteristic
wave period Tts = 33.3 min. Due to the negligible f -effect, in addition to the irrelevance of Vph to mi
in Cases 1–3, we just need to present Vph-dependent m2

r in Cases 1 and 2 (or 3) and mi and m2
r in Case

4 (or 5). Figure 7 gives the results. (a) is m2
r in Case 1; (b) is m2

r in Case 2 (or 3); (c) is mi in Case 4 (or
5); and (d) is m2

r in Case 4 (or 5).
The four panels expose the following features:
(1) At specific z, phase speed Vph has an effective range of values, say <200 m/s, within

which the dependence of mi or m2
r on Vph is obvious; out of the regime, the influence is negligible.

At ∼95 km, for example, the upper right panel illustrates that m2
r reduces quickly from 0.12 (1/km2)

with Vph = 80 m/s; however, m2
r tends to be stabilized at 0.005 (1/km2) for Vph > 200 m/s.

(2) At specific Vph, mi or m2
r also changes versus z. For instance, at the low Vph end in Case 1, the

m2
r -profile is not constant along z, but has a hump at about 80–100-km altitudes; in Case 4, there are

more m2
r -humps, which nearly fill up all of the altitudes.

(3) The dependence of m2
r on Vph is modulated by the atmospheric nonisothermality and wind

shears. For instance, in (a) of Hines locally-isothermal and shear-free case, the m2
r -profile has only one

hump with a maximal amplitude of 0.08 (1/km2); when the isothermal condition is relaxed as shown
in (b), the maximal amplitude is enhanced to 0.12 (1/km2), and more humps and troughs appear to
expand to both higher and lower altitudes; stepping further to allow shears present as drawn in (d),
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higher amplitude fluctuations, peaked at 0.7 (1/km2), are excited and driven to stretch out toward
the higher Vph-region accompanied by increasingly suppressed amplitudes.

(4) Compared to the strong dependence of m2
r on Vph, mi has very weak or little relevance to Vph,

as displayed in (c): with the increase of Vph, the mi-envelop appears constant in the whole range of
Vph. This implies that we can ignore the effect of Vph on mi in dealing with gravity wave growth in
space. However, we stress that mi is heavily dependent on z, as discussed in the last subsections.

Case 1

Cases 4 (or 5)

Figure 7. Dependence of mi and m2
r on phase speed Vph at a characteristic wave period of

Tts = 33.3 min. (a) m2
r in Case 1; (b) m2

r in Case 2 (or 3); (c) mi in Case 4 (or 5); and (d) m2
r in Case

4 (or 5).

4. Summary and Discussion

We generalized Hines’ ideal locally-isothermal, shear-free and rotation-free model of gravity
waves to accommodate a realistic atmosphere featured with altitude-dependent nonisothermality
(up to 100 K/km) and wind shears (up to 100 m/s per km). Although some of the variations
in the background state are rather extreme (e.g., the zonal and meridional winds), we first of all
applied Equation (4) in the Taylor expansion of all of the physical parameters; then obtained the set
of linearized equations, as shown in Equation (7), with vertically-inhomogeneous ones; and finally,
manipulated both sides of the equations to obtain Equation (8) or Equation (11), the generalized,
complex dispersion relation of inertio-acoustic-gravity (IAG) waves, which recovers all of the known
wave modes under different situations below 200-km altitudes where all of the dissipative terms (e.g.,
viscosity, heat conductivity, ion drag) are neglected.

We studied the modulation of atmospheric nonisothermality and wind shears on the
propagation of seismic tsunami-excited gravity waves by virtue of the imaginary and real parts (i.e.,
mi and mr) of the vertical wavenumber, m, within the full band of 4–60 min in tsunami wave periods.
In five different situations, we calculated the vertical profiles of mi and m2

r : (1) in Hines’ classical
modes; (2) in the extended Hines’ modes in the presence of nonisothermality; (3) in the IAG modes
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by adding the rotational Coriolis f -effect to the nonisothermal Hines’ model; (4) in the generalized
AG modes under not only non-isothermal, but also wind shear conditions; and (5) in the generalized
IAG wave modes. We also illustrated the influence of phase speed Vph on mi and m2

r .
The main results obtained in this paper are summarized and discussed as follows:
It is well known that gravity waves propagate only when their period is longer than the

Brunt-Väisälä (BV) period. Below the period, they will become evanescent. For example, in the
mesosphere, this period is about 6 min. Those tsunami-excited waves with a >6-minute period will
be propagating in the mesosphere. Our first result shows that this BV criterion for wave propagation
is a necessary, but not a sufficient, condition. That is to say, even though this condition is satisfied,
e.g., a wave period is longer than the BV period, the wave may still be kept evanescent due to m2

r → 0,
as illustrated with Hines’ isothermal model under conditions that the tsunami wave period (Tts) is
smaller than 20 min or at altitudes above 150 km. Only beyond these regions, waves can propagate
with a nonzero m2

r . In the presence of nonisothermality, the evanescent regions of m2
r → 0 appear

to be reduced considerably to free more waves from evanescence to propagation. However, if wind
shears are included, an evanescent region emerges again above the 140-km altitude.

