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Abstract: In this paper, it is proposed that coastal flood ensemble forecasts be partitioned into
sub-ensemble forecasts using cluster analysis in order to produce representative statistics and to
measure forecast uncertainty arising from the presence of clusters. After clustering the ensemble
members, the ability to predict the cluster into which the observation will fall can be measured using
a cluster skill score. Additional sub-ensemble and composite skill scores are proposed for assessing
the forecast skill of a clustered ensemble forecast. A recently proposed method for statistically
increasing the number of ensemble members is used to improve sub-ensemble probabilistic estimates.
Through the application of the proposed methodology to Sandy coastal flood reforecasts, it is
demonstrated that statistics computed using only ensemble members belonging to a specific cluster
are more representative than those computed using all ensemble members simultaneously. A cluster
skill-cluster uncertainty index relationship is identified, which is the cluster analog of the documented
spread-skill relationship. Two sub-ensemble skill scores are shown to be positively correlated with
cluster forecast skill, suggesting that skillfully forecasting the cluster into which the observation will
fall is important to overall forecast skill. The identified relationships also suggest that the number
of ensemble members within in each cluster can be used as guidance for assessing the potential for
forecast error. The inevitable existence of ensemble member clusters in tidally dominated total water
level prediction systems suggests that clustering is a necessary post-processing step for producing
representative and skillful total water level forecasts.

Keywords: ensemble forecasting; coastal flood forecasting; cluster analysis; forecast skill; Hurricane
Sandy; bimodal forecast

1. Introduction

Flood forecasting is important for timely evacuations and the preparation of strategic plans
to mitigate infrastructural impacts [1]. Guidance for flood preparation and infrastructural damage
mitigation plans can be provided through ensemble forecasting. Though having a numerical weather
prediction origin [2,3], ensemble forecasting is also useful in flood forecasting because it provides
uncertainty information together with a central prediction [1]. The central prediction or ensemble mean
represents an outcome that performs more skillfully than any randomly sampled forecast associated
with an individual ensemble member, at least when averaged over a set of forecasts [4,5]. The ensemble
mean is defined as the average of all ensemble members and filters the unpredictable aspects associated
with each individual member, leaving the forecast features on which most ensemble members agree.

Forecast uncertainty is captured by the ensemble spread, which is often related to the skill of
the ensemble mean or control forecast, the so-called spread-skill relationship [6]. Another reason
that ensemble forecasting is useful is that it can provide estimates of forecast probabilities [7,8],
though such estimates may not reflect the actual uncertainty because of sampling errors [4] and small
ensemble sizes [8]. In flood forecasting applications, estimates of event uncertainty are often reported as
exceedance probabilities defined as the fraction of ensemble members exceeding a specified threshold.
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Some ensemble systems contain bifurcations or bimodalities, which can arise in weather
forecasting systems if weather regime changes are forecast or if some ensemble members forecast rapid
cyclogenesis while other members forecast weak cyclogenesis [5,9]. The existence of ensemble system
bifurcations has important implications for measuring the quality of forecasting systems. For weather
forecasting systems, the ensemble mean will only improve a forecast during a forecast period when
there are no meteorological regime changes inducing ensemble system bifurcations [10]. As shown in
a previous study [11], different ensemble scoring rules behave differently in the presence of bimodality,
which can lead to divergent viewpoints regarding the quality of forecasts. For a symmetric bimodal
forecast distribution in which the outcome is located on the median of the distribution, the Continuous
Ranked Probability score (CRPS; [12]) would highly rate the forecast. On the other hand, the Ignorance
score [13], which is based on the probability mass assigned to the observation, would severely penalize
such a forecast. Thus, the CRPS score would indicate a quality forecast while the Ignorance score
would indicate a poor forecast.

It is known that the expected forecast error for a forecast is related to the uncertainty of the forecast.
However, for consistently bimodal forecasts, ensemble mean error will also be introduced because the
ensemble mean will consistently fall in a region of vanishing probability, but the observation will more
frequently fall on the modes of the distribution located away from the ensemble mean. Thus, one may
wonder: is the ensemble mean error related to the ensemble spread or the bimodality of the forecast
distribution? This question is important to address because scoring rules like the root mean square
error (RMSE; [11]) and a recently introduced spread-error score [14] are functions of the ensemble
mean error.

Ensemble forecasting verification measures such as RMSE are pointwise measures that cannot
identify how well the overall shape of an observed object is forecast [15]. For example, pointwise
measures are unable to determine if the overall shapes and sizes of precipitation fields are skillfully
forecast. Thus, pointwise metrics can severely penalize forecast features with correct structures and
shapes if the locations of the features are not accurately forecast [15]. The limitations of conventional
verification metrics in numerical weather prediction have been remedied through the application of
cluster analysis, a set of statistical methods used for identifying structures in data [16–18]. Using cluster
analysis, one can decompose forecast errors into multiple components such as shape, size, intensity,
pattern, and timing. Such a decomposition allows sources of error in a forecasting system to be better
diagnosed. Though the application of cluster analysis has extensively focused on precipitation forecast
verification [19], the application of cluster analysis is also suitable for forecast verification of other
atmospheric features and for identifying ensemble member clusters resulting from the generation of
ensemble members from different numerical models [20].

While previous work has focused on evaluating the quality of coastal flood forecasting
systems [21–23], no studies have focused on identifying potential sources of errors arising from
bifurcations or clusters in such systems. The overall objectives of this study are thus to show that
bifurcations and clusters in coastal flood forecasting systems are ubiquitous and to demonstrate the
impact of the clusters on the representativeness of forecast metrics to be provided to decision makers.
To account for such clusters, we develop a straightforward clustering algorithm and introduce two
metrics for measuring forecast uncertainty and skill in the case of multi-modal ensemble systems.

