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Abstract: To provide insightful information on water quality management, it is crucial to improve the
understanding of the complex biogeochemical cycles of Chesapeake Bay (CB), so a three-dimensional
unstructured grid-based water quality model (ICM based on the finite-volume coastal ocean model
(FVCOM)) was configured for CB. To fully accommodate the CB study, the water quality simulations
were evaluated by using different horizontal and vertical model resolutions, various wind sources
and other hydrodynamic and boundary settings. It was found that sufficient horizontal and vertical
resolution favored simulating material transport efficiently and that winds from North American
Regional Reanalysis (NARR) generated stronger mixing and higher model skill for dissolved oxygen
simulation relative to observed winds. Additionally, simulated turbulent mixing was more influential
on water quality dynamics than that of bottom friction: the former considerably influenced the
summer oxygen ventilation and new primary production, while the latter was found to have little
effect on the vertical oxygen exchange. Finally, uncertainties in riverine loading led to larger deviation
in nutrient and phytoplankton simulation than that of benthic flux, open boundary loading and
predation. Considering these factors, the model showed reasonable skill in simulating water quality
dynamics in a 10-year (2003-2012) period and captured the seasonal chlorophyll-a distribution
patterns. Overall, this coupled modeling system could be utilized to analyze the spatiotemporal
variation of water quality dynamics and to predict their key biophysical drivers in the future.
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1. Introduction

As the largest and most biologically-diverse coastal plain estuary in North America [1],
Chesapeake Bay (CB) is highly influenced by its vast watershed with a land-to-water ratio of 14.3 [2].
Following the population growth, industrial and agricultural development, CB has undergone severe
eutrophication with symptoms of excessive nutrient loading, nuisance algal blooms, extensive summer
hypoxia and declined seagrass coverage since the mid-1900s [3,4]. Typically, the overloading of cultural
nutrients into CB directly drives its water quality deterioration, including bottom hypoxia/anoxia,
overwhelming phytoplankton growth and diminished water clarity [2].

Biogeochemical cycles in CB and similar water bodies have been investigated using field
investigation [5-7], retrospective long-term data analysis [8,9], remote sensing images [10], and
numerical simulations [11,12]. Intra-seasonal and inter-annual observed data can effectively detect
the dominant environmental factors driving water quality variations, but is usually limited by
sparse spatiotemporal resolution [13]. Satellite imagery provides synoptic surface phytoplankton and
suspended material distribution while it is incapable of exhibiting vertical variation [10]. Statistical
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empirical models and simplified oxygen models omitting nutrient cycles have been developed
as substitutes for specific research goals, but it is impossible to reproduce the detailed internal
spatiotemporal water quality variation and comparatively evaluate biophysical drivers [14]. In contrast,
the three-dimensional physical-biogeochemical model could better resolve the biophysical interactions
between circulation and water quality kinetics [11,12] and facilitate mechanistic analysis of internal
water-column dynamics [15-17], making it an ideal tool to investigate nutrient dynamics and algal
variability in eutrophic estuaries [18], synoptically assess estuarine biophysical processes and project
future scenarios [19,20].

However, there exist several challenges and limitations in developing and applying sophisticated
biophysical models [20]. For example, low-resolution models have difficulty following the coastline or
investigating the tributary-estuary exchange very well. Unstructured grid models have the advantage
of flexibility reaching fine resolution at areas of interest (e.g., nearshore, sills, deep channels and fronts)
over the structured grid models [21]. Other key challenges and sources of uncertainty in configuring
biophysical models lay in meteorological forcing, hydrodynamic simulation and nutrient loading [20].
For example, turbulent mixing and bottom roughness are key factors for the bay circulation [22], while
their effects on the water quality dynamics are less investigated. In addition, uncertainties and errors
originating from these processes have been poorly compared and discussed in any biophysical model
application, and these limitations could be magnified when modeling a biologically-diverse estuary
(e.g., CB) and cause biases when interpreting the model simulations and providing management
suggestions [12,23].

Since high resolution would potentially benefit the water quality simulation, a three-dimensional
biophysical model was configured for CB, its tributaries and adjacent coastal ocean based on the
unstructured grid modeling framework FVCOM-ICM [24], which comprises the hydrodynamic model,
the finite-volume coastal ocean model (FVCOM) and a water quality component, the modified Corps
of Engineers Integrated Compartment Water Quality Model (FVCOM-ICM, [24]). During the model
development, we tried to achieve a comprehensive understanding of various uncertainties for the
model development and answer the following questions: (1) how will increased model resolution
improve the simulation of water quality variables; (2) how sensitive is the model to different wind
sources; and (3) what is the most significant physical and biological sources of uncertainty in our
model? Sections 2 and 3 introduce the model frame and sensitivity experiments; model calibration
results are depicted in Section 4; Section 5 lists the major conclusions.

2. Material and Methods

2.1. Study Site

CB, located adjacent to the Mid-Atlantic Bight on the east coast of United States (Figure 1), is a
partially-mixed drowned river valley with a residence time of 90-300 days depending on the river
flux [2,25]. A deep channel in the middle and shoals on both flanks (Figure 1 [2]) characterize the
main stem of this large estuary with an area of 11,600 km? (323 km long, 48 km wide and 6.5 m deep
on average), where the salinity typically ranges from 0-30 from the northern to the southern end.
A two-layer estuarine circulation is subject to variation in river flux, local/remote winds, semidiurnal
tides and other forces [26,27]. Receiving 337.3 kt/year (kt = thousand tons) nitrogen and 23.7 kt/year
phosphorus inputs by 2010 [28], CB generates 2-12 km? bottom hypoxic waters every summer [29] and
witnesses frequent occurrence of harmful algal blooms [30], which threatens the bay’s living resources
and ecological service to its recreational and commercial users.
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Figure 1. Model grid and bathymetry of Chesapeake Bay (CB) and its adjacent coastal ocean with river
nodes, data sites and three transects. The bottom right panels are the zoom-in of the boxed area from
two sets of grids generated for sensitivity experiments on spatial resolution. Sus, Susquehanna River;
Ptp, Patapsco River; Che, Chester River; Pat, Patuxent River; Cho, Choptank River; Pot, Potomac River;
Nan, Nanticoke River; Rap, Rappahannock River; Yor, York River; Jam, James River.

