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Abstract: The deposition of polychlorinated dibenzo-p-dioxins, dibenzofurans (PCDD/Fs),
and polychlorinated biphenyls (PCBs) was studied during the period 20062008 in northern Finland
(Pallas), 1998-2008 in southern Finland (Evo) and 2002-2004 in the Gulf of Finland archipelago
(Ut06). Retrospective snow samples were taken from the whole snowbank in Evo in 2003 and 2004,
and recently fallen snow was collected in Evo in 2006-2008. The concentrations of PCDD/Fs in the
depositions were usually small. The limit of quantification (LOQ) was often reached in Pallas and Uto.
The analysis results of PCDD/F and PCB congeners from Evo were used to predict numerical results
with linear regression for those congeners with results below LOQ. The deposition of PCDD/Fs
in Pallas was mostly less than 0.4 pg:m2-day ! WHO-TEQ and less than 1.0 pg-m~2-day !
WHO-TEQ and 0.5 pg-m~2-day ! WHO-TEQ in Evo and Uto, respectively. The deposition of
co-planar PCBs (cPCBs) was between 0.01 and 0.1 pg-m~2-day ! WHO-TEQ. Annual PCDD/F
deposition, calculated from the amount of collected rain and chemical analysis results, varied in
Pallas between 0.04 and 0.15 ng-m~2-year~! WHO-TEQ, in Evo between 0.11 and 0.22 ng-m~2-year !
WHO-TEQ and in Utd between 50 and 145 pg-m~2-year ! WHO-TEQ. For cPCBs the annual
deposition in Pallas was 2-11 pg-m~2-year~! WHO-TEQ, in Evo 6-17 pg-m~2-year~! WHO-TEQ
and in Utd 4-8 pg-m~2-year ! WHO-TEQ. Wind directions are considered to be the main reason
for the variation between seasons. Congener 1,2,3,7,8-PeCDD dominated in Pallas, Evo, and Uto,
being 35%, 48%, and 47% of the overall WHO-TEQ, followed by 2,3,4,7,8-PeCDF (about 10%).
The calculated pg/L concentrations of 1,2,3,7,8-PeCDD were about the same level as 2,3,4,7,8-PeCDF,
but the TEF correlations being twice as big ensured that all WHO-TEQ contributions were bigger.
PCB126 accounted for 30% of WHO-TEQ in Pallas, whereas in Evo and Ut6 the proportion was
less than 5%. Of PCDD/F homology groups, the highest concentration was found in Pallas as
OCDDs (55%), followed by Evo and Uto, at 42% and 38%, respectively. Decreasing temporal PCDD/F
deposition trends were observed for highly chlorinated octa-, hepta-, and hexacongeners. The findings
indicate that, regardless of the major importance of Kymijoki to the dioxins in the Gulf of Finland,
deposition sources may contribute more to the PCDD/Fs’ intake of fish in the studied sea area.

Keywords: deposition; PCDDs; PCDFs; PCBs; Finland

1. Introduction

Rather than produced intentionally, PCDD/Fs are minor impurities found in several chlorinated
chemicals. Historically, the largest emission source categories in Europe are the incineration of
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municipal, hospital, and hazardous waste and sewage sludge. The originating of PCDD/Fs in
incineration processes is clarified in new reports and also the methods to reduce the formation of
PCDD/Fs are investigated [1,2]. The second largest are combustion sources. The third largest are
industrial sources, like iron ore sintering which these days is believed to be the most important
single emission source type [3], with the fourth largest being reservoir sources, or accidental and
miscellaneous sources [4-7]. According to official emissions reports to the European Monitoring
and Evaluating Programme (EMEP), the main emission sectors in Finland are combustion in power
plants and industry, industrial processes, transport, commercial and residential combustion, and other
stationary combustion [8,9]. At the global level, the initial distribution of dioxin emissions suggested
several areas of likely high local dioxin production due to higher levels of economic activity [10].