Secondly, nonisothermality and wind shears divide the atmosphere into a sandwich-like
structure of five layers within the 200-km altitude, in view of the wave growth in amplitudes:
Layer I (0–18) km; Layer II (18–87) km; Layer III (87–125) km; Layer IV (125–175) km; and Layer
V (175–200) km. In Layers I, III and V, the magnitude of mi is smaller than that of Hines’ result,
miH , referring to an attenuated growth in amplitudes of upward propagating waves in realistic
atmospheric situations from Hines’ idealized atmosphere; on the contrary, in Layers II and IV, the
magnitude of mi is larger than that of miH , providing a pumped growth in amplitudes of the waves
from Hines’ model.

Thirdly, nonisothermality and wind shears enhance mr substantially at an ∼100-km altitude
for a tsunami wave period Tts longer than 30 min. Hines’ model gives that the maximal value of
m2

r is ∼0.05 (1/km2). This magnitude is doubled by the nonisothermal effect and quadrupled by
the joint nonisothermal and wind shear effect. The modulations are weaker at altitudes outside
80–140-km heights.

Fourthly, nonisothermality and wind shears expand the meaning of the observation-defined
“damping factor”, β. It does not merely refer to the “damping” of wave growth anymore. Instead, it
is updated with a couple of opposite implications: relative to Hines’ classical result in wave growth
under β = 0, waves are damped or attenuated from Hines’ isothermal and shear-free result for β > 0;
nevertheless, waves can also be amplified or pumped from Hines’ result for β < 0. The polarization
of β is determined by the angle θ between the wind velocity and wave vector.

Lastly, the nonisothermal and wind shear modulation on the wave propagation is not influenced
by the rotational Coriolis effect in the tsunami waveband of up to one hour in wave periods.

This study provided us a better understanding of the nature of tsunami-excited gravity waves
under non-Hines’ conditions. For example, the involvement of nonisothermality updates Hines’
classical formula of the dispersion relation by simply replacing the isothermal parameters, ωa,b and
Ri, with their non-isothermal counterparts, ωA,B and RI , respectively. Here, we stress that it is invalid
to mix up these pairs in relevant studies (as shown in some modeling and experimental publications),
e.g., using ωb (ωB) and ωA (ωa) at the same time to analyze gravity wave phenomena.

In addition, the angle θ between horizontal wind velocity and the wave vector is an important
parameter to reflect the modulation of nonisothermality and wind shears on the propagation of
gravity waves. It decides the polarities of β and, thus, has a direct and an effective impact on
the damping or intensifying mechanism in wave propagation. The importance of θ was not well
recognized in some publications with a single-component horizontal wavevector (e.g., kh = kx),
which was assumed to be parallel to wind velocity, and thus, θ is always zero. This assumption
excludes realistic situations where θ 6= 0. In this case, results may be totally different. For example,
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for θ → 90◦ (i.e., the directions of wind and wave tend to be perpendicular to each other), the shear
effect tends to zero, as shown by Equation (11).

Furthermore, calculations from the NRLMSISE-00 and HWM93 models provided that either the
isothermal 1/Ri or the non-isothermal 1/RI are smaller than 0.2 (accordingly, their inverses are larger
than five, as shown in the top panel of Figure 2). This suggests that the realistic atmosphere is unable
to be teared up easily from its stratified state by any wind shears. Thus, any instabilities below a
200-km altitude appear to be sufficiently suppressed. This argument, though as a result under the
nonisothermal situation, reiterates the conclusion obtained in the 1970s under isothermal conditions
by, e.g., [20,63].

Nevertheless, we argue that the above result is true only for the empirical atmosphere provided
by the NRLMSIS and HWM models. In the realistic atmosphere observed by LiDAR and meteor
radar systems, the temperature gradient and wind shear could be much larger than those provided
by the models and would bring the atmosphere to a dynamically unstable state due to the action of
planetary waves and tides. See the details in the papers by, e.g., Li et al. [70,71], on the characteristics
of instabilities in the mesopause region and on the observations of gravity wave breakdown into
ripples associated with dynamical instabilities, respectively.

Finally, we illustrated clearly the evanescent regions in the five cases that form the boundary
layers between the high-frequency acoustic waves (below several minutes in wave periods) and the
low-frequency gravity waves (above several to tens of minutes in wave periods). The thickness of the
evanescent regions varies in altitude, as exhibited in the figures of Cases 1–5.