2.2. Model Description

An unstructured grid FVCOM-based hydrodynamic model was used to simulate the water
level, temperature, salinity, circulation, eddy viscosity and other hydrodynamic information at an
external and internal time step of 3 s and 12 s, respectively [31]. This work adopted this existing
hydrodynamic model with the grid size ranging from 270 m—20.9 km (Figure 1). The major external
forcing was comprised of daily river discharge, atmospheric forcing and open boundary conditions.
The hydrodynamic data sources, calibration and validation processes and the justification of model
settings could be retrieved in detail from [31].

The water quality kinetics, including nutrient cycles, sediment diagenesis and plankton growth,
was simulated in the FVCOM-based water quality model FVCOM-ICM [24]. Integrated Compartment
Model (ICM) was originally developed for the CB restoration and now works as part of the predictive
model package CBEMP for the total maximum daily load plan [11,28]. A primary difference between
CBEMP and FVCOM-ICM is our use of the unstructured grid and the sigma coordinate to accommodate
the complex bay coastline and bathymetry. The mass balance of state variables in each control
volume/cell [11] is solved as follows.
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In Equation, V is the volume of a cell (m?), C is the concentration or biomass in the cell (mg/L),
t is the temporal coordinate (s), Qx is the flux across the interface with the k-th neighbor cell (m3/s),
Cy is the concentration or biomass across the interface between two cells (mg/L), Ay is the interface
area (m2), Dy is the diffusion coefficient at the interface (m?/s), n is the number of neighbor cells, i.e.,
the number of interfaces, x is the spatial coordinate (m) and S is the changing rate due to external loads
and kinetic reaction in the cell (mg~L’l s~ 1). To adapt to the sigma (¢) coordinate system, the transport

of each state variable is modified as below [24].
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In the equation, D is total depth (H + {, m), where H is the mean water depth and  is the water
elevation, Ay, is the horizontal diffusivity (m?/s), A, is the vertical diffusivity (m?/s), u, v and w are
velocity components (m/s) in the directions of x, y and o, respectively, and S is the biogeochemical
changing rate (mg-L~1.s71).

We simulated a total of 26 state variables in carbon, nitrogen, phosphorus, silicon and
dissolved oxygen (DO) cycles (Figure 2), including total suspended solids (TSS), cyanobacteria,
diatoms, dinoflagellates, microzooplankton (20-200 um), mesozooplankton (0.2-20 mm), ammonia
(NH4), nitrite and nitrate (NO23), phosphate (PO4), particulate inorganic phosphorus (PIP),
labile/refractory dissolved /particulate organic carbon (LDOC, RDOC, LPOC, RPOC), labile/refractory
dissolved/particulate organic nitrogen (LDON, RDON, LPON, RPON), labile/refractory
dissolved/particulate organic phosphorus (LDOP, RDOP, LPOP, RPOP), chemical oxygen demand
(COD), DO and particulate/dissolved silica (PSi/DSi). The sub-models of sediment diagenesis [32] and
bivalve filtration [33] were turned on. ICM in CBEMP showed considerable model skills in representing

the water quality variables for decades [11], so most of their model settings and parameters were
followed (Table 1).

3D Hydrodynamics Initial Condition Riverine Loads Meteorological Input
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Figure 2. Schematic flow diagram of ICM set up for Chesapeake Bay. LDOC, RDOC, LPOC,
RPOC, labile/refractory dissolved/particulate organic carbon; LDON, RDON, LPON, RPON,
labile/refractory dissolved/particulate organic nitrogen; LDOP, RDOP, LPOP, RPOP, labile/refractory
dissolved/particulate organic phosphorus; PSi/DSi, particulate/dissolved silica; COD, chemical
oxygen demand; DO, dissolved oxygen; NO23, nitrite and nitrate; NH4, ammonia; PO4, phosphate;
DIN, dissolved inorganic nitrogen.

Table 1. Key kinetic parameters used for the ICM for Chesapeake Bay. CHLA, chlorophyll = a.

Parameters Value Literature Range
Settling velocity W (CYN, m/day) 0 0-0.11[11,14,34]
Settling velocity W (DIA, m/day) 0.2 0-0.5[11,14,21,34]
Settling velocity W (DINO, m/day) 0.1 0-0.2 [21,34]
Max photosynthetic rate P, (CYN, dayfl) 150 100-270 [11,14,34]
Max photosynthetic rate Py, (DIA, dayfl) 300 200-400 [11,14,21,34]
Max photosynthetic rate P,, (DINO, day~!) 200 200-350 [21,34]
C:CHLA ratio CChl (CYN) 50 30-143[11,14,34,35]
C:CHLA ratio CChl (DIA) 37 30-143[11,14,21,34,35]
C:CHLA ratio CChl (DINO) 50 30-143 [21,34,35]
Half-saturation Ky.ppy (CYN, mg/L) 0.02 0.01-0.03 [11,14,34]
Half-saturation Ky_ppy (DIA, mg/L) 0.025 0.003-0.923 [11,14,21,34]
Half-saturation Ky.ppy (DINO, mg/L) 0.025 0.003-0.923 [21]
Half-saturation Ky_pyp (all, mg/L) 0.0025 0.001-0.195 [11,14,21,34]
Half-saturation Kp.pg; (DIA, mg/L) 0.03 0.01-0.05 [11,14,21,34]
Photosynthesis Typt (CYN, °C) 25 22-30[11,14,34]
Photosynthesis Topt (DIA, °C) 16 12-35[11,14,21,34]

Photosynthesis T, (DINO, °C) 24 18-35 [21]
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Table 1. Cont.