PCBs have mainly been used by the power industry in electrical transformers, capacitors and
hydraulic equipment, and as lubricants. PCBs have also been added to many products used directly
by industry, such as adhesives, waxes, and links [11]. Since the mid-1970s, PCBs have been removed
from active use in most countries. Dioxin-like PCBs usually constitute a small fraction of PCB mixtures.
Dioxin-like PCB sources include the use and disposal of industrial PCB products or by-products of
municipal solid waste incineration [12].

PCDD/Fs are either absorbed in particulate matter or present in the vapor phase. PCDD/Fs can
also undergo association with aerosols as they are transported in the air [13,14]. Highly chlorinated
dioxin/furans dominate the particle phase, while lower chlorinated dioxin/furans dominate the gas
phase [15,16]. Dioxins” atmospheric travel distance depends on their gas/particle partitioning and
particle size distribution for particulate dioxins and furans and the deposition characteristics of the
gaseous and particulate PCDD/Fs congeners [17]. Atmospheric deposition depends on precipitation,
atmospheric turbulence, and the height of the emission and deposition surface type [16]. It has
been reported that about 76% of the total deposition of PCDD/Fs (WHO-TEQ) to the Great Lakes is
absorbed into organic matter in aerosols. More than 92% of all the deposition is particulate phase wet
deposition and only 5%-8% is particle phase dry deposition [18]. Wet particle deposition was reported
to contribute 30%-90% of the total deposition in different congeners with mass balance modelling [19].

In the EMEP region, using the modelled emission data of PCDD/Fs, significant levels in deposition
can be seen mainly in Eastern Europe [20]. According to measured atmospheric particle-bound and
gaseous PCDD/Fs concentrations in the air in southern Sweden, the highest levels were found in air
that had passed over the European continent. In air that had passed over the British Isles and air from
northerly directions, the concentrations were low [14].

Studying the surface snow in Antarctica, only 1,2,3,4,6,7,8-HpCDD and OCDD were detected
among 17 priority PCDD/Fs in two samples [21]. However, a few results were published in the Nordic
countries [14,22-25]. In addition, few results have been published with regard to long-term monitoring
and all toxic dioxins and PCBs. In this study, we summarize the monitoring results of PCDD/F and
PCB concentrations in depositions in Finland between 1998 and 2008. We also calculate the bulk
deposition as WHO-TEQ pg-m~2-day !, compare our results with other studies and make rough
estimates for the northern Baltic Sea.

2. Material and Methods

2.1. Sampling

Monthly bulk deposition was collected at three stations during the snow-free period
(May-November/December) at Evo (1998-2008), Ut6 (2002-2004), and Pallas (2006-2008) (Figure 1).
Additional snow samples were collected in Evo from the total snowpack gathered during late winter
in March 2003 and 2004, and a sampling also in winter recently fallen snow at Evo was carried out
in 2006-2008. Evo is located about 100 km inland from the coast of the Gulf of Finland, with a distance
of some 40-60 km from the nearest large urban areas. The Evo region is a mostly forested and
agricultural area. Pallas is situated in the subarctic region of northern Finland, with a small urban area
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35 km away. The nearest larger urban areas are situated 100 km and 200 km away, respectively. Uto is
a small island some 70 km off the south-west coast near the open Baltic Proper. The distance between
the southernmost and northernmost stations is some 1000 km.

o Pallas
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Figure 1. The map of Finland and the regions of Pallas, Evo, and Uto.

2.2. Sample Extraction and Clean-up

The bulk deposition (wet deposition and dry particles) sampling was performed with two glass
funnels (30 cm in diameter), which were installed 120 cm above the ground in an open place in
a forest (Evo, Pallas) and on open bedrock in Uté. The samples were collected through funnels
into 5-liter glass (Pyrex) bottles using a PTFE tube (14 mm). The bottles were buried in the ground
and covered with a ten-centimeter-thick styrox plate to avoid photodegradation and heating of
the sun. To avoid evaporation, 100 mL of dichloro-methane (Merck n:o 6054) and 100 mL of
deionized water (purity class = 1, conductivity <0.005 mS-m~!) were added to the bottles prior to
sampling. The sampling period ranged between 4 and 5 weeks. Before the start of each sampling
period, the bottles, funnels and tubes were carefully washed with ethyl alcohol and deionized water.
The method used was a bulk sampler modified by DMU, the National Environmental Research Institute,
Denmark [26]. Bulk deposition sampling methods have been widely used in several studies [27-32].