The paper is organized as follows. The data used is presented in Section 2 and mathematical
background is presented in Section 3. Discussed in Section 4 is the generation of ensemble member
clusters in coastal flood forecasting ensemble systems and the development of a clustering algorithm
that can be applied to such forecasts. The practical implementations of the proposed methodologies
are presented in Section 5 and concluding remarks are provided in Section 6.

2. Data

In this study, total water level Sandy reforecasts at 13 stations (Figure 1) produced from
the New York Harbor Observing Prediction System hydrodynamic model (NYHOPS; [24]) were
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analyzed. The Sandy 72-h reforecasts were initialized on 27 October 2012. The retrospective forecasts
were generated using meteorological forcing from 21 reforecast ensemble members of the National
Oceanographic Atmospheric Administration’s Global Ensemble Forecast System [25]. More details of
the NYHOPS model configuration can be found in [24].
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3. Mathematical Background

3.1. Sub-Ensemble Forecasting Theory

Suppose that a one-dimensional ensemble forecast is the set

X = {X1(t), X2(t), . . . , XN(t)} (1)

consisting of N ensemble members generated by the numerical modelM [26]. Let ~be an equivalence
relation on the setX . Then, the equivalence relation partitionsX into a family of M distinct equivalence
classes C1, C2, . . . , CM such that

X = C1 ∪ C2 ∪ . . . ∪ CM (2)

and
Ci ∩ Cj = ∅ (3)

for i 6= j [27]. In the context of data analysis, the C1, C2, . . . , CM are often referred to as clusters and such
nomenclature is adopted in this paper for brevity. Assuming that the ensemble members composing
X represent all possible outcomes for the observation (denoted by X(t)∗), X(t)∗ will fall into one of
the M clusters. Because any two clusters are pairwise disjoint (Equation (3)), X(t)∗ can only fall into
a single cluster. Probabilistically, X is the sample space comprising all possible outcomes and the
clusters C1, C2, . . . , CM are probabilistic events embedded in X . An event Ci will be said to occur if
X(t)∗ becomes a member of Ci. Thus, the occurrence of Ci renders Ci the verifying cluster C∗. For an
ensemble forecast containing clusters, there will be cluster uncertainty or the uncertainty about what
cluster will become the verifying cluster (Section 4.1).

In the presence of clusters, one goal of an ensemble forecast is to estimate the probability that Ci
will occur. Denote by Pr(ς) the estimated probability that the event ς will occur and assume that every
ensemble member is equally likely, then the cluster probability is

Pr(Ci) =
Ni
N

, (4)

where Ni is the number of ensemble members composing Ci. Furthermore,

Pr
(
Ci ∩ Cj

)
= 0 (5)
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for i 6= j because X(t)∗ cannot belong to more than one cluster. Equation (2) implies that the events
C1, C2, . . . , CM are exhaustive, i.e.,

Pr(X ) = Pr(C1) + Pr(C2) + . . . + Pr(CM) = 1. (6)

Mutual exclusivity of the C1, C2, . . . , CM makes it natural to define a sub-ensemble forecast. More
precisely, the i-th sub-ensemble forecast embedded in an ensemble forecast is the subset Ci. Any
statistical quantity computed using only ensemble members belonging to Ci will be referred to as
sub-ensemble means, medians, spread, etc.

3.2. Sub-Ensemble Mean

Associated with each Ci is a representative forecast trajectory, which will be termed a sub-ensemble
mean. The sub-ensemble mean is given by

Xi
(t) =

(
Xi

1(t) + Xi
2(t) + . . . + Xi

Ni
(t)
)

Ni
, (7)

where the Xi
1(t), Xi

2(t), . . . , Xi
Ni
(t) denote the Ni ensemble members belonging to Ci. The traditional

ensemble mean is given by

X(t) = (X1(t)+X2(t)+...+XN(t))
N

=
N1

(
X1

1(t)+X1
2(t)+...+X1

N1
(t)
)

N1 N +
N2

(
X2

1(t)+X2
2(t)+...+X2

N2
(t)
)

N2 N + . . .

+
NM

(
XM

1 (t)+XM
2 (t)+...+XM

NM
(t)
)

NM N

= Pr(C1)X1
(t) + Pr(C2)X2

(t) + . . . + Pr(CM)XM
(t)

(8)

While Xi
(t) is a representative scenario for Ci, X(t) may not be a representative scenario of the

ensemble system as a whole because it may not even fall into a cluster as a result of being a weighted
average of sub-ensemble means.

To see how X(t) can be unrepresentative of the ensemble system, consider the ensemble forecast
shown in Figure 2 consisting of N = 40 ensemble members. The r-th ensemble member is

Xr(t) = Are
−(t−σr)

100
2

+
εr

80
(9)

where σr = 25 if 1 ≤ r ≤ 20 and σr = 75 if 21 ≤ r ≤ 40. The quantities A1, A2, . . . , A40 with
Ar = Ar+20 are random samples from an approximately normal distribution with mean 2.0 and
standard deviation 0.4. The quantity εr is defined such that it equals r if r ≤ 20 and equals r − 20 if
r ≥ 21. In this case, the X1(t), X2(t), . . . , X20(t) peak at t1 = 25 and the X21(t), X22(t), . . . , X40(t) peak
at t2 = 75 (Figure 2).

Now suppose in this case that any two ensemble members are equivalent if they peak at the same
time. Then, the equivalence relation partitions the set of all ensemble members into two clusters, i.e.,

C1 = {X1(t), X2(t), . . . , X20(t)} (10)

and
C2 = {X21(t), X22(t), . . . , X40(t)}, (11)

where Pr(C1) = Pr(C2) = 0.5. As shown in Figure 2a, the sub-ensemble mean associated with C1 (thick
red curve) has a single local maximum. Similarly, the sub-ensemble mean associated with C2 (thick
blue curve) also has a single local maximum. On the other hand, X(t) has two local maxima, rendering
its probability of occurrence zero, as it is not a member of any cluster.
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3.3. Probability of Exceedance

While the ensemble mean provides an average value at each point in time, it does not make full
use of the information provided by the ensemble members. Thus, another approach in ensemble
forecasting is to compute the global probability of exceedance defined as

gE =
NE
N

, (12)

where NE is the number of ensemble members whose values exceed a threshold Tf at least once in the
forecast period. This measure provides information about the probability of a flood occurring but does
not indicate when the flood is likely to occur.