Parameters Value Literature Range
Respiration Ty (°C) 20 20 [11,34]
Percentage of active respiration Pyes 0.25 0.25[11,14,21,34]
Basal metabolic rate M (CYN, dayfl) 0.03 0.03-0.05 [11,14,34]
Basal metabolic rate M (DIA, day 1) 0.01 0.01-0.1[11,14,21,34]
Basal metabolic rate M (DINO, dayfl) 0.02 0.01-0.1 [21,34]
Herbivore predation rate F (CYN, dayfl) 0.03 0.01-0.05 [14,34]
Herbivore predation rate F (DIA, day 1) 0.1 0.05-1 [14,21,34]
Herbivore predation rate F (DINO, dayfl) 0.5 0.05-1 [21]
Max zooplankton predation ration (SZ, dayfl) 2.25 0.8-2.25[11,14]
Max zooplankton predation ration (LZ, day 1) 1.75 0.8-1.75[11,14]
Settling velocity of particles (m/day) 0.25 0.03-0.8 [11,14,21,34]
Max nitrification rate (g-m~3-day~!) 0.075 0.01-0.75 [11,14,21,34]
Optimal nitrification temperature (°C) 30 25-35[11,14,21,34]

We simulated three major phytoplankton groups in CB [6]: diatoms (including other
winter/spring groups), dinoflagellates (including other summer species) and cyanobacteria.
Dinoflagellates were treated as autotrophs with their grazing capability not modeled.
The time-dependent phytoplankton biomass governing equation [11] is given below.

%—f:(G—R)B—Wg—f—FZBZ—FB 3)

In the equation, B is the biomass of a phytoplankton taxon (mg/L), G and R are the growth and
respiration rate, respectively (day!), W is the settling velocity (m/day), z is the vertical coordinate
converted from ¢ levels (m), F; (L-mg’1 -day’l) and F (day’l) are the predation rate of zooplankton
and other herbivores, respectively, and Z is the zooplankton biomass (mg/L). The growth rate is
a function of temperature, nutrients and light, while the respiration rate is simply dependent on
temperature. Equation (4) [11] is the depth-integrated net primary production (NPP) to manifest the
detailed growth and respiration calculations.

I N

P
NPP:H((CCHZI\/@KWLN

e—KT(T—TopT)Z)(l — Prs) — Me Kr(T=Tef)\Gzdt (4)

In the equation, Py, is the maximum photosynthetic rate (day '), CChl is the carbon to chlorophyll
ratio, I and I; are the instantaneous and reference radiation (mol-photons-m~2-day~!), N is the
concentration of each nutrient (nitrogen, phosphorus and diatom-only silicon, mg/L), Kj, is the
half-saturation concentration in the Michaelis-Menten nutrient limitation function (mg/L), Kt (°C7?)
and K7~ (°C™1) are the temperature coefficients on photosynthesis and basal respiration, respectively,
Topt and T are their corresponding optimal and reference temperature (°C), Py is the percentage of
active respiration in gross primary production and M is the basal respiration/metabolism rate (day —1).

The light attenuation process is calculated with a subroutine computing the coefficient of diffuse
light attenuation Ke (m~!), which is controlled by the scattering and absorption to suspended solids
and chlorophyll in the water column. In FVCOM-ICM, a look-up table along the visible spectrum
(400-700 nm), derived based on field measurements in CB, is created to determine the six independent
parameters, which feeds the subroutine for Ke calculation. The formulation and description of the light
attenuation subroutine are detailed in [11,21].

2.3. Model Settings

For the simulation period 2003-2012, FVCOM-ICM off-line reads hourly hydrodynamic
information from FVCOM. When the 30-min time interval in the water quality model was applied,
simulated water quality variables reached over 90% correlations with those with a 5-min interval,
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while the computational time is only 22.4%; so we conducted water quality simulations at a
time step of 30 min. We included 10 major riverine boundaries (Figure 1) for nutrient and TSS
loading. The monitoring nutrients, TSS and phytoplankton maintained by the EPA Chesapeake Bay
Program (CBP [36]) were the main data source of our model initialization, calibration and validation.
The point-source and nonpoint-source loading of carbon, nitrogen, phosphorus and TSS were from
the CBP’s watershed model, Hydrological Simulation Program in Fortran (HSPF) in Phase 5.3.2 [36].
The deposition of nitrogen and phosphorus from the air-sea surface were estimated based on the
observations (Stations MD13, MD15, MD99, VA10 and VA98) from National Atmospheric Deposition
Program [37]. We referred to the monthly World Ocean Atlas 2005 data [38] for setting open boundary
conditions. Meteorological data were downloaded from the National Center for Environmental
Prediction (NCEP), North America Regional Reanalysis (NARR [39]). After model setup, major
parameters were calibrated among literature ranges (Table 1) with data of 2010 to achieve the most
reasonable and reliable model performance and verified with the other nine years” data. In order to
validate our eutrophication model, we also compared our simulated chlorophyll-a (CHLA) distribution
with the remote sensing images from the Chesapeake Bay Remote Sensing Program [40].

As suggested by Fitzpatrick, we computed the correlation coefficient (CC; Equation (5)) and
the root mean squared error (RMSE; Equation (6)) to evaluate the fit between predicted (P;) and
observational (O;) dissolved inorganic nitrogen (DIN) and phosphorus (DIP), TSS, DO and CHLA.

n —_ f—
L (0;=0)(P —P)
= (5)

CC =
\/Z (O; —é)zi (P; _F)2
i=1 i=1

(P, —0;)?

It

RMSE = (6)

2.4. Design of Numerical Experiments

In order to quantify the uncertainties in both hydrodynamic and water quality sub-models,
we performed a variety of sensitivity tests along with the model calibration process (Table 2).
These experiments were designed using the year 2010, which has been calibrated and has normal
meteorological and hydrological conditions [31,41]. The effects of grid resolution on water quality
simulation were examined using two model experiments with different spatial resolutions (the average
grid size inside the bay is 1.43 km versus 1.74 km, respectively; see Figure 1). We also compared the
water quality simulations with six, 11 and 21 sigma levels to determine the optimal vertical resolution.
Given that the water quality simulation is sensitive to vertical mixing and bottom shear [20], the impacts
of varied vertical eddy viscosity and bottom roughness length scale (Table 2) were discussed based on
the calibrated hydrodynamic model [31]. We also examined the controls of two spatially-varying wind
sources, NARR (spatial resolution of 30 km) and observation (data from 39 stations from National
Data Buoy Center [42] and the National Centers for Environmental Information [43]), on DO variation.
For the boundary loading, we altered the nutrient input from various sources (riverine, benthic and
open boundary) to understand their influence on primary production. Additionally, the predation of
zooplankton and suspension feeders was turned on and off to examine their controls on phytoplankton
prey, respectively.
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Table 2. A list of model sensitivity experiments.

Scenarios Treatment
baseline Described in Section 2 and [31]
coarse Using a low-resolution model grid ? (Figure 1)

Using 6 and 21 uniform sigma levels; i.e., each sigma layer represents 1/5 and 1/20

sigma06, sigma20 of the water depth, respectively

Using wind data from National Data Buoy Center and National Centers for

obs . X
Environmental Information

obs + narr Using observed wind to drive mixing and NARR wind to drive reaeration

Vertical eddy viscosity (az) computed in the hydrodynamic model was roughly 25%,
azl, az2, az3, az4 50%, 200% and 400% of the baseline scenario. The adjustment of vertical eddy
viscosity is achieved by altering the Prandtl number

The bottom roughness length scale (z0) was 25%, 50%, 200% and 300% of the
baseline scenario

r0.25, r0.50, r0.75, r0.80, r0.90, r0.95, r1.05, The riverine nutrient loading was 25%, 50%, 75%, 80%, 90%, 95%, 105%, 110% and
r1.10, r1.20 120% of the baseline scenario

bf0.25, bf0.50, bf0.75, bf0.8, bf0.9, bf1.1, bf1.2 The benthic nutrient flux was 80%, 90%, 110% and 120% of the baseline scenario

The open boundary nutrient concentration was 25%, 50%, 75%, 150% and 200% of the
baseline scenario

201, z02, z03, z04

00.25, 00.50, 00.75, 01.5, 02.0

Predation of zooplankton (nzp) and suspension feeder (nsf) on phytoplankton was

nzp and nsf switched off, respectively

Note: a: the fine and coarse grid is presented in Figure 1 with the average inner-bay grid size of 1.43 km and
1.74 km, respectively.

3. Sensitivity Experiments
3.1. Sensitivity of Main Water Quality Variables to Grid Resolution

3.1.1. Effect of Horizontal Resolution

Two sets of model grids using different resolutions were applied in order to compare their
performance and determine the optimal grid size. In the water quality simulation of 2010, both
simulations represented the seasonal variation of nutrients, TSS, DO and CHLA at three stations
located at the upper, middle and lower bay (Figures 1 and 3). Nitrogen, TSS and CHLA peaks appeared
to be associated with the high-flow period in spring, and the concentration/biomass decreased with
the distance from the northern end. Strong water-column and sediment respiration, as well as the
low solubility in summer lowered the oxygen level at both the surface and bottom, and the lack of
strong mixing ventilation contributed to the depletion of bottom oxygen at the upper and middle
bay. Hypoxic conditions at the sediment-water interface favored the release of regenerated ammonia
and phosphate, causing the “bump-ups” of their concentrations. The annual cycles of simulated
nutrients, TSS, DO and CHLA by both models are in line with what were previously observed in CB
(e.g., [5,29,35,44]).

However, there was discrepancy between them. For instance, the nitrate concentration in the
low-resolution model was higher than that of the high-resolution one at the upper-bay and mid-bay
stations, particularly in late spring and summer; the difference in phosphate concentration reached
around 0.003 mg/L at the mid-bay station in summer; TSS simulation was also impacted by the model
resolution at the upper and middle bay. It was found that the model performance of all water quality
variables was better in the fine-grid model, as revealed by higher correlation coefficients and lower
root mean squared errors, and that DIN and TSS were among the variables with a large deviation
between the two models (Figure 4 and Table 3). Given that model resolution impacted simulating
circulation [31], the discrepancy in these two variables with a strong axial gradient along the bay was
probably attributable to the along-bay transport processes, which was substantiated subsequently.
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Figure 3. Time series of observed (open dots) and simulated (black solid line, fine-grid results; red dash
line, coarse-grid results) water quality and phytoplankton state variables at three sampling sites in
Chesapeake Bay (Figure 1) in 2010: NH4 (ammonia), NO23 (nitrite and nitrate), PO4 (phosphate), TSS
(total suspended solids), DO (dissolved oxygen) and CHLA (chlorophyll-a).

Table 3. Model observation statistics with two sets of model grids in 2010.

Grid Variable n cc p RMSE
DIN 105 0.895 <0.001 0.141

DIP 105 0.410 <0.001 0.016

Fine TSS 105 0.801 <0.001 2.209
DO 210 0.892 <0.001 1.525

CHLA 104 0.480 <0.001 7.516

DIN 105 0.765 <0.001 0.259

DIP 105 0.400 <0.001 0.016

Coarse TSS 105 0.610 <0.001 3.686
DO 210 0.872 <0.001 1.700

CHLA 104 0.455 <0.001 7.548

Note: n: sample size; CC and p: correlation coefficient and its p-value; RMSE: root mean squared error.

1.0

0.8
0.6
0.4
0.2

0.0rfrff

-0.2

Standardized difference

-0.4

DIN DIP TSS DO  CHLA
uCC -0.145 -0.022 -0.238 -0.023 -0.053
RMSE| 0.835 0.006 0.668 0.114 0.004

Figure 4. Standardized difference of CC and RMSE in the coarse-grid model compared to the
fine-grid model. Standardized score are calculated as follows: Zcc = (CCeoarse — CCfine)/ CCfine,
Zrmse = (RMSE coasrse — RMSEgne)/ RMSE¢i,.. CC and RMSE denote the correlation coefficient and
root mean squared error between the model simulation and the observation, respectively. The raw
data of CC and RMSE are shown in Table 3. The five variables are DIN (dissolved inorganic nitrogen,
including ammonia, nitrite and nitrate), DIP (dissolved inorganic phosphorus), TSS (total suspended
solids), DO (dissolved oxygen) and CHLA (chlorophyll-a).
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Thus, we calculated the freshwater delivery (Equation (7)) across transects at the upper, middle,
and lower bay, which, not influenced by the biological processes, represented the downstream transport
capacity of the riverine source at these portions of the estuary.