The intercomparisons and quality control of sampling methods for deposition measurements of
organic compounds had been evaluated in a joint project under the Nordic Council of Ministers [33].

The retrospective snow samples in 2003 and 2004 were taken using polyvinyl tubes, which were
(diameter 10 cm and length 50 cm) by placing them through the snowpack. Any collection of vegetation
or litter was carefully avoided. The wintertime deposition was collected with a bulk sampler with
a surface area of 0.8 m? connected with a PTFE-coated funnel to a Teflon bottle and melted after
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one month’s collection in a clean room. Sampling in bottles and washing procedures were equal to
that in wet and dry sampling.

2.3. Instrumental Analyses

For the PCDD/Fs and PCBs analyses, the water samples were extracted with hexane and sodium
chloride in glass funnels. Extracts were dried with activated Nay;SOy4 before fractionation and
purification. The extracts were fractionated and purified by eluting them through three columns
consisting of (1) sodium sulphate and silica gel; (2) activated carbon and Celite; and (3) aluminium
oxide. The quantification of PCDD/Fs and cPCBs was achieved by measuring the native compounds
and '3C-labeled internal standards using high-resolution gas chromatography-mass spectrometry
(VG70SE or Autospec Ultima; Micromass, Manchester, UK).

2.4. Calculations

The PCDD/F concentrations in bulk deposition (pg-L~') and the amount of deposition for
a day (pg'm 2-day ') or a year (ng'm~2-year ') were calculated. We used the PCDD/Fs and
cPCBs analyses results from Evo in linear regression equations between different congeners to predict
numerical results for the congeners with analytical results below LOQ. The best possible surrogates
of these congeners were calculated using Pearson correlation, 16 PCDD/F congeners or homolog
concentrations, and 21 cPCBs equations were used to predict 24 PCDD/Fs congeners and 33 cPCB
congeners together in all the study areas (Figure 2). The model was verified by the analysis results from
the same congeners that were modelled. The percentages of the predicted results were calculated from
these analyses results. In addition, with the calculation of WHO-TEQ [34], values were used equally.
In Ut the amount of PCBs under the LOQ was 112 from 120 analyses and 93 from 105 analyses,
respectively, and these results were not used. In calculations for the annual deposition amount,
missing concentration values were replaced by the mean of the year and the precipitation of the actual
month was used.
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Figure 2. Visual Basic program for multivariate Mann-Kendall tests of monotone trends in time series

of data grouped by sites, plots, and seasons, to evaluate the possible trends using Evo results, was used
and the trend of 1,2,3,4,6,7,8-HpCDF pg-m*2~day*1 are presented in these figures.

We evaluated the possible temporal trends in Evo by using the Visual Basic program for
multivariate Mann-Kendall tests of monotone trends in time series of data grouped by sites, plots,
and seasons, developed by Anders Grimvall at the Swedish University of Agricultural Sciences.
The reason for choosing this program was its sensitivity to regression. Because of the sample
collection system, generally only one result for one month was available. In case more data existed,
mean values were used. We used the pg-L~! and pg-m~2-day ! results for all toxic and sum values
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of PCDD/Fs (17 and 8, respectively) and non-ortho PCBs [35]. In total, 58 trends were calculated
(Supplementary Materials Table S1).

3. Results

3.1. PCDD/F and PCB Concentrations and Congener Profiles

The highest concentrations of PCDDs and PCDFs were measured in Evo (mean of the sum
of all congeners 4.12 pg-L~! and 3.11 pg-L~! respectively) and the lowest in Pallas (1.61 pg-L~!
and 0.65 pg-L~1!) (Table 1). OCDD was clearly dominant from all PCDDs in all areas followed by
1,2,3/4,6,7,8-HpCDD. OCDF and 1,2,3,4,6,7,8-HpCDF dominated the furans and less variation between
different congeners was evident. The congener pattern varied between sites. While sum PCDDs and
PCDFs were almost equal in the two southern stations, PCDDs dominated over PCDFs in Pallas,
the northernmost station.