To determine how likely a flood will occur at time t, one needs to compute the local flood
exceedance probability given by

gt
E =

Nt
E

N
, (13)

where Nt
E is the number of ensemble members whose values at time t exceed Tf .

In the presence of clusters, however, the curve gt
E as a whole may not be representative of the

information provided by the ensemble members. Consider the situation shown in Figure 2a in which
all the ensemble members exceed Tf = 1.0 at least once (N = NE = 40). Therefore, in this situation,
gE indicates that there is a 100% chance of the observation exceeding Tf = 1.0. Now suppose one
computed gt

E. Then, according to Equation (13), there is a 50% chance of Tf being exceeded at t1 = 25
because Nt1

E = 20. Similarly, there is also a 50% chance of Tf being exceeded at t2 = 75. Thus, despite
a 100% global exceedance probability, another forecaster using local exceedance probabilities would
infer that Tf would be exceeded with at most 50% probability.

Now suppose that one instead calculated the conditional (sub-ensemble) exceedance probability
associated with the i-th cluster given by

gt
i =

Nt
i

Ni
, (14)

where Nt
i is the number of the Ni ensemble members in Ci whose values at t exceed the threshold

Tf = 1.0. The curves gt
i are collectively representative of the ensemble system as shown in Figure 2b.

The curve gt
1 depicts how the observation will have a 100% chance of exceeding Tf = 1.0 if it peaks

at t1 = 25, but a 0% chance of exceeding 1.0 at t2 = 75 if it peaks at t1. The depiction provided
by gt

2 is similar, but the maximum in the exceedance probability is at t2. The curve gt
E indicates

that the observation could exceed 1.0 at t1 and then again at t2 even though not a single ensemble
member indicates such an outcome. Therefore, this example demonstrates how a single probability of
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exceedance curve as a whole cannot represent the information provided by the ensemble members in
the presence of clusters. However, locally, gt

E is representative because there is, indeed, a 50% chance
of Tf being exceeding at t1, for example. Thus, traditional probability of exceedance is useful when one
is interested in assessing how likely a flood will occur at a specific moment in time without regard to
what could occur at other points in the forecast period. On the other hand, sub-ensemble exceedance
probabilities are better suited for situations in which one is interested in how many times a flood could
occur in the forecast period. One can think of gt

E as smoothing out probabilistic information associated
with each cluster. In fact,

gt
E =

M

∑
i=1

Ni Nt
i

Ni N
= Pr(C1)gt

1 + Pr(C2)gt
2 + . . . + Pr(CM)gt

M (15)

because Nt
E = Nt

1 + Nt
2 + . . . + Nt

M. Equation (15) is the probabilistic analog of Equation (8).

4. Cluster Analysis Metrics

4.1. The Cluster Uncertainty Index

Although the unrepresentativeness of the traditional ensemble statistics can be depicted
graphically, it is useful to quantify the representativeness so that differences among a large set of
forecasts can be more easily compared. In addition, because ensemble member clusters are based on
characteristics of the ensemble members, cluster uncertainty inevitably leads to uncertainty about the
characteristics of X(t)∗. Thus, it is important to quantify the uncertainty in a forecast arising from the
presence of clusters.

To measure the representativeness and cluster uncertainty, one can compute a cluster uncertainty
index β defined as follows:

β ≡
(

Pprim − 1
)2, (16)

where Pprim is a cluster probability among the set of M cluster probabilities such that there is no cluster
probability greater than it. Note that the definition of Pprim accounts for situations in which all cluster
probabilities are equal. The cluster whose cluster probability is Pprim is the primary cluster. In the case
that more than one cluster has a cluster probability equal to Pprim, there will be more than one primary
cluster. The reason for squaring Pprim − 1 in Equation (16) is to make the relationship between β and
the maximal possible cluster forecast skill (Section 4.2) linear for fixed M. Furthermore, subtracting one
from Pprim is done to make the cluster uncertainty index increase with increasing cluster uncertainty.

The quantity β is a measure of representativeness of traditional ensemble statistics. When β < 0.25
(Pprim > 0.5), the primary cluster contains the majority of the ensemble members and the traditional
ensemble statistics will most closely resemble those of the primary cluster (Sections 3.2 and 3.3).
However, when β ≥ 0.25 the ensemble members will generally be more evenly distributed across
the M clusters in order to satisfy Equation (6). Therefore, according to Equations (8) and (15), the
traditional ensemble statistics will smooth out the information provided by the individual clusters.
For the ensemble forecast shown in Figure 2a, as an example, β = 0.25 so that ensemble mean error is
likely because such a trajectory has zero probability of occurring, as it is not a member of any cluster.
A similar statement can be made for the local probability of exceedance.

The quantity β also measures uncertainty arising from the presence of clusters. As β increases
(Pprim decreases), the ensemble members will tend to become more evenly distributed across the
M clusters. Therefore, there will be a weakening consensus regarding the cluster into which the
observation will fall. One can regard the quantity β as the cluster analog of the ensemble spread.
Because the cluster uncertainty can be related to the uncertainty in the timing of peak intensity
(Figure 2a), the probability of an observed value exceeding a threshold at a given time (Figure 2b),
and the overall observed trajectory, it is a useful integrated metric for assessing many aspects of
forecast uncertainty.
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4.2. Cluster Forecast Skill

While β measures some sources of uncertainty in a forecast with clusters present, it does not
indicate how skillfully the verifying cluster is forecast. Thus, it is necessary quantify cluster forecast
skill using an additional metric.