Qo = [[ v 4 %

In the equation, v is the southward velocity, Sy is the density of ambient water, AS is the
density difference with the ambient water and A is the cross-sectional area. Time series of the
freshwater transport at the upper bay resembled that of nitrate and TSS (Figures 1, 3 and 5), which
supported our conclusion that circulation was responsible for improved water quality simulation in the
high-resolution model. During the relatively dry summer, the freshwater transport of the coarse-grid
model was higher across the upper-bay transect than the fine-grid model, but slightly lower across the
mid-bay transect (Figures 1 and 5). That is, more riverine nutrients and TSS were retained between
these two transects (e.g., the station CB4.3C), which further supported the relationship between
the physical transport and water quality simulation. In addition, the freshwater transport through
the lower-bay section calculated in the coarse-grid model fell short of that in the refined model
(Figures 1 and 5), and as a result, the nitrate and TSS, whose major sources were the upstream riverine
inputs, were lower at the lower-bay station CB6.4 in the low-resolution model (Figure 3).

3000

2500 | . ==fine grid

===r*coarse grid

2000
1500
1000

==fine grid

===*coarse grid

=
= 3000

(b) across the middle-Bay transect

=—=fine grid
4000

===rcoarse grid

3000

2000

1000
(c) across the lower-Bay transect

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.
Month in 2010

Figure 5. Freshwater transport across the (a) upper-, (b) middle-, and (c) lower-Bay transects (Figure 1)
in the fine-gird (blue solid line) and coarse-grid (red dash line) models.

Therefore, the refinement of spatial resolution improved the simulation of axial material transport
along CB and the corresponding water quality variability. Using the high-resolution model, the CCs
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of DIN and TSS could increase by 10%—25%, and the RMSEs decrease by over 60% (Figure 4), so we
adopted the refined model to conduct the following sensitivity tests.

Even though not quantified, the previous findings [14,45] were similar pertaining to model
resolution. Namely, more realistic physical processes were resolved in higher-resolution model, which
will in turn improve the model performance of water quality variables in both freshwater and coastal
systems [14,46]. When a finer model grid is necessary, a structured-grid model usually requires
increasing the spatial resolution of the whole domain or applying the sometimes problematic model
nesting methods [24]. Thereby, the extensive application of high-resolution unstructured grid water
quality models is highly recommended given their flexibility in regional model refinement at relatively
low computational cost. However, many other factors should be taken into consideration when refining
the regional mesh size; for example, high resolution may lead to errors in sub-grid-scale processes,
alteration of parameterization [45] and declined computational efficiency (e.g., the computational time
decreased ~28% when the coarse grid was used).

3.1.2. Sensitivity to Vertical Resolution

We applied six, 11 and 21 sigma levels to examine the response of water quality variables to
vertical resolution. The sensitivity of vertical resolution was not as high as that of the horizontal
resolution, and DIP and CHLA are among the most sensitive variables in comparison with the
observational data. For example, at the productive mid-bay station CB4.3C, the model with six sigma
levels underestimated the phosphate concentration by up to 0.005 mg/L in summer (Figure 6a) and
overestimated the peak CHLA by up to 10 nug/L during the spring bloom compared to the model
with 11 sigma levels (Figure 6b); in contrast, the difference between models with 11 and 21 sigma levels
was not as significant (Figure 6¢,d). The model with 21 sigma levels has the highest model-observation
agreement for DIP (CC = 0.642 and RMSE = 0.014), while the model performance of CHLA simulation
was highest in the 11-sigma-level model (CC = 0.480 and RMSE = 7.516).
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Figure 6. Time series of observed (open dots) and simulated (black solid line, results of 11 sigma levels;
black dash line, results of six (a,b) or 21 (c,d) sigma levels) phosphate (a,c) and CHLA (b,d) at Station
CB4.3C in Chesapeake Bay (Figure 1) in 2010.
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The simulated hydrodynamic and water quality differences between the 11-sigma-level and
21-sigma-level model were quantified along and across the bay. The difference of salinity in the
highly-productive May was mostly within one; the DIN discrepancy was maximized on the western
flank and was mostly within 0.2 mg/L; phytoplankton biomass with 21 sigma levels exceeded that
of the 11-sigma-level model by up to 0.1 mg/L, especially in the lower bay and on the eastern
flank; the DO difference was around 0.4 mg/L throughout the water column (Figure 7). Thus,
the overall model results of 11 sigma levels were similar to that of 21 sigma levels, while the difference
from the six-sigma-level model was relatively large, which was also found in the CB hydrodynamic
simulation [31]. In addition, the computational time of the models with six and 21 sigma levels
was 54.6% and 194.0% that of the 11-sigma-level model, respectively. In consideration of the above
results and the relative computational efficiency, we applied 11 sigma levels for further analyses.

When determining the vertical resolution in water quality models, it is essential to consider,
but not be confined to, the overall depth, vertical circulation of the system, purpose of study and
the acceptable computational expense. For instance, ten sigma layers were sufficient to simulate the
seasonal nutrient cycle in Puget Sound whose maximum depth was over 200 m [21]. Conducting
sensitivity tests on sigma levels could help detect the potential problems of low resolution and save
the unnecessary computational time running high-resolution models.
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Figure 7. Difference in simulated (a) along-bay and (b) across-bay salinity in May; (c) along-bay and
(d) across-bay dissolved inorganic nitrogen in May; (e) along-bay and (f) across-bay phytoplankton
biomass in May and (g) along-bay and (h) across-bay dissolved oxygen in July between the
11-sigma-level and 21-sigma-level models. The along-bay and across-bay transects are shown on
the rightmost panel.
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3.2. Uncertainties Associated with the Hydrodynamic Simulation

3.2.1. Sensitivity to Different Wind Datasets

Two main sources of winds over the study area are the NARR and observed data, which were
applied to several studies of DO simulation [12,15,47,48]. Scully [48] claimed that the usage of
measured wind displayed asymmetry in strength (strongest from the south and weakest from the
west) in summer. The wind rose diagrams from May—August in 2010 revealed that both winds showed
the aforementioned asymmetry, while the southerly wind was more frequent in the NARR simulation
(Figure 8). The model performance of DO simulation under the observed winds (CC = 0.823 and
RMSE = 1.957) was close, but inferior to that driven by the NARR winds (CC = 0.892 and RMSE = 1.525,
Table 3).