In the sum concentrations of PCBs, there was no clear difference between the sites. The sum
concentrations of mono-ortho PCBs and indic7 PCBs in Pallas and Evo were about 10 times and
100 times as big, respectively, than the amount of non-ortho PCBs. In any case, PCB 77 was clearly
dominant in all areas in non-ortho PCBs.

Table 1. Concentrations (mean and standard deviations, SD) of PCDD/Fs and PCBs (pg/L) in Pallas,

Evo, and Uto.
Congener PALLAS EVO uTO

Mean SD Mean SD Mean SD

PCDDs
2378-TCDD 0.02 0.03 0.04 0.04 0.01 0.01
12378-PeCDD 0.06 0.08 0.18 0.44 0.08 0.08
123478-HxCDD 0.01 0.02 0.06 0.09 0.04 0.05
123678-HxCDD 0.05 0.05 0.24 0.69 0.18 0.16
123789-HxCDD 0.04 0.03 0.23 048 0.09 0.08
1234678-HpCDD 0.3 0.38 1.1 1.99 0.53 0.63
OCDD 1.13 1.72 2.28 1.96 1.29 1.26
sum PCDDs 1.61 2.3 412 5.7 2.23 2.28

PCDFs
2378-TCDF 0.02 0.01 0.11 0.09 0.09 0.07
12378-PeCDF 0.02 0.01 0.12 0.11 0.08 0.12
23478-PeCDF 0.03 0.03 0.18 0.2 0.21 0.23
123478-HxCDF 0.04 0.02 0.23 0.3 0.21 0.23
123678-HxCDEF 0.04 0.02 0.17 0.19 0.24 0.23
234678-HxCDF 0.04 0.03 0.21 0.25 0.26 0.24
123789-HxCDEF 0.02 0.01 0.05 0.04 0.02 0.04
1234678-HpCDF 0.16 0.11 0.77 0.86 0.68 0.87
1234789-HpCDF 0.06 0.03 0.31 0.95 0.1 0.1
OCDF 0.21 0.14 0.95 1.62 0.7 0.56
sumPCDFs 0.65 0.42 3.11 4.62 2.57 2.69

non-ortho

PCB 81 0.09 0.12 0.1 0.1 0.1 0.05
PCB77 2.27 291 1.58 1.61 1.77 0.82
PCB 126 0.13 0.16 0.13 0.08 0.14 0.08
PCB 169 0.02 0.01 0.04 0.03 0.05 0.03

sum non-ortho 2.52 3.21 1.85 1.82 2.05 0.98
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Table 1. Cont.

Congener PALLAS EVO UTO
Mean SD Mean SD Mean SD

mono-ortho

PCB 123 1.38 1.55 143 1.04
PCB 118 7.02 4.89 8.97 5.21
PCB 114 0.62 0.85 0.34 0.53
PCB 105 2.64 1.87 3.63 1.93
PCB 167 2.79 3.78 2 1.82
PCB 156 1.16 1 2.19 1.79
PCB 157 0.77 0.7 0.93 0.72
PCB 189 0.92 1.04 1.02 0.87
sum mono-ortho 17.3 15.68 20.51 13.92
indic 7
PCB 28/31 102.83 105.02 62.53 71.38
PCB 52 23.82 34.73 26.04 25.24
PCB 101 31.18 57.05 32.11 74.05
PCB 118 7.02 4.89 8.97 5.21
PCB 153 77.79 99.53 84.52 108.33
PCB 138 14.24 9.85 50.96 74.97
PCB 180 7.29 3.86 20.17 33.31
sum indic 7 264.18 314.93 285.3 392.49