The present work offers a detailed model to describe the propagation of tsunami-excited gravity
waves in the atmosphere above sea level. It extends the results of Hines’ and others’ classical work by
taking into account the variability of the atmospheric temperature and the wind field. It exposes the
influence of the temperature gradient and wind shears on the real and imaginary parts of the vertical
wavenumber and presents an explicit expression for the β factor, which is relevant to and generalizes
the concept of the damping/amplification of the wave amplitude throughout the atmosphere at least
in the range of 0–200 km. While the work focuses mainly on tsunami-generated waves, the results
are more general and applicable to gravity waves of any nature and generation source. However,
we admit that the present work concerns only those tsunami-generated waves that fall into the
regime of the wave properties that would be allowed to propagate vertically after the excitation
occurring at sea level. According to the strict work done most recently by Godin, Zabotin and Bullett
on acoustic-gravity waves in the atmosphere generated by infragravity waves in the ocean [72], not
every tsunami-generated wave has periodicity in the permitted regime; in particular, these waves
are featured with a transition frequency of about 3 mHz (34.9 min in wave periods) below which
the infragravity waves continuously radiate their energy into the upper atmosphere in the form of
acoustic-gravity waves. Therefore, in applying the results of this paper in relevant data-fit modeling
and data analysis, we must be cautious in checking the initial and boundary conditions (not only
the tsunami wave periods, but also the zonal and meridional wavelengths, as well as the vertical
wave speeds), so as to avoid a wrong employment of the model in coding ray-tracing algorithms to
demonstrate wave propagations and in interpreting experimental signals from, e.g., GPS satellites,
for a global manifestation of the ocean-generated gravity waves.

In addition, there exists a concern about the application of the present work in the thermosphere,
where the composition is a strong function of altitude and, thus, affects the mean molecular weight
and all of the thermodynamic quantities related to it. Fortunately, in order to avoid such an
infeasibility to thermospheric studies, we have relied on NASA’s empirical atmospheric models,
NRLMSISE-00 [46] and HWM93 [47], to describe the mean-field atmosphere and the horizontal wind
profiles. On the one hand, the MSISE model provides thermospheric temperature and density based
on in situ data from seven satellites and numerous rocket probes and estimates of temperature and
the densities of N2, O, O2, He, Ar and H. It (1) uses the low-order spherical harmonics to describe the
major variations throughout the atmosphere, including latitude, annual, semiannual and simplified
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local time and longitude variations; (2) employs a Bates–Walker temperature profile as a function of
geopotential height for the upper thermosphere and an inverse polynomial in geopotential height
for the lower thermosphere; and (3) expresses the exospheric temperature and other atmospheric
quantities as functions of the geographical and solar/magnetic parameters. On the other hand, the
HWM model is based on wind data obtained from the AE-Eand DE-2 satellites. It (1) uses a limited
set of vector spherical harmonics to describe the zonal and meridional wind components; (2) includes
wind data from ground-based incoherent scatter radar and Fabry–Perot optical interferometers, as
well as the solar cycle variations and the magnetic activity index (Ap) ones; and (3) describes
the transition from predominantly diurnal variations in the upper thermosphere to semidiurnal
variations in the lower thermosphere, as well as transitions from summer to winter flow above 140 km
and from winter to summer flow below [73]. We therefore consider that the present work will provide
a reference in dealing with atmospheric studies, including the thermosphere, where the atmospheric
composition varies as a strong function of altitude.

At the end of the paper, we remind readers that the present work temporally neglected the effects
of dissipative terms, like viscosity, although they become appreciable above the 150-km altitudes.
This is because we are dealing with a very complicated subject related to wave excitation and
propagation in the atmosphere, where nonisothermality and wind shears play a dominant role to
drive gravity wave propagations, an important subject that, however, needs extensive studies. The
complexity of the topic requires that we pay attention first of all to the nonisothermal and wind
shearing effects in this paper, with the purpose to approach finally a least-error solution through
a series of incremental steps, so as to be able to understand the physics and, based on the gained
knowledge, to develop appropriate algorithms for solving more realistic problems, while leaving the
studies on the dissipative terms to a following paper. Such a paper was submitted and is under
review.
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Säo Sabbas, F.T. Characteristics of mesospheric gravity waves near the magnetic equator, Brazil, during the
SpreadFEx campaign. Ann. Geophys. 2009, 27, 461–472.

62. Gossard, E.; Hooke, W. Waves in the Atmosphere; Elsevier: New York, NY, USA, 1975.
63. Turner, J.S. Buoyancy Effects in Fluids; Cambridge University Press: Cambridge, UK, 1973.
64. Schunk, R.W.; Navy, A.F. Ionosphere: Physics, Plasma Physics, and Chemistry, 2nd ed.; Cambridge University

Press: Cambridge, UK, 2009.
65. Broutman, D.; Eckermann, S.D.; Drob, D.P. The Partial Reflection of Tsunami-Generated Gravity Waves.

J. Atmos. Sci. 2014, 71, 3416–3426.



J. Mar. Sci. Eng. 2016, 4, 4 23 of 23

66. Hickey, M.P. Atmospheric gravity waves and effects in the upper atmosphere associated with tsunamis.
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