NORTH NORTH

6% 6%

4%

I e
WEST ;7/11\%‘\? EAST WEST 7—7/ﬂ\\\§§ =
///l‘\\\\ Yin>
W>-10
m6-10
SOUTH %3‘ s SOUTH
(a) NARR simulation  magnitude (m/s) (b) observation

Figure 8. Wind rose plot in the hypoxia season (from May—-August) in 2010: (a) spatially-averaged
NARR data; and (b) observation from National Data Buoy Center and National Centers for
Environmental Information.

At the upper- and mid-bay stations CB2.2 and CB4.3C, simulations forced by both winds exhibited
similar DO reproduction, except that the DO concentration under the observed winds was slightly
overestimated, particularly at the surface (Figure 9). In addition, the scenario under the observed
wind underestimated DO by 2-3 mg/L in spring and fall at CB4.3C (Figure 9d). In the scenario with
the mixing process driven by the observed winds and the reaeration process driven by the NARR
winds, DO time series at both stations were similar to that under the observed winds (Figure 9), which
indicated that the difference of two wind sources was primarily attributable to the mixing process
instead of the wind-driven reaeration. Namely, the lower vertical mixing due to less frequent southerly
winds accounted for the overestimation of surface DO in summer and the lower overall model skill of
DO simulation. Thus, we adopted the NARR wind data for the 10-year simulation and sensitivity tests.

Winds can exert a substantial control on the onset, development and elimination of summer
hypoxia in CB, and wind-driven lateral circulation and mixing may induce the ventilation of the bottom
waters [49]. In other systems, wind could modulate the DO advection by direct entrainment [17,18].
Increasing the spatial resolution of observed winds and reducing data gaps might improve the DO
simulation in water quality models.
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(b) CB2.2 bottom
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Figure 9. Time series of observed (open dots) and simulated (black solid line, results driven by the
NARR wind data; black dashed line, results driven by the observed wind data (Table 2); blue dashed
line, results using NARR wind-driven mixing and observed wind-driven reaeration) dissolved oxygen
at two sampling sites in Chesapeake Bay (Figure 1) in 2010: Station CB2.2 at (a) the surface and (b) the
bottom; Station CB4.3C at (a) the surface and (b) the bottom.

3.2.2. Sensitivity to Vertical Eddy Viscosity

Since FVCOM-ICM used the turbulence closure process from the hydrodynamic model, vertical
eddy viscosity was a key coupling parameter between hydrodynamic and water quality models [24].
In our sensitivity experiments, we adjusted the vertical eddy viscosity by altering the Prandtl number.
The baseline scenario was from the calibrated hydrodynamic model [31], and four other scenarios
showed roughly 25%, 50%, 200% and 400% of the eddy viscosity in the baseline case (Table 2 and
Figure 10a).

With enhanced mixing, the vertical DO difference in summer steadily declined at the inner bay,
indicating an enhanced vertical exchange of oxygen (Figure 10b). When turbulent mixing was reduced
from the baseline case, i.e., under the azl and az2 scenarios (Table 2), the vertical difference was
more sensitive to eddy viscosity, as revealed by a larger DO difference, than the two other scenarios
(Figure 10b). Of all of the cases, the baseline scenario rendered the highest correlation with the observed
DO and lowest deviation (Figure 10d). Therefore, the appropriate representation of turbulent mixing
could improve the simulation of DO vertical exchange, as also suggested by Irby et al. [23].

Besides vertical ventilation of oxygen, the surface phytoplankton biomass was positively related
to the eddy viscosity in summer (Figure 10c), which implied that the algal growth was limited
by the amount of regenerated nutrients delivered to the surface. The nutrient cycling should be
largely influenced by the extent of turbulent mixing, and this finding was consistent with the field
study by Malone et al. [35]. Similarly to DO results, the baseline scenario exhibited the best model
performance of CHLA simulation; CHLA responded even more sensitively than DO in terms of CCs
and RMSEs (Figure 10e). According to previous studies, turbulence intensity and nutrient availability
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are dominant environmental factors controlling phytoplankton patchiness [50,51]; our results indicated
that simulation of eddy mixing in physically-complex estuaries like CB was crucial to modeling the
spatial heterogeneity of phytoplankton, especially during summer when most primary production was
supported by the remineralized nutrient. Adjusting mixing parameters with caution is recommended,
and field investigations of turbulent mixing in CB are necessary to validate the model performance,
as well as to decipher its interplay with phytoplankton distribution.
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Figure 10. (a) The average eddy viscosity; (b) the surface-to-bottom difference of dissolved
oxygen in the hypoxia season (from May—August); (c) surface phytoplankton biomass in summer
(from June-August); CC and RMSE of (d) dissolved oxygen and (e) chlorophyll-a in 2010 in the
five scenarios of varying eddy viscosity (azl, az2, baseline, az3 and az4 in Table 2). CC and RMSE
denote the correlation coefficient and root mean squared error between the model simulation and the
observation, respectively.



J. Mar. Sci. Eng. 2016, 4, 52 15 of 23

3.2.3. Sensitivity to Bottom Roughness Length Scale

Another uncertainty originating from the hydrodynamic simulation was the bottom stress, and
the input of the spatially-non-uniform bottom roughness length scale regulated the drag coefficient
and the bottom friction. Compared to the calibrated model [31], the bottom roughness length scale was
scaled to 25%, 50%, 200% and 300% to investigate its impacts on nutrient transport and DO variation
(Table 2).