3.2. PCDD/F and cPCB Deposition

The deposition of PCDD/Fs in Pallas was mainly less than 0.4 pg-m~2-day~! WHO-TEQ
and less than 1.0 pg:m~2-day~! WHO-TEQ and 0.5 pg-m 2-day ! WHO-TEQ in Evo and Uts,
respectively. The deposition of cPCBs was between 0.01 and 0.1 pg-m~2-day~! WHO-TEQ. Similarly
to concentrations, the deposition of PCDD/Fs was highest in Evo, clearly lower in Ut6 and lowest
in Pallas. For PCB no clear difference was found between the sites (Tables 2 and 3). There were
two exceptionally high PCDD/F deposition rates in Evo (12 and 10 pg-m~2-day~!) in October 1999
and August 2000 which strongly affected the mean deposition rates for these years. Both these peaks
were mainly caused by congener 1,2,3,7,8-PeCDD. The highest fluxes were generally recorded during
autumn (Figure 3).

EVO, WHO-TEQ

mcPCBs
PCDD/Fs

pe/m/d

29.7-30.8

=

2003 2004 2005 2006 2007 2008

Figure 3. The deposition sample results of PCDD/Fs and cPCBs (pg/m?/day) in Evo in years measured
the whole year (snowp. = snowprofile and snow = recently fallen snow).
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Table 2. The deposition of PCDD/Fs and cPCBs calculated as WHO-TEQ [34] (pg/m?/day) in some
countries, rural (R)/urban (U) (Wallenhorst, Bakogly, Vikelsoe, and Chi I-TEQ).

Location R/U PCDD/Fs cPCBs References
Finland /Uto R 0.1-0.4 <0.1-0.1 This study
Finland/Evo R 0.3-3.0 <0.1-0.1 This study

Finland /Pallas R 0.1-05 <0.01-0.1 This study

Sweden R 0.05-0.7 [14]

Sweden R 0.1 [23]

Denmark U 2.5-8 [25]

Denmark U 1.2-2.5 [24]

Germany R 3-15 [36]

Germany U 3-20 [37]

United
Kingdom R 3-70 [38]
Italy U 20-160 [39]
Italy U 2.9 [11]
Italy U 0.75-3.73 [40]
Italy R <0.01-1.5 [35]
Turkey U 21-182 [41]
South Korea U 3-10 [42]
Japan R <0.1-43 [43]
Japan U 16-46 0.1-110 [44]
Japan U 1.35 [12]
Taiwan R 0.61-3.0 [45]
United States R 0.6-2.6 [46]
United States U 1.5 [22]
Canada R 0.01-0.15 [47]

Table 3. Bulk deposition in different years (mean, SD = standard deviation) of PCDDs, PCDFs,
non-ortho PCBs and mono-ortho PCBs WHO-TEQ pg/ m?2/ day in Pallas, Evo, and Uto.

PCDDs PCDFs Non-Ortho PCBs  Mono-Ortho PCBs
Mean SD Mean SD Mean SD Mean SD

Pallas

2006 0.194 0.201 0.219  0.196 0.006 0.004 0.001 0
2007 0.068 0.107 0.105 0.141 0.03 0.029 0.001 0.001
2008 0.032 0.03 0.048 0.044 0.035 0.044 0.001 0
mean 0.098 0.124 0.024 0.001

Evo

1998 0.749 0.174 0.193 0.04

1999 2.534 4.661 0.287  0.331

2000 2.718 4.007 0.235 0.216 0.064 0.015

2001 0.292 0.158 0.091 0.08 0.038 0.016

2002 0.221 0.105 0.103  0.099 0.031 0.018

2003 0.479 0.656 0.126  0.119 0.025 0.02

2004 0.339 0.177 0.185  0.093 0.026 0.02 0.001 0.002
2005 0.355 0.335 0.156  0.112 0.022 0.017 0.001 0.001
2006 0.393 0.406 0.299  0.368 0.024 0.018 0.001 0.001
2007 0.233 0.198 0.18 0.281 0.015 0.011 0.001 0
2008 0.287 0.238 0.163 0.15 0.034 0.015 0.001 0
mean 0.782 0.183 0.031 0.001

Uto

2002 0.273 0.285 0.248 0.32 0.029 0.017

2003 0.095 0.092 0.087  0.101 0.011 0.011

2004 0.087 0.061 0.044  0.045 0.01 0.009

mean 0.152 0.126 0.017
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4. Discussion

4.1. Bulk Deposition Rates

We measured the highest deposition rates of PCDD/Fs in Evo station; the mean was
1.0 pg-m~2-day ! WHO-TEQ for the whole period and 0.5 pg-m~2-day ! for 2002-2008, i.e.,
the timescale comparable with other stations. These were considerably more compared to Uto
station in the northern Baltic Proper (0.28 pg-m~2.day~!) and in Pallas station in northern Finland
(0.13 pg'm~2-day!). This may indicate a major role of Finnish domestic emissions to the deposition
of PCDD/Fs in Evo. The Evo site is situated relatively close to population centers and some 100 km
inland from the Gulf of Finland and the metropolitan area of Helsinki with some 1 million inhabitants,
and smaller urban and industrial activity and residual wood and hazardous waste burning is located
even closer. About 52% of the calculated and approximated dioxins emissions in Finland are due to
energy production, with traffic, agriculture, and waste management accounting for about 24%, 19%,
and 5% of the emissions respectively. The prevailing wind directions from between the south-west (SW)
and north (N) during episodes of high deposition (Table 3 and Figure 3) (October 1999, August 2000,
October 2003, and November 2006) in Evo further point to domestic sources in this site. At times of
low deposition, the prevailing winds were almost from the opposite direction. If PCDD/Fs mostly
originated from emissions in Central Europe or Eastern Europe, as suggested in the case of Aspvreten
station in Sweden [14,31,48], we would have expected higher or equal concentration and deposition
in Uto station than in Evo. However, Ut6 only showed a higher deposition rate than Evo in 2002,
but clearly lower in 2003 and 2004 (Table 3).

Our results on deposition fluxes in Evo are in line but somewhat lower than those measured
in rural areas in Sweden [23,31]. In Denmark the PCDD/Fs levels in urban areas have been slightly
higher [24,25]. In rural and urban areas in Central Europe and the UK, depositions that were more
than 10 times higher were measured, and in southern Europe there were higher depositions of up
to two orders of magnitude. Logically, the northernmost station of Pallas exhibited the lowest
concentrations and deposition rates for PCDD/Fs, which were in general comparable to those in
the arctic environment in Canada (0.01-0.15 pg-m~2-day ! WHO-TEQ) [47] with only a few exceptions
(Table 2). There are few publications that are concerned with the amount of coplanar PCBs in deposition.
In Sweden, the amount of coplanar PCBs was at the same level as this study [23], whereas clearly
elevated deposition fluxes for dioxin-like PCBs were measured in urban areas in Japan [44].

4.2. Temporal Trends

In Evo station, the highest mean deposition rates were measured during the first three years
(1998-2000) and were followed by a more or less stable deposition level. Since there were only a few
analyses from the winter period before 2002, the mean deposition during this period is probably
underestimated. Also in the other stations, with notably lower concentrations and deposition,
the highest deposition rates were from the first year of the three years of monitoring. The monthly
minimum deposition rates decreased in all stations, as did the maximum deposition rates in Uto
and Pallas, with the latter being at very low arctic levels in 2008 (Table 3). Although we only have
three years of monitoring from two of the stations, these observations indicate a general and spatially
broad decrease in deposition. The temporal trend in deposition in Evo station may be more affected by
regional emissions than other stations as discussed earlier.

There were ten significantly (p-value < 0.005) and five almost significantly (0.008 > p > 0.006)
decreasing trends in different congeners in Evo station (Figure 2). These were mostly highly
chlorinated octa-, hepta-, and hexahomologs. Both concentrations and deposition rates were
decreasing with congeners 1,2,3,4,7,8-HxCDD, sum HxCDDs, 1,2,3,4,6,7,8-HpCDD, sum HpCDDs,
OCDD, 1,2,3,4,6,7,8-HpCDE, and sum HpCDFs. The congener 1,2,3,7,8-PeCDD showed decrease in
concentration only. We did not find any significant change in PCDD/PCDF ratio over time, however.
A decreasing trend in deposition is expected based on official emission estimates in EMEP countries
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and transport and deposition modelling. The emissions of PCDD/Fs were shown to decline in EMEP
countries from 1990 to 2007 by almost 60 percent [8]. Later, however, official emission estimates have
been questioned, with Gusev at al. (2011) suggesting that they may have been underestimated by as
much as five times. Regardless of uncertainties in emission estimates, our data regarding a general
decrease in deposition from the late 1990s to the late 2000s probably reflects a decrease in European
and national emissions in general [49].

4.3. The Gulf of Finland and the Baltic Sea

The annual deposition rate of PCDD/Fs in Evo varied only slightly, between 0.11 and
0.22 ng-m~2.year ! WHO-TEQ in 2002-2008, with data also from winter months and in the
corresponding years of other stations. In Uto, deposition rates varied between 0.04 and
0.18 ng'm 2-year ! and in Pallas between 0.04 and 0.15 ng-m 2-year ! WHO-TEQ. For cPCBs
the annual deposition in Pallas was 2-11 pg-m~2-year~! WHO-TEQ, in Evo 6-17 pg-m~2-year~!
WHO-TEQ and in Uté 4-8 pgm 2.year ! WHO-TEQ. Based on official emission estimates,
the modelled annual PCDD/F deposition ranged between 0.1 and 0.5 ng-m~2-year ! TEQ in the Baltic
countries and was higher in Central and Eastern Europe in the late 2000s [8,20]. The deposition
profile of PCDD/Fs both in this region and worldwide is dominated by OCDD, followed by
1,2,3,4,6,7,8-HpCDD, OCDF and 1,2,3,4,6,7,8-HpCDF [22,31,44,50]. While the deposition of dioxins
clearly seems to increase with increasing chlorination levels, this is not as obvious with furans [31].

The PCDD/Fs deposition in Utd, c. 0.1 ng-m_2~year_1 WHO-TEQ), is lower than in Aspvreten,
0.4 ng-m~2.year~! WHO-TEQ [51]. Estimates of atmospheric deposition of PCDD/Fs vary by 30% due
to sampling and pretreatment (elution) methods [32]. The placement, geometry, and other properties of
sampling equipment may potentially cause still greater variation. The temporal coverage of sampling,
moreover, can play a significant role. In addition to time trends, there are geographical trends [52].
In summary, estimates for the atmospheric deposition of PCDD/Fs in the Baltic Sea area vary by
an order of magnitude for reasons that are not clear. Estimates may, to a considerable degree, be related
to sampling and measurement methodology in addition to real trends and gradients. In the Bartnicki
et al. model output (2009), the atmospheric deposition of PCDD/Fs in the Baltic Sea area varies
from 0.1 to 0.2 ng-m~2-year ! WHO-TEQ in Denmark to <0.03-0.05 ng-m~2-year~! WHO-TEQ in
the northern reaches of the Gulf of Bothnia. The MSCE-POP model (Meteorological Synthesizing
Centre—East Persistent Organic Pollutants) ([53] pollution data 2002) has calculated the deposition
amounts of PCDD/Fs (ug I-TEQ km~2-year™!) for the sub-basins of the Baltic Sea. For the Gulf of
Finland (GOF) sub-basin, 0.11 ng-m~2-year~! TEQ was calculated for the deposition flux, which is
of the same magnitude as the measured and partially estimated deposition values in Uto. The total
deposition for the whole GOF sub-basin area (29, 600 km?) in this model calculation was 3.2 I-TEQ
mg-year ! and with the results of Ut6 2.7 I-TEQ mg-year~!, which is quite close to the former figure.

4.4. Fish

We considered what kind of impact the PCDD/Fs deposition can have on the possible source
of PCDD/Fs in fish. The main dioxin components in fatty fish in the Baltic (e.g., Baltic herring and
Baltic salmon) are 2,3,4,7,8-PeCDF and also 1,2,3,7,8-PeCDD, 2,3,7,8-TCDD, and 2,3,7,8-TCDF [54,55].
The Kymi, a river with high levels of PCDD/Fs in sediments, up to 350,000 ng-kg ! WHO-TEQ
(dw), is considered to be the main contributor of dioxins to the GOF. The main component of the
Kymi load is the impurity of Ky-5, a wood preservative with mainly 1,2,3,4,6,7,8-HpCDF and lesser
amounts of other hexafurans [56,57]. The two main congeners in depositions in Uto, calculated as
percentage values of WHO-TEQ, were 1,2,3,7,8-PeCDD (about 47%) and 2,3,4,7,8-PeCDF (about 10%)
(Figure 4). These same congeners dominated in a congener-specific PCDD/Fs emission inventory
when calculated, dominating the total TEQ composition [19]. The findings indicate that, regardless
of the major importance of the Kymi to the dioxins in the Gulf of Finland, deposition sources may
contribute more to the PCDD/Fs intake of fish in the studied sea area.
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Figure 4. PCDD/Fs and cPCBs congener contributions pg/L WHO-TEQ calculated as % from the sum
of all congeners.

4.5. PCDD/F Congener Pattern and Congener Contribution to the WHO-TEQ

Congener patterns of PCDD (toxic congeners included) show increasing concentrations and
percentages of the sum of congeners with increasing chlorination levels in all stations (Figure 5).
In Pallas, the dioxin homolog OCDD was clearly the most dominant, representing 55% of all toxic
congeners and ranging from 38% to 42% in Ut6 and Evo. A profile with a high relative concentration
of OCDD has been considered to be representative for background or environmental sink air samples
which have been subjected to different reactions in the air during transport [58,59]. Photolysis of
PCDD/Fs favors the degradation of the lower chlorinated congeners, resulting in a higher proportion
of the higher chlorinated isomers in the air transport masses [60]. The photochemical synthesis of
OCDD from pentachlorophenol in condensed water could also be a significant source of OCDD to
the environment [5]. Rather similar homolog patterns in the air, except near important local sources,
has often been reported [17,61-63], although the individual congeners included in different groups are
generally not well-documented.
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Figure 5. PCDD/Fs (toxic congener) homolog groups pg/L calculated as % of the sum of all homologs.

On the TEQ basis the pattern is quite different. Congener 1,2,3,7,8-PeCDD dominated in Pallas,
Evo, and Uto, being 35%, 48%, and 47% of the overall WHO-TEQ respectively, and followed by
2,3,4,7,8-PeCDF (about 10%) (Figure 4). The main congeners were the same as in the deposition in
the Great Lakes [18]. The same congeners were dominating in deposition flux and air data reported
mainly as I-TEQ in different continents, with only the share of congener 2,3,4,7,8-PeCDF being higher
than 1,2,3,7,8-PeCDD, which could be influenced by the altered TEF factor [17,61,62,64]. Tetra- and
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penta-CDD/Fs together account for over 50% of the total WHO-TEQ. The same kind of results are
also reported in literature (usually >50%) [41,63]. In this WHO-TEQ calculation, it should be noted
that these congeners are often reported as close as or less than the LOG and then the TEQ is calculated
with the assumption that the actual concentration is half the LOG, but in this paper we have calculated
this below LOG results with linear regression equations. Using half of the LOG for lighter congeners
(especially 2,3,7,8-TCDD) could result in overestimation of their real contribution [17]. The share
of 126 PCB was high in Pallas, being 30% of the total WHO-TEQ, whereas in Evo and Ut6 it was
less than 5%. The amount of 126 PCB calculated in pg/L (Table 1) was at the same level in all areas,
while the percentage share of other congeners was bigger in Ut6 and Evo.

5. Conclusions

The findings indicate that, regardless of the major importance of Kymijoki to the dioxins in the
Gulf of Finland, deposition sources may contribute more to the PCDD/Fs’ intake of fish in the studied
sea area. Decreasing temporal PCDD/F deposition trends were observed for highly chlorinated octa-,
hepta-, and hexacongeners.

Supplementary Materials: The following are available online at www.mdpi.com/2077-1312/4/3/56/s1.
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