To measure cluster forecast skill, one can use the Brier score (BS; [28]), i.e.,

BS = (p∗ − 1)2 (17)

where p∗ = Pr(C∗) is the cluster probability associated with the verifying cluster. It is often useful to
measure the accuracy of a forecast relative to a reference forecast. In the present case, it is natural to
compare BS to

BSR =

(
1
M
− 1
)2

, (18)

which is the Brier score for a random forecast in which the verifying cluster is randomly chosen. The
Brier skill score or cluster skill score (CSS) for a single forecast is then given by

CSS = −BS− BSR
BSR

(19)

if M > 1 and assumed to equal 1.0 if M = 1. Furthermore, if the observation does not fall into a cluster,
then p∗ = 0 and the lowest possible cluster forecast skill is achieved.

The case M > 1 is associated with three general possibilities. The first possibility CSS = 0 means
that the accuracy of the forecast is identical to a random forecast. The second possibility CSS > 0 means
that the forecast is more accurate than a random forecast. Finally, the case CSS < 0 means that the
forecast is less accurate than a random forecast. The cluster forecast skill for the forecasting system as
a whole is obtained by averaging CSS over a set of forecasts.

Naturally, cluster forecast skill is related to β because β measures uncertainty and more uncertain
forecasts have a higher potential for forecast errors. In fact, for a given number of clusters, the
maximum cluster skill score possible is obtained when p∗ = Pprim and BS = β. Furthermore, according
to Equation (19), cluster forecast skill will generally decrease as β increases (Pprim decreases).

4.3. Sub-Ensemble Forecast Skill

Good cluster forecast skill does not imply good overall forecast skill because the within-cluster
uncertainty will increase forecast error. Once the event Ci occurs, the forecast distribution associated
with the verifying cluster should resemble the truth distribution for a skillful probabilistic forecast.
The outcomes from the other events or clusters are no longer relevant because the occurrence of
the event Ci excludes the possibility that the ensemble members belonging to the other clusters
are outcomes. This theoretical idea suggests that forecast skill should be measured with respect to
the sub-ensemble statistics associated with the verifying cluster. This idea leads to the concept of
sub-ensemble skill scores.

Sub-ensemble skill scores can be defined in the same way as traditional ensemble skill scores.
More specifically, a sub-ensemble skill score (SS) is given by

SS = 1− SR
SSre f

, (20)

where SR is a scoring rule such as RMSE [11], Ignorance score [13], CRPS [12], spread-error
score [14], or the Brier score [28] calculated using ensemble members belonging to the verifying
cluster. The quantity SSre f is a reference score and −∞ < SS < 1.

An example of SR is the sub-ensemble spread-error score (ES∗) given by

ES∗ =
(

s2
∗ − e2

∗ − e∗s∗g∗
)

2, (21)

where s2
∗ is the sub-ensemble variance associated with C∗, g∗ is the sub-ensemble skewness, and e∗ is

the sub-ensemble mean error written explicitly as
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e∗ = (m∗ − Z). (22)
The quantity m∗ is the sub-ensemble mean corresponding to the verifying cluster, and Z is the

verification that follows the truth distribution. For a perfect probabilistic forecast, the moments in
Equation (21) will equal those of the truth distribution.

The utility of ES∗ is demonstrated using a simple example (Figure 3). Suppose that a given
forecast contains two well-defined mutually exclusive clusters, C1 and C2, such that C1 = C∗. Let the
forecast distribution associated with C1 at a time slice t = t0 be a normal distribution with sub-ensemble
mean −40 (vertical red line) and sub-ensemble standard deviation 10. Furthermore, let the forecast
distribution associated with C2 at t = t0 be a normal distribution with sub-ensemble mean 40
and sub-ensemble standard deviation 10. Thus, the two clusters result in a symmetric bimodal
forecast at time t0 as shown in Figure 3. The bimodal distribution results from the ensemble member
trajectories passing through the time slice. The distribution corresponding to C1 describes how likely
the observation will obtain a certain value given that C1 occurs. The distribution corresponding to C2

contains possible outcomes for the observation given that C2 occurs. Mutual exclusivity of the two
clusters implies that the observation can be drawn from only one of the normal distributions. For this
example, it is assumed that the truth distribution is identical to that associated with C∗ at t = t0. Also
note that m∗ = −40 because C1 is assumed to be the verifying cluster.

In the present example,
ES∗ =

(
s2
∗ − e2

∗

)
2 (23)

because skewness is zero for normal distributions. The spread-error score, ES, calculated using all
ensemble members is similar to Equation (23) and is obtained by replacing sub-ensemble variance by
traditional ensemble variance s2 and sub-ensemble mean error by traditional ensemble mean error e.

For the case Z = −40, ES∗ is solely determined by s2
∗ because e∗ = 0 and m∗ = −40. Consistent

with how the forecast and truth distributions are identical, ES∗ evaluates this forecast most favorably
because ES∗ is minimized. Moreover, ES > ES∗ because 0 = e∗ < e = 40 and because the variance of
the bimodal distribution is greater than that of the single unimodal distribution associated with C1,
as can be seen by an inspection of Figure 3.

Perhaps the case Z = 40 is most interesting. At a first glance it might appear that Z = 40 is in a
region of high probability. However, the probability that the observation is in C1 (C1 = C∗) and equal
to Z = 40 at t0 is forecast to be virtually zero so that the outcome Z = 40 is not a likely one. Thus,
ES∗ penalizes the forecast (e∗ = −80), resulting in ES∗ being greater in the Z = 40 case than in the
Z = −40 case. On the other hand, ES is the same in both cases because e2 and s2 are unchanged. Thus,
a skillful and unskillful forecast are evaluated identically by ES.
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Figure 3. A bimodal forecast distribution arising from two normal distributions associated with
two mutually exclusive clusters. The first distribution is depicted with red coloring and the second
distribution is depicted with blue coloring. The red vertical line is the sub-ensemble mean associated
with the normal distribution of the first cluster. The two example verifications (magenta squares)
are assumed be in the first cluster and, as such, are members of the normal distribution depicted in
red coloring.
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The discussion in this section and in Section 4.2 suggests that a perfect probabilistic forecast is
achieved when there is a single cluster (CSS = 1) and when the truth distribution is perfectly forecast.
One can measure the deviation from this perfect forecast using the composite skill score, CS, defined as

CS ≡ 1−
√
(1− SS)2 + (1− CSS)2, (24)

where CS reduces to SS if CSS = 1 (i.e., there are no cluster present). If CSS < 1, then CS < SS, which
expresses the intuitive idea that the role of clusters is to reduce forecast skill.

4.4. Cluster and Sub-Ensemble Probability Estimates

Although sub-ensemble statistics were shown to be useful, the associated sub-ensemble
forecast skill could be low if the verifying cluster has too few ensemble members. In particular,
for ensemble systems comprising clusters, a large number of ensemble members may be necessary
for producing sub-ensemble probability estimates that are representative of actual probabilities.
To create larger ensemble sizes, one can run more numerical simulations, but such an approach
can be computationally expensive.

Another approach to creating larger ensemble sizes was proposed by [26]. In the proposed
approach (referred to as the phase-aware extension procedure, hereafter), the wavelet transform of the
X1(t), . . . , XN(t) are computed, where the wavelet transformation of the k-th ensemble member is
given by

Wk(s, t) =
1√

s

∫ ∞

−∞
Xk(u)ψ∗

(
u− t

s

)
du. (25)

In Equation (25), s is wavelet scale, ψ(t) is the Morlet wavelet function, t is a translation parameter,
and the asterisk denotes the complex conjugate [29]. The Morlet wavelet is given by

ψ(t) = π−1/4e−iω0te−t2/2, (26)

where ω0 = 6 is a dimensionless frequency [30]. TheWk(s, t) can be decomposed into phase ϕk(s, t)
and modulusRk(s, t) = |Wk(s, t)| spectra, i.e.,

Wk(s, t) = Rk(s, t)eiϕk(s,t) (27)

where the phase spectra are given by

ϕk(s, t) = tan−1
(

ImWk(s, t)
ReWk(s, t)

)
. (28)

The ImWk(s, t) and ReWk(s, t) are, respectively, the imaginary and real parts of theWk(s, t).
As noted by [26], the Wk(s, t) do not represent all possible outcomes because one ensemble

member can predict the observed phase spectrum correctly, while another ensemble member can
predict the observed modulus spectrum correctly. In other words, the set of all N2 possible outcomes
is given by

Ω =
{
Wµν(s, t) = Rµ(s, t)eiϕν(s,t) : µ = 1, . . . , N, ν = 1, . . . , N

}
(29)

in wavelet space. Taking the inverse wavelet transform of each member of Ω results in a new set of N2

outcomes in physical space denoted by Xpw =
{

Xµν(t) : µ = 1, . . . , N, ν = 1, . . . , N
}

.
As noted by [26], numerical errors can arise from the computation of inverse wavelet

transformations. To correct for such errors, a wavelet error reduction procedure was performed.
That is, a wavelet-derived ensemble member was first computed by taking the wavelet transform of
an original ensemble member and subsequently its inverse wavelet transform. Then the difference
between the original ensemble member and the wavelet-derived ensemble member was computed at
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each point in time, where the difference measured the numerical error introduced from the wavelet
transformation. If the difference was zero at all times, then the original ensemble member was perfectly
reconstructed from the inverse wavelet transformation. Repeating the procedure for all N ensemble
members and computing the ensemble mean of the error at each point in time resulted in the average
error introduced from the wavelet transformations at each point in time. The ensemble mean error was
then subtracted from all N2 wavelet-derived ensemble members to reduce the error. To further reduce
errors arising from edge effects, the ends of the ensemble members were padded with a realization of
a white noise process [26].

In the presence of clusters, one cannot compute all possible combinations of phase and modulus
spectra using all ensemble members simultaneously. More specifically, modulus spectra of ensemble
members from the j-th cluster cannot be paired with the phase spectra of ensemble members belonging
to the i-th cluster for i 6= j because of mutual exclusivity of the clusters. Instead, the phase-aware
extension procedure should be applied to each cluster individually, resulting in M new sets denoted by
X pw

1 , X pw
2 , . . . , X pw

M such that the X pw
i = {X(t)i

ρσ : ρ = 1, . . . , Ni, σ = 1, . . . , Ni} contain N2
i ensemble

members. The ensemble members composing X pw
i are obtained by pairing the phase spectra of the

ensemble members belonging to the i-th cluster with the modulus spectra of the ensemble members
belonging to the same cluster and taking the inverse wavelet transformation of the results. The
phase-aware extended ensemble forecast, χC

pw, in the presence of clusters is then the union of the X pw
1 ,

X pw
2 , . . . , X pw

M .
In some cases, an element of X pw

i may more closely resemble elements in X pw
j . That is, the

X pw
1 , X pw

2 , . . . , X pw
M may not be strictly clusters. This situation may arise as a result of numerical

imperfections of the wavelet transformations. Thus, it is recommended that the cluster-tide algorithm
be applied a second time but to the set χC

pw. The application of the cluster-tide algorithm to χC
pw results

in the clusters C pw
1 , C pw

2 , . . . , C pw
Mpw

, where M was found to equal Mpw in this paper. The total number
of ensemble members in a phase-aware clustered forecast is

Npw =
Mpw

∑
J=1

NJ =
M

∑
K=1

N2
K, (30)

where Ni is the number of ensemble members in C pw
i . Phase-aware cluster probabilities and

sub-ensemble exceedance probabilities can be calculated using Ni and Npw.

5. Sub-Ensemble Forecasting for Periodic Flows

5.1. Theoretical Background

Although previous sections described methods suitable for ensemble forecasts containing clusters,
the practical situations in which clusters exist have not been discussed. Thus, in this section,
the practical situation of coastal flood forecasting is discussed to provide practical applications of the
proposed methods.

Consider a total water level ensemble forecast whose k-th ensemble member Wk(t) describes a
forecast total water level. That is,

Wk(t) = Sk(t) + T(t), (31)

where the forecast storm surges Sk(t) are responses to stochastic forcing (e.g., weather) and T(t) is the
tidal signal. In this case, the observation to be predicted is

W(t) = S(t) + T(t), (32)

where W(t) is the observed total water level and S(t) is the observed storm surge. A practical example
of a total water level forecast for New Port, Rhode Island is shown in Figure 4a.
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00 UTC. The period from 26 October to 27 October is a hindcast period. Red curves represent ensemble 
members belonging to Cluster 1 and blue curves correspond to ensemble members belonging to 
Cluster 2. The thick purple curve is a single ensemble member belonging to Cluster 3. (b) Temporal 
locations and values of the forecast total water level global maxima. The thick black curve is the tide 
and the rectangles partition the forecast period.  
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probability distributions of the forecast peak timing and intensity of W(t). One way to visualize the 
peak timing and intensity uncertainty is to generate a scatter plot of the forecast timings  and peak 
intensities  (global maxima) associated with the ( ). Together the  and  compose the 
points =	 ( , ). An inspection of Figure 4b shows that the  are clustered around Point 1 (29 
October 12:35 UTC), Point 2 (30 October 00:25 UTC), and Point 3 (30 October 11:15 UTC) so that the 
distribution of the  is trimodal. The reason for the trimodality is that the tidal signal modulates 
the probability of total water level reaching a global maximum at a given time. That is, global maxima 
are more likely to occur at high tide than at low tide so that total water level global maxima will be 
clustered around tidal local maxima as shown in Figure 4b. Time points around which the total water 
level global maxima are clustered for the other stations shown in Figure 1b are provided in Table 1.  

Table 1. Two main time points around which global maxima are clustered in the Sandy reforecasts.  

Station  Point 1 (UTC) Point 2 (UTC) 
Atlantic City 10/29/2012 12:25 10/29/2012 23:45 
Bergen Point 10/29/2012 13:55 10/30/2012 0:35 
Bridgeport 10/29/2012 16:05 10/30/2012 3:35 
Cape May 10/29/2012 13:15 10/30/2012 1:05 

Kings Point 10/29/2012 16:25 10/30/2012 3:55 
Lewes 10/29/2012 1:05 10/29/2012 13:25 

Montauk 10/29/2012 13:45 10/30/2012 0:45 
New Haven 10/29/2012 16:05 10/30/2012 3:35 

New London 10/29/2012 14:25 10/30/2012 0:45 
New Port 10/29/2012 12:35 10/30/2012 0:25 

Ocean City 10/29/2012 12:55 10/29/2012 0:45 
Providence 10/30/2012 0:35 10/29/2012 12:55 
The Battery 10/29/2012 13:45 10/30/2012 0:35 

Figure 4. (a) A total water level ensemble forecast for New Port, Rhode Island initialized on 27 October
00 UTC. The period from 26 October to 27 October is a hindcast period. Red curves represent ensemble
members belonging to Cluster 1 and blue curves correspond to ensemble members belonging to
Cluster 2. The thick purple curve is a single ensemble member belonging to Cluster 3. (b) Temporal
locations and values of the forecast total water level global maxima. The thick black curve is the tide
and the rectangles partition the forecast period.

An important quantity to forecast is the peak of W(t) and therefore it is useful to examine the
probability distributions of the forecast peak timing and intensity of W(t). One way to visualize the
peak timing and intensity uncertainty is to generate a scatter plot of the forecast timings τw

k and peak
intensities Pw

k (global maxima) associated with the Wk(t). Together the τw
k and Pw

k compose the points
pw

k =
(
τw

k , Pw
k
)
. An inspection of Figure 4b shows that the pw

k are clustered around Point 1 (29 October
12:35 UTC), Point 2 (30 October 00:25 UTC), and Point 3 (30 October 11:15 UTC) so that the distribution
of the τw

k is trimodal. The reason for the trimodality is that the tidal signal modulates the probability of
total water level reaching a global maximum at a given time. That is, global maxima are more likely to
occur at high tide than at low tide so that total water level global maxima will be clustered around tidal
local maxima as shown in Figure 4b. Time points around which the total water level global maxima
are clustered for the other stations shown in Figure 1b are provided in Table 1.

Table 1. Two main time points around which global maxima are clustered in the Sandy reforecasts.

Station Point 1 (UTC) Point 2 (UTC)

Atlantic City 10/29/2012 12:25 10/29/2012 23:45
Bergen Point 10/29/2012 13:55 10/30/2012 0:35
Bridgeport 10/29/2012 16:05 10/30/2012 3:35
Cape May 10/29/2012 13:15 10/30/2012 1:05

Kings Point 10/29/2012 16:25 10/30/2012 3:55
Lewes 10/29/2012 1:05 10/29/2012 13:25

Montauk 10/29/2012 13:45 10/30/2012 0:45
New Haven 10/29/2012 16:05 10/30/2012 3:35

New London 10/29/2012 14:25 10/30/2012 0:45
New Port 10/29/2012 12:35 10/30/2012 0:25

Ocean City 10/29/2012 12:55 10/29/2012 0:45
Providence 10/30/2012 0:35 10/29/2012 12:55
The Battery 10/29/2012 13:45 10/30/2012 0:35
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5.2. Cluster Analysis for Periodic Flows

Given that clusters exist in total water level forecasts, it is important to develop an algorithm
to effectively and easily cluster the ensemble members. Thus, in this section, a simplified clustering
algorithm is developed in which the number of clusters is largely known and not estimated by
additional procedures or statistics [31]. As shown in Figure 4b, total water level global maxima cluster
around tidal local maxima, suggesting that a natural way to cluster the data is to use the time of
occurrence of global maxima.

To cluster the total water level ensemble members based on time of occurrence, a set of rectangles
that partitions the forecast period needs to be constructed. More specifically, let

Rq = (τmin
q τmin

q+1)× [c d] (33)

be a rectangle (× is the Cartesian product) centered on the q-th tidal local maximum (denoted by
τmax

q ), where τmin
q is the tidal local minimum located immediately before τmax

q and τmin
q+1 is the tidal

local minimum immediately following τmax
q . Here, 0 < q ≤ Q, where Q is the number of local maxima.

Furthermore, assume that the constant c is less than the lowest forecast total water level value and the
constant d is greater than the largest forecast total water level value. An example of the rectangular
partition is shown in Figure 4. Let Rq1 , Rq2 , . . . , RqM be a subcollection of the R1, R2, . . . , RQ such that
each Rqi contains at least one peak, then the i-th cluster Ci will be defined as the set of all elements in
X whose peaks are in Rqi . Mathematically, each Ci can be written as

Ci =
{

γ ∈ X : pw
γ ∈ Rqi

}
, (34)

where pw
γ =

(
τw

γ , Pw
γ

)
is the peak location of some element γ ∈ X , τw

γ is the peak timing, and Pw
γ is the

peak value. Assuming that each element ofX peaks somewhere, the C1, C2, . . . , CM satisfy Equations (5)
and (6) because global maxima can only occur once. Using this cluster algorithm (referred to as the
cluster-tide algorithm, hereafter), the optimal number of clusters M is easily determined by finding
the number of rectangles containing global maxima. For other clustering algorithms such as k-means
clustering, one must use a criterion to determine M [32,33].

To quantify how similar a global maximum point associated with Ci is to other points associated
with Ci, one can compute a silhouette value [34] corresponding to the k-th global maximum point
pw

k . Silhouette values range from −1 to 1 and high values indicate that the point pw
k is well-matched

within its respective cluster. Negative or near-zero silhouette values indicate that the points are not
well-clustered, possibly because of too many clusters, too few clusters, or the non-existence of clusters.
In the context of probabilistic forecasting, negative silhouette values indicate that the assumption of
mutual exclusivity may not be a suitable one. Positive values indicate that one can treat the clusters as
mutually exclusive events. In this study, the Euclidean metric is used to measure distance.

To show that the cluster-tide algorithm adequately partitions total water level global maxima,
it was applied to the Sandy reforecasts at all 13 stations. The silhouette values were computed for all
global maxima resulting in 273 silhouettes values. Figure 5 shows the distribution of silhouette values
for the clustered total water level global maxima and indicates that most global maximum points have
silhouette values close to one, confirming that the ensemble members are strongly clustered in the total
water level Sandy reforecasts. The strong clustering was also found through the application of the
commonly used k-means clustering algorithm (not shown). However, in general, other clusters may be
present in total water level ensemble systems that can be detected by general clustering algorithms but
not by the cluster-tide algorithm.



J. Mar. Sci. Eng. 2017, 5, 59 13 of 19
J. Mar. Sci. Eng. 2017, 5, 59 13 of 19 

 

 

Figure 5. A distribution of silhouette values calculated by applying the cluster-tide algorithm to total 
water level Sandy reforecasts at 13 stations. Each of the reforecasts consists of 21 ensemble members 
and thus there are a total of 273 silhouette values, one for each global maximum.  

6. Practical Applications 

6.1. Sub-Ensemble Forecast Example  
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ensemble mean ( ) corresponding to Cluster 1 (red curve in Figure 6a) indicates that a likely 
outcome for W(t) is that it will peak around Point 1 before generally declining. The sub-ensemble 
mean ( )  corresponding to Cluster 2 (blue curve in Figure 6a) suggests that another likely 
outcome for W(t) is that it will generally increase until reaching a maximum value around Point 2. 
The thick purple curve represents a third possible scenario (Cluster 3) in which W(t) will generally 
increase until reaching a maximum value around Point 3. The third scenario is the most unlikely one 
because ( ) < 0.05 < 	 ( ) for j = 1, 2. Whether the observation falls into Cluster 1, Cluster 2, or 
Cluster 3 is highly uncertain as indicated by the high cluster uncertainty index shown in Figure 7a 
for New Port. Figure 7a also shows that cluster uncertainty is high for other stations as well. 
Moreover, the results depicted in Figure 7a suggest that even for the same meteorological event, the 
cluster uncertainty at different locations may be different as a result of the tidal signals at the different 
locations being out of phase (not shown). 

The full ensemble mean (black curve), as shown in Section 3.2, is a weighted average of the sub-
ensemble means but itself is not a representative outcome. Each ensemble member in the reforecast 
indicates that the observation will peak once, but the ensemble mean suggests that W(t) will obtain 
nearly the same value at Points 1 and 2. In fact, the cluster uncertainty index for New Port is about 
0.27, which implies that the ensemble mean is unrepresentative of the ensemble system as a whole.  

Figure 5. A distribution of silhouette values calculated by applying the cluster-tide algorithm to total
water level Sandy reforecasts at 13 stations. Each of the reforecasts consists of 21 ensemble members
and thus there are a total of 273 silhouette values, one for each global maximum.

6. Practical Applications

6.1. Sub-Ensemble Forecast Example

The sub-ensemble means corresponding to the clustered New Port reforecast (Figure 4a) are shown
in Figure 6a. The cluster forecast was generated using the cluster-tide algorithm. The sub-ensemble
mean X1

(t) corresponding to Cluster 1 (red curve in Figure 6a) indicates that a likely outcome for
W(t) is that it will peak around Point 1 before generally declining. The sub-ensemble mean X2

(t)
corresponding to Cluster 2 (blue curve in Figure 6a) suggests that another likely outcome for W(t) is
that it will generally increase until reaching a maximum value around Point 2. The thick purple curve
represents a third possible scenario (Cluster 3) in which W(t) will generally increase until reaching a
maximum value around Point 3. The third scenario is the most unlikely one because Pr(C3) < 0.05
< Pr

(
Cj
)

for j = 1, 2. Whether the observation falls into Cluster 1, Cluster 2, or Cluster 3 is highly
uncertain as indicated by the high cluster uncertainty index shown in Figure 7a for New Port. Figure 7a
also shows that cluster uncertainty is high for other stations as well. Moreover, the results depicted
in Figure 7a suggest that even for the same meteorological event, the cluster uncertainty at different
locations may be different as a result of the tidal signals at the different locations being out of phase
(not shown).

The full ensemble mean (black curve), as shown in Section 3.2, is a weighted average of the
sub-ensemble means but itself is not a representative outcome. Each ensemble member in the reforecast
indicates that the observation will peak once, but the ensemble mean suggests that W(t) will obtain
nearly the same value at Points 1 and 2. In fact, the cluster uncertainty index for New Port is about
0.27, which implies that the ensemble mean is unrepresentative of the ensemble system as a whole.
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Figure 6. (a) Sub-ensemble means corresponding to the reforecasts shown in Figure 4a. (b) Local 
exceedance probabilities calculated using all ensemble members (black curve), ensemble members 
belonging to Cluster 1 (red curve), and ensemble members belonging to Cluster 2 (blue curve). The 
horizontal black line is the global exceedance probability. Red square is the sub-ensemble global 
exceedance probability defined as the number of ensemble members within Cluster 1 that exceed 1.6 m 
at least once. Similarly, the blue square is the sub-ensemble global exceedance probability for Cluster 
2. The exceedance probabilities were all calculated with respect to the threshold of 1.6 m. (c) Same as 
(b) but for the phase-aware ensemble forecast shown in Figure 8.  

 

Figure 7. (a) Cluster uncertainty indices and (b) cluster skill scores corresponding to the Sandy 
reforecasts for the 13 stations.  

Figure 6. (a) Sub-ensemble means corresponding to the reforecasts shown in Figure 4a. (b) Local
exceedance probabilities calculated using all ensemble members (black curve), ensemble members
belonging to Cluster 1 (red curve), and ensemble members belonging to Cluster 2 (blue curve).
The horizontal black line is the global exceedance probability. Red square is the sub-ensemble global
exceedance probability defined as the number of ensemble members within Cluster 1 that exceed 1.6 m
at least once. Similarly, the blue square is the sub-ensemble global exceedance probability for Cluster 2.
The exceedance probabilities were all calculated with respect to the threshold of 1.6 m. (c) Same as (b)
but for the phase-aware ensemble forecast shown in Figure 8.
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6.2. Probability of Exceedance

The local exceedance probabilities for the New Port reforecast are shown in Figure 6b.
The exceedance probabilities were calculated using the threshold Tf = Pw

m = 1.6 m, which is the median
value of all 21 peak values (horizontal black line in Figure 6a). The global exceedance probability is
approximately equal to 0.5 (horizontal black line in Figure 6b). The sub-ensemble local exceedance
probabilities suggest that it is unlikely that the observation will exceed Pw

m around Point 1 and then
again at Point 2. Furthermore, the sub-ensemble exceedance probabilities indicate that the observation
is more likely to exceed Pw

m if it peaks around Point 2 than if it peaks around Point 1. Note that this
relationship between flood potential and the potential timing of the peak in the observation cannot
be depicted by the global probability of exceedance, which is nearly the average of the two global
exceedance probabilities associated with the two main clusters (red and blue squares in Figure 6b).

As discussed in Section 3.3, the traditional local exceedance probability is a weighted average of
sub-ensemble exceedance probabilities. Thus, the traditional local exceedance probabilities should
under-estimate the exceedance potential at Point 1 (Point 2) if the observation falls in Cluster 1
(Cluster 2). As indicated by the high cluster uncertainty index shown in Figure 7a, the traditional
exceedance probability curve as a whole is not representative of the information provided by the
ensemble members. In fact, the traditional exceedance probability curve indicates that the observation
could exceed Pw

m at Point 1 and then again at Point 2 even though not a single ensemble member
exceeds Pw

m at both Points 1 and 2. The high cluster uncertainty indices displayed in Figure 7a imply
that the traditional probability of exceedance curves will also not be representative of the ensemble
system for most of the other 12 stations, especially for the New London and Providence stations where
the cluster uncertainty indices are particularly high (β > 0.2).

The results were found to be similar for the phase-aware ensemble forecast (Figure 8)
corresponding to the ensemble forecast shown in Figure 4a. However, as shown in Figure 6c,
the local sub-ensemble exceedance probability curves are smoother than those depicted in Figure 6b.
Furthermore, the global exceedance probability associated with Cluster 2 (blue square in Figure 6c) is
greater than that associated with the original ensemble forecast (blue square in Figure 6b).
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Figure 8. A close up of the total water level phase-aware ensemble forecast for New Port, Rhode
Island corresponding to the ensemble forecast shown in Figure 4a. The phase-aware ensemble forecast
comprises 201 ensemble members. Red curves represent ensemble members belonging to Cluster 1
and blue curves correspond to ensemble members belonging to Cluster 2. The thick purple curve is a
single ensemble member belonging to Cluster 3.

6.3. Cluster Forecast Skill

Although the previous sections showed how traditional ensemble statistics can be
unrepresentative of the information provided ensemble members, the ability of the NYHOPS model to
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forecast the verifying cluster has not been assessed. The cluster skill scores for all 13 stations were thus
calculated for the Sandy reforecasts.

The individual cluster forecast skill scores shown in Figