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Abstract: Tidal datums are key components in NOAA’s Vertical Datum transformation project
(VDatum). In this paper, we propose a statistical interpolation method, derived from the variational
principle, to calculate tidal datums by blending the modeled and the observed tidal datums.
Through the implementation of this statistical interpolation method in the Chesapeake and Delaware
Bays, we conclude that the statistical interpolation method for tidal datums has great advantages
over the currently used deterministic interpolation method. The foremost, and inherent, advantage
of the statistical interpolation is its capability to integrate data from different sources and with
different accuracies without concern for their relative spatial locations. The second advantage is that
it provides a spatially varying uncertainty for the entire domain in which data is being integrated.
The latter is especially helpful for the decision-making process of where new instruments would be
most effectively placed. Lastly, the test case results show that the statistical interpolation reduced the
bias, maximum absolute error, mean absolute error, and root mean square error in comparison to the
current deterministic approach.

Keywords: tides; tidal datum; uncertainty; VDatum; variational method; statistical interpolation;
optimal interpolation; Chesapeake Bay; Delaware Bay

1. Introduction

A vertical datum is a base elevation used as a reference from which to reckon heights or depths.
It is called a tidal datum when defined in terms of a certain phase of the tide. For marine applications,
tidal datums are the reference planes from which measurements of height and depth are made [1] and
from which marine boundaries are determined. To determine the tidal datum as the reference plane
is a challenge. Tidal datum data derived from observed tidal elevation time series are only available
in limited locations, where there are at least two to three months or longer of water level time series
records. Practically, various deterministic spatial interpolations [2,3] can be used to generate a spatially
continuous tidal datum distribution over the water. If a hydrodynamic tidal model exists in that region,
tidal datums derived from the tidal model can be used as the first estimate field, which is subsequently
corrected by adding the correction field interpolated from observation and model discrepancies at
the stations.

NOAA'’s National Ocean Service (NOS) has developed a software tool called VDatum that
provides vertical datum transformations between tidal, orthometric and ellipsoid-based vertical
datums [4]. Over the years, customers and developers of VDatum have raised questions about the
uncertainty associated with the VDatum conversions between different vertical datums. Initial efforts
were made to quantify uncertainty in both datum transformations and the datums themselves, leading
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to estimates that could be used for each geographic region represented in VDatum. However, the
approach presented here to estimate uncertainties in the tidal datums will provide a path forward in
VDatum to eventually be able to provide a more continuous, spatially varying estimate of the uncertainty.

An important part of VDatum’s vertical datum transformations is that the values returned by
the VDatum software need to be equivalent to values determined through observations at tide gauge
locations. The NOAA /NOS’ Center for Operational Oceanographic Products and Services (CO-OPS)
is commissioned to set up the national tidal station network for water level measurements, as well
as the establishment of the tidal datum bench marks. The measured tidal datum values at 19 year
National Tidal Datum Epoch (NTDE) stations are published in CO-OPS publications and on their
website. For consistency, the vertical datum relationships in VDatum need to match the published
tidal datum values at the CO-OPS NTDE stations. It is also desirable that the analysis field be close to
observed data at CO-OPS non-NTDE stations. This requirement has been one of the guiding principles
in the development of the statistical interpolation presented here.

As mentioned, the current tidal datums in the VDatum transformation are computed by
integrating modeled and observed tidal datums through a prediction and correction procedure,
the latter of which uses a deterministic spatial interpolation method. A solver based on Laplace’s
equation is currently used for the spatial interpolation of modeled tidal datum and observed
tidal datum discrepancies over the water. The inherent drawback of this spatial interpolation
approach is the apparent lack of any physical or statistical principle governing the tidal datums [3].
Laplace’s interpolation is a low-order interpolation scheme, and the interpolated surface becomes
singular at the data points. As a deterministic interpolation method, it is also unable to provide
spatially varying uncertainty estimates of the tidal datum product. One alternative for estimating
the uncertainty in the tidal datums is to use the delete-one jackknifing method [3,5]. Jackknifing has
a tendency to overestimate the error and is more appropriate in providing a single-value average
estimate of the uncertainty over the whole domain [3]. The delete-one jackknifing method can provide
a good estimate of the uncertainty of the tidal datum product over a large domain, under the condition
that the sample size is very large and samples are randomly distributed spatially. However, these
conditions are rarely met. As VDatum currently provides single-value uncertainty estimates in the
tidal datums for each regional application, the next goal to improve the uncertainty estimates is
to provide a spatially varying uncertainty field for each tidal datum. We propose here a statistical
interpolation and uncertainty estimation methodology that would provide such a product with
spatially varying uncertainty. The interpolation method is derived from the variational principle in data
assimilation [6,7] by minimizing a cost function, similar to the three-dimensional variational method
(BDVAR). The construction of the cost function is such that the discrepancy between (1) the analysis
solution that minimizes the cost function and (2) the CO-OPS’ observation values at the observation
stations satisfies the constraint that is prescribed by the user. This is achieved by introducing a diagonal
weight matrix that regulates the weight of the observed tidal datum error of a particular station in
the cost function, therefore also regulating the analysis results. In Section 2, we will first review
the mathematical formulation of the statistical interpolation method and its uncertainty calculation,
followed by a description of input matrices in our test case region and the calculation of the error
covariance matrices. Results from the test case are presented in Section 3, followed by a discussion in
Section 4 and the conclusions and recommendations in Section 5.

2. Method and Data Input

2.1. Method and Mathematical Formulation

Assume that we have a size nn x 1 discrete modeled tidal datum field f, at model mesh nodes
and a size m x 1 observed tidal datum data set f, at CO-OPS station locations. Both f1, and f,, follow
a normal distribution, and Var(fm) = P, Var(f,) = R respectively. How do we determine a new n x 1
tidal datum analysis field f at the model mesh nodes by blending f, and f,, using a certain criterion?



J. Mar. Sci. Eng. 2016, 4, 64 3of11

In line with the conventional variational method, we first define a cost function J(f), and then solve f
by minimizing the cost function J(f). The cost function J(f) is defined as

T 1
RT'W™2(fo — Hf) ey

1 T 1 T _1
J(F) = 50 = fa) P = ) + 5 (fo — HOT(WH)
where H (size m x n) is the interpolation matrix projecting the modeled field to the observed data
locations, W (size m x m) is a diagonal weight matrix that adjusts how much the final product f differs
from the observed values at the station locations. It is assumed the model and observation fields are
unbiased. The analysis field f that minimizes the cost function J(f) is

f = fm+G(fo— Hfm) )

T -1
where G = PH T[W% R(W%) + HPHT] is called the gain matrix; f is the unbiased estimate of the
true tidal datum field, and the posterior error covariance matrix P, is given by

P, = Var(f) = (I — GH)P(I — GH)T + GRGT 3)

where I is the identity matrix.

The weight matrix W provides flexibility and an option if we want the analysis field f to match or
be close to the observed values at the observation locations. For a uniform weight distribution W = I,
the method is identical to the optimal interpolation (OI) method. The analysis field f at the observed
locations can be different from the observed values. If a diagonal element W(i,i) =0 (i € [1,2, ..., m]),
then the interpolated values f are forced to match the observed values at the station 7, independent of
the observed error covariance matrix R.

2.2. Test Case and Input Data

The Chesapeake Bay, Delaware Bay and adjacent coastal ocean (Figure 1) are used as our test
domain to apply the statistical interpolation method to calculate the the Mean Higher High Water
(MHHW) tidal datum field and its associated uncertainty field. The Mean High Water (MHW),
Mean Low Water (MLW) and Mean Lower Low Water (MLLW) tidal datums are also calculated
similarly, but the results will not be presented in this paper. The hydrodynamic tidal model had been
developed for the area by Yang et al. [8] in a previous VDatum tidal model development project. In this
section, we will give a detailed description of input matrices in our test case, and the calculation of the
error covariance matrices.
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Figure 1. Hydrodynamic tidal model domain (Yang et al. (2008)) and observed tidal datum MHHW
(m) shown in color-coded dots at tidal station locations.

2.2.1. Observed Tidal Datums f, and Determination of the Observed Error Covariance R

The observed tidal datums f,, are derived from water level time series collected at the CO-OPS’
tidal gauges. NOS has a standard method to process the time series and calculate the tidal datums [9].
The observed error covariance matrix R is a size m x m diagonal matrix. The individual diagonal
element of R is the variance, or the square of the standard deviation, of the observed tidal datum errors.
Both the observed tidal datums and the error standard deviations are provided by CO-OPS [10,11]
following Swanson [12] and Bodnar’s [13] formulation.

2.2.2. Tidal Datums Derived from the Hydrodynamic Model Time Series fm,

If we have a hydrodynamic tidal model, then the tidal datums can be derived from the modeled
water level time series using the same process as that used for the observed water level time series [9].
The biggest advantage of the tidal model is that it provides continuous spatial coverage for coastal and
estuarine waters where the navigational safety is mostly of concern. It provides a perfect background
tidal datum field (Figure 2) for model-observation data integration. The hydrodynamic model
employed in the tidal simulation to compute the tidal datums here is the ADvanced CIRCulation
(ADCIRC) finite element model [14,15] in its barotropic two-dimensional depth-integrated (2DDI)
mode. The bias of all station model errors is relatively small at 0.41 cm, the maximum absolute error
(MAXE) for MHHW is 25.37 cm, the mean absolute error (MAE) is 4.48 cm, and the root mean square
error (RMSE) is 6.33 cm (Table 1).
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Figure 2. MHHW field (m) from the hydrodynamic model.

Table 1. Error statistics (cm) for the model, Laplace’s interpolation, and statistical interpolation of the

tidal datum MHHW.
Data Field Bias MAXE MAE RMSE
Model 0.41 25.37 4.48 6.33
Laplace’s —0.22 12.31 2.06 2.94
Statistical —0.12 10.68 1.62 2.51

2.2.3. Model Error Covariance Matrix P

The model error covariance matrix is defined as Pjj= var(fni,fn2) = 0n1On2€orr(fny fn2), (1 <i,7 <mn,
unit: m~2), o1, Ony are standard deviations of the model errors at nodes n; and n,. The correlation
between two points is calculated using a three-day moving average tidal datum time series.
The underlying assumption is that the magnitude of the error signal in the tidal datum time series is
proportional to the tidal datum signal. Here we give a constant value to o1 and oy, calculated by
comparing observed and modeled tidal datum discrepancies over the model domain (Figure 3). For the
Chesapeake and Delaware Bays model, the model error standard deviation is 6.33 cm. The covariance
matrix is not related to the distance between node points n; and n,. In an idealized case, it may be
true, but in reality the model is not perfect. To limit observation stations far away from the station of
interest from interfering with the results, the covariance is adjusted and decreases exponentially over
the distance between nodes n; and ny. The relaxation spatial scale for this is 200 km in our application.
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Figure 3. Observed tidal datum MHHW uncertainties from CO-OPS in standard deviation (cm) at
station locations (colored dots) and modeled tidal datum MHHW uncertainty expressed as error
standard deviation (background) before the interpolation.

2.2.4. Interpolation Matrix, H

The interpolation matrix H is a size m X n matrix projecting the modeled field to the observed
data locations; hij (1 <i<m,1<j<n,unit: non-dimensional) is the weight of the model nodes j in
determining model values at the observation locations i. In our application, we use a linear triangular
interpolation to project the model value to the observation location. H is solely determined by the
spatial location of the model mesh nodes and observation locations.

2.2.5. Weight Matrix, W

The weight matrix W is a size m x m diagonal matrix determining the weight of R in the
computation of the analysis field f. The diagonal element w;; (0 < w; < 1,1 <7 < m) is the weight of the
observation error variance r;; at station 7 in the determination of analysis field f. If w;; = 0, the analysis
results will be independent of the observation error at station i. Analysis field f will be the same as the
observed value at that station, and the uncertainty will be the same as the CO-OPS assigned value.
If w;; =1, then the analysis field will take full account of the error covariance R at station i. The analysis
field f will be the local optimal combination of the model results and observations that minimizes
the cost function. The posterior uncertainty/error at the station will be reduced, less than both the
CO-OPS assigned error and the background model error.