Along the gradient of bottom roughness, the vertical eddy viscosity did not vary much among
these scenarios (Figure 11a). Moreover, the differences in CCs and RMSEs of DIN in these five
scenarios were below 0.005 and 0.004 (mg/L), respectively (Figure 11b). The minimal variation among
the nitrogen simulation from these scenarios indicated that bottom roughness was hardly a main
uncertainty source for nitrogen simulation. In contrast, the discrepancy in DO simulation was slightly
larger than that in DIN, and the range of differences in CCs and RMSEs among cases could exceed
0.01 and 0.07 (mg/L), respectively (Figure 11c). This phenomenon was likely related to the horizontal
oxygen exchange near the bottom since the vertical mixing was not prominently affected (Figure 11a).
The baseline case achieved the highest correlation with the DO observation and the lowest error, even
though it did not perform the best in DIN simulation (Figure 11b,c). Based on the model skills of
DIN and DO, the two variables responded relatively strongly to bottom roughness compared with
the others.
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Figure 11. (a) The average eddy viscosity; CC and RMSE of (b) dissolved inorganic nitrogen and
(c) dissolved oxygen in 2010 in five scenarios of varying bottom roughness length scale (z01, z02,
baseline, z03 and z04 in Table 2). CC and RMSE denote the correlation coefficient and root mean
squared error between the model simulation and the observation, respectively.
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3.3. Uncertainties Associated with the Model Inputs

3.3.1. Sensitivity to Boundary Nutrient Loading

Boundary nutrient loading has been rated as an important driver in water quality models, and
the accuracy of nutrient loading from riverine, benthic and other sources in a water quality model
is fundamental to guide and advise the nutrient reduction plan [28]. It is essential to test how the
variations in nutrient loading act on the water quality modeling results in the modeling framework.
As many previous studies concentrated on the effect of nutrient loading on hypoxia in CB [3,4], we
placed an emphasis on the response of phytoplankton production to complement previous studies.

The riverine nitrogen, phosphorus and silicon loading were scaled at the same time by 25%, 50%,
75%, 80%, 90%, 95%, 105%, 110% and 120% in order to maintain the stoichiometry in nutrient sources
(Table 2), and the freshwater discharge was not adjusted to avoid changes in the physical environment
(e.g., stratification field). We examined the surface DIN concentration and phytoplankton biomass in
May, the period of peak spring bloom in 2010. With nutrient enrichment, the surface DIN concentration
and phytoplankton biomass displayed a near linear increase (Figure 12). Based on our estimation, the
5%, 10% and 20% variation in nutrient loading could result in 2.9%-3.4%, 5.9%-6.8% and 11.2%-14.0%
fluctuation in inner-bay nutrient concentration and phytoplankton biomass. In comparison, the benthic
nutrient loading from the sediment diagenesis sub-model had a less significant control on the nutrient
concentration and phytoplankton biomass in the water column, since up to 20% variation in benthic
nutrient inputs could cause only 2.4%—2.9% alteration in surface DIN concentration and 4.2%-5.0%
changes in surface phytoplankton biomass (Figure 12). Our model responded insensitively to the
nutrient concentration at the open boundary, where nutrients and phytoplankton are flushed out of the
model domain (Figure 1), since up to a 100% alteration in open boundary nutrient concentration led
to a negligible (0.7%—-0.9%) decrease of inner-bay nutrient concentration and phytoplankton biomass
(Figure 12).
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Figure 12. The relationship between the enlargement factor of riverine, benthic and open boundary
nutrient loading (see Table 2) and the (a) surface dissolved inorganic nitrogen concentration and
(b) phytoplankton biomass in May 2010.

Therefore, the riverine nutrient loading or nutrients from the watershed accounted for the largest
uncertainty in the water quality simulation among all of the loading sources. The little contribution
of open boundary loading was probably due to the low nutrient concentration on the continental
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shelf compared to in the estuary [52]. These results are similar to those in the CBEMP [53]. Thus,
the loading estimation in the watershed model was critical to the biogeochemical simulation in the
estuary, and the anthropogenic nutrient reduction in the CB watershed is the most effective way of
alleviating eutrophication in the water column.

3.3.2. Sensitivity of Predation Terms to Phytoplankton Simulation

There are two major predation sources of phytoplankton in the model, zooplankton and
suspension feeders (e.g., Corbicula fluminea, Rangia cuneata and Crassostrea virginica). We switched off
these two modules to examine their controls on the phytoplankton biomass. When the zooplankton
predation was eliminated, the surface phytoplankton biomass in May increased by 3.8%. When we
turned off the filtration on the benthos, the surface phytoplankton biomass in May increased by 1.6%.
That is, zooplankton predation on phytoplankton was more significant than suspension feeding;
however, neither of them could result in a large (>5%) biomass loss during the peak spring bloom
in CB, and their sensitivity was not as high as the nutrient loading. Extensive observation of the
suspension feeder density and zooplankton spatial distribution is still necessary because they could
exert a large influence on the spatial heterogeneity of algal distribution [45].

4. Model Calibration and Validation

4.1. A 10-Year (2003-2012) Model Simulation

To further validate the model settings, we ran the model in a 10-year (2003—-2012) period and
evaluated the overall model performance using the CBP mooring data. During this period, modeled
DIN, DIP, DO, TSS and CHLA showed significant correlations with observational data (p < 0.001),
and their RMSEs were relatively small (Figure 13). Robson [54] reviewed that most reliable aquatic
water quality models could simulate nutrients and phytoplankton with CC of 0.632-0.775 and relative
error of ~40%. In comparison, our model showed even higher agreement of DIN (CC = 0.925) and
DO (CC = 0.922) with empirical data than the above criteria, while the correlations with observed
DIP (CC = 0.705) and TSS (CC = 0.684) were within the average range of typical water quality models
(Figure 13). However, the CHLA (CC = 0.477) simulated by our model tended to overestimate in
low-production periods and was below the criteria (Figure 13).

The desirable modeling confidence of DO and CHLA, two principal water quality criteria for
CB [28,55], for the purpose of water quality management was primarily as follows: CC, 0.707 for DO
and 0.447 for CHLA; standard deviation, 50% for DO and 300% for CHLA [56]. The RMSEs of both
DO and CHLA in our model, whose values were close to the corresponding standard deviation, were
less than these criteria; the corresponding correlation coefficients of DO and CHLA also exceeded
those in the criteria (Figure 13). Therefore, this modeling package generated reasonably well the
representation of the main water quality variables in the 10-year simulation, and the model skill
ensured the confidence in utilizing this model in assisting water quality management and studying
the complex biophysical interactions driving the CB biogeochemical cycles.

In terms of model calibration to the empirical data, another noteworthy fact is that this modeling
system exhibited the best performance in surface CHLA and the second best in bottom CHLA
among the five current complex eutrophication models for CB [23], although the simulation skill
of CHLA was not as good as other simulated variables in our model (Figure 13). In order to further
corroborate the spatial CHLA distribution and figure out the challenges underlying in modeling
phytoplankton, we then compared our simulated surface CHLA to that measured by remote sensing
in the following subsection.
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Figure 13. Comparison between modeled and observed dissolved inorganic nitrogen (DIN) and

phosphorus (DIP), dissolved oxygen (DO), total suspended solids (TSS) and chlorophyll-a (CHLA)

from 2003-2012. CC and p denote the correlation coefficient and its p-value, and RMSE is the root mean
squared error.

4.2. Comparison of Simulated CHLA with Remote Sensing Images

During the spring bloom (usually peaking in May), the lower-bay and mid-bay areas in both
modeled and remote sensing images were characterized by a high CHLA concentration (Figure 14a,b),
in which diatoms dominated [6]. In a wet year (e.g., 2011), the magnitude and extent of the spring
bloom were greater than other years (Figure 14b). In summer, the entire phytoplankton biomass, with
dinoflagellates and cyanobacteria the dominant groups [6], became lower than that in spring, and the
chlorophyll maxima were generally shifted northwards due to reduced stream flow (Figure 14c) or
even disappeared for lack of nutrient input (Figure 14d). These results were consistent with many
previous field observations in CB [5,6,10,26,57,58], which suggested that our model followed the
general seasonal and inter-annual patterns of phytoplankton distribution.
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Figure 14. Remote sensing and simulated surface chlorophyll-a of Chesapeake Bay on: (a) 9 May 2005;
(b) 6 May 2011; (c) 11 July 2005; (d) 7 July 2006; (e) 26 July 2011; and (f) 12 August 2012. Remote sensing
data source: Chesapeake Bay Remote Sensing Program.

Except for the major seasonal pattern, phytoplankton usually appeared in patches (Figure 14a,e,f).
These “hot spots” of chlorophyll generally included the eastern embayment (Figure 14a,f), littoral
zones (Figure 14e), areas near the Patapsco River (Figures 1 and 14f) and specific mid-bay regions
(Figure 14e). Spatial heterogeneity of phytoplankton, probably regulated by the regional nutrient
enrichment, grazing, advection, stratification and the balance of various biophysical mechanisms,
was a phenomenon frequently observed, but far from well understood [45,59,60]. Our model was
capable of capturing most of the realistic CHLA patches, but might slightly deviate in location, extent
or magnitude (Figure 14), which partially accounted for the low model skills of CHLA relative to
other variables.

The difficulty in accurately simulating the localized and sporadic phytoplankton bloom was one
major source of error in CHLA simulation, and it was also noticed in other models [45]. One possible
explanation for the inaccuracy in primary production simulation was that phytoplankton growth,
an unsteady state, accumulated the errors from processes, such as hydrodynamic conditions, nutrient
transport, light attenuation, interspecific competition and predator-prey interaction [60]. Pertaining to
our modeling effort, the potential improvement in CHLA simulation desired both field observation
and model development from at least the following aspects: investigating vertical migration of
phytoplankton, formulating the heterotrophic capability of dinoflagellates, considering sufficient
phytoplankton groups and quantifying the grazing pressure by herbivores besides zooplankton.



J. Mar. Sci. Eng. 2016, 4, 52 20 of 23

5. Conclusions

A three-dimensional unstructured grid biophysical model (FVCOM-ICM) was applied to CB and
its adjacent coastal ocean to investigate the biophysical controls on the main water quality variables.
In the process of model calibration, a series of sensitivity experiments was conducted on major sources
of uncertainties. The model showed reasonable agreement with observed water quality variables, such
as DIN, DIP, TSS, DO and CHLA during a 10-year simulation period (2003-2012), and the simulated
surface CHLA could represent the seasonal and spatial distribution patterns revealed by remote
sensing images. The main conclusions based on the sensitivity tests are summarized below.

(1) Grid refinement improved the model performance of most variables, particularly for DIN and
TSS. The finer grid favored modeling the realistic material transport from the Susquehanna
River to the bay mouth, especially in the mid-bay portion. Eleven sigma levels were applied in
consideration of the balance between computational accuracy and efficiency. The unstructured
grid-based water quality models made it feasible to reach high resolution in biologically-active
regions (e.g., littoral zones and the main channel) without significantly adding to the overall
computational burden.

(2) The effects of wind source on DO simulation were compared between the NARR modeled and
observed winds. Both winds represented directional asymmetry in summer (southerly winds
strongest and westerly weakest), while the observed winds showed lower frequency in southerly
winds. The DO simulation forced by these two wind sources had good agreement with empirical
data, except that the surface DO was overestimated under the observed winds. Due to stronger
mixing from the more frequent southerly winds, the NARR winds were preferred in our water
quality model.

(38) Turbulent mixing and bottom stress were two potential sources of uncertainties in water quality
simulation. Appropriate representation of vertical eddy viscosity was propitious to model the
vertical oxygen ventilation and the new primary production fueled with recycled nutrients.
Bottom friction exerted a moderate impact only on the horizontal oxygen mixing. In terms of
water quality simulation, the vertical mixing process was more influential than bottom roughness.

(4) Uncertainties in the riverine source could exert a relatively larger influence on the inner-bay
nutrient concentration and phytoplankton biomass during the spring bloom than those in benthic
nutrient flux and open boundary loading. Zooplankton predation on phytoplankton was more
significant than that of the filtration of suspension feeders.

As a simplification of the real-world systems, all water quality models rely on assumptions and
have limitations, including ours. For instance, in addition to those mentioned in Section 4.2, we did not
consider the tidal marshes surrounding CB. However, our calibration efforts and sensitivity tests have
displayed the feasibility and reliability of such a holistic modeling approach in simulating the main
environmental indicators in CB and discerning complex internal biophysical interactions on the lower
estuarine-coastal food web. Our biophysical approach will be further utilized to decipher the potential
response of water quality cycles in the context of climate change and investigate the estuarine-shelf
nutrient exchange.
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