J. Mar. Sci. Eng. 2016, 4, 64 7of 11

2.2.6. Constraint and Determination of Weight Matrix, W

The constraint that the VDatum technical team adopted for statistical interpolation is simple: the
discrepancy between the analysis field and the observations at all subordinate stations should be equal
to or less than 1 cm or the CO-OPS’s uncertainty value, whichever is less. The weight matrix W will be
determined through iteration following this predetermined constraint.

3. Results

While Equations (2) and (3) provide the general framework of the statistical interpolation, the
results can vary depending on the estimation of the observation and model error covariance matrices,
as well as on the weight matrix (and constraint) that decides the impact of observed error covariance
on the final tidal datum product.

Tidal Datum Analysis Field

The statistical interpolation produces the spatially distributed properties, in this case, MHHW
(Figure 4). The interpolation adjusts the background model values over the whole domain. It corrects
apparent discrepancies between observations and model results for MHHW (Figure 2) at the
observation locations by statistically blending the observations and model results. Unless the observed
value is 100% accurate (e.g., zero error), the adjusted values will be different from the observed
values. The results indicate that the adjustments to MHHW at the stations are very small. The average
magnitude of an adjustment is 1 cm, and the maximum adjustment is around 5 cm.

Mesh Module elevation

Figure 4. Tidal datum MHHW (m) after statistical interpolation.
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The error statistics, shown in Table 1, indicate that the statistically interpolated tidal datum
MHHW consistently improved all the error measures (bias, MAXE, MAE, and RMSE) in comparison
with the modeled and Laplace’s interpolated MHHW.

The statistical interpolation not only provides us with the product, but it also produces uncertainty
estimates (Figure 5). The background model uncertainty had been improved dramatically in comparison
with the model uncertainty (Figure 3). The statistical interpolation reduces the uncertainty of the tidal
datum product in Chesapeake Bay (which is indicated from the color change under the same color
bar), Delaware Bay and the associated coastal areas, and to a lesser extent in the offshore area in the
southeast corner of the domain away from the coast where tidal gauge stations are located (Figure 5).

Mesh Module elevation

Figure 5. The posterior uncertainty (cm) of the interpolated tidal datum product (MHHW, Figure 4).

4. Discussion

The constraint that we adopted is a compromise between an analysis field that matches (W = 0)
CO-OPS’ observed values and a statistically optimal analysis field (W = I, statistically optimal implies
a lowest overall uncertainty). When we force the analysis field to match all of the observations (W = 0),
the uncertainty at 24 out of 117 total observed data locations is at its highest within the vicinity of
those stations (local maxima). That raises a question of whether the inclusion of one particular station
into the data assimilation improves the overall results by reducing the uncertainty. The difference
between the inclusion and non-inclusion of one particular station into the data assimilation under all
matching (W = 0) and OI cases (W = I) can be best illustrated by a simple numerical test to evaluate
the differences in the uncertainty fields before and after removing one station in the data assimilation.
Here we present the test results for Cove Point (Figures 6 and 7), where the CO-OPS’ tidal datum
uncertainty is 2.74 cm. Cove Point is one of 24 locations (out of 117) for which the uncertainty at the
observed point is at its highest within its vicinity for all matching cases (W = 0).
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Figure 6. Comparison of spatially varying uncertainty (cm) of the interpolated tidal datums with
and without Cove Point data in the OI case. (a) Interpolation with the Cove Point observed data;
(b) interpolation without the Cove Point observed data.
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Figure 7. Comparison of spatially varying uncertainty (cm) of the interpolated tidal datums with and
without Cove Point data in the matching case. (a) Interpolation with the observed data; (b) interpolation
without the observed data.

Table 2 shows the results from this simple test. For the OI case (Figure 6), the uncertainty by
assimilating the Cove Point data is 1.21 cm, much better than the CO-OPS 2.47 cm uncertainty from
the observations (Figure 6a). Without assimilation, the uncertainty is 1.39 cm (Figure 6b). For the
matching case with the Cove Point data assimilated, the uncertainty at the observed location of Cove
Point is given by CO-OPS as 2.47 cm, which is relatively high if compared with its neighboring stations
Long Beach and Barren Island (Figure 7a). Without assimilating the Cove Point data, the uncertainty
at that location is 1.40 cm (Figure 7b). The uncertainty also decreases in the vicinity of Cove Point.
Excluding the Cove Point data from assimilation/interpolation is the best option for the matching case.
Mathematically/statistically speaking, for the OI case, it can be shown that any data is good data to
reduce the uncertainty as long as we know its quality. For the matching case, it is sometimes better to
discard a bad data point (although it is still valuable using OI) without assimilation if a neighboring
observation is close and good enough to bridge the gap and produce a better result (as shown in the
Cove Point case, Figure 7a,b). If all points match except Cove Point, but Cove Point is still assimilated
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with (0 < w;; < 1), the uncertainty is 1.32 cm. This is lower than the uncertainty (1.40 cm) when Cove
Point is not assimilated, and much lower than the CO-OPS uncertainty from the observations (2.74 cm).

Table 2. Uncertainty (cm) at the observation station (Cove Point, Chesapeake Bay) with and without
assimilation of the data in the OI and matching cases. Also presented is the uncertainty in a case where
all stations are forced to match except Cove Point, which is assimilated but not forced to match.

Data Field Observed Data Assimilated Observed Data Not Assimilated
OI(W=1I) 1.21 1.39
Matching (W = 0) 247 1.40
Matching, except Cove Point 1.32 1.40

The results from further tests of all CO-OPS stations are very clear. For OI, any inclusion of
an additional data point will reduce the uncertainty. For the matching case, while for the majority of
the data locations the inclusion of data reduces the uncertainty, some do not. The current constraint for
statistical interpolation is the compromise reached to minimize the discrepancy between the final tidal
datum product and the CO-OPS values. It also provides flexibility in producing a better uncertainty
estimate even though it is no longer optimal.

5. Conclusions

In this paper, we propose a generalized statistical interpolation method to integrate modeled
tidal datums and observed tidal datums. The interpolation method is derived from the variational
method by minimizing a cost function, similar to 3D variational data assimilation. A diagonal weight
matrix is introduced to regulate the weight of the observed tidal datum error of a particular station
in the cost function, and therefore also in the analysis results. The mathematical formulation of the
method derived is more general than Optimal Interpolation (OI) or 3D variational method (3DVAR),
but follows very closely the framework of OI and 3DVAR, which is widely used in meteorological
and oceanographic applications for model and observation data integration. In a special case, when the
weight matrix is an identity matrix, the results are statistically optimal, and the method is identical to OL

In this application, the setting of the weight matrix follows the constraint that the discrepancy
at all stations is less than 1 cm or the CO-OPS’ uncertainty value, whichever is less, and is calculated
through an iterative process. The obvious advantage of the statistical interpolation is that the method
provides a spatially varying uncertainty of the tidal datum products. Considering that the tidal datum
itself is a statistical result from data processing of a long time series, the statistical property calculated
from the modeled time series for interpolation is more plausible than any deterministic interpolation.
The spatially varying uncertainty can pinpoint regions with low uncertainty levels and help with
decision-making on the number and locations of new tidal gauge installations in a geographic area.

From a data assimilation point of view, the statistical interpolation is capable of incorporating all
kinds of observed or modeled data with different degrees of uncertainty. The ingestion of additional
data will improve the quality and reduce the uncertainty of the product/results.

Our proposed method satisfies our goal to have the tidal datum products be as close to the
CO-OPS observations as possible. While it is statistically sub-optimal, it will generally allow the
inclusion of any data that will reduce the uncertainty. In our application in the Chesapeake and
Delaware Bays, the statistical interpolation in comparison with the raw model output and Laplace’s
interpolation reduces the bias, MAXE, MAE, and RMSE. We would strongly recommend statistical
interpolation under constraint for tidal datum interpolation in VDatum production. NOAA’s VDatum
team has approved this recommendation and accepted the method as the standard procedure for
future tidal datum product development.

In the future, the capability of data integration from various sources is probably the most important
feature of the statistical interpolation. We expect a steady accumulation of data from various sources
(third party observations, different model results). The statistical interpolation or data assimilation
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provides a perfect framework for data integration. Overall, the statistical interpolation is a better data
processing and management tool, and it produces a better tidal datum product with lower uncertainty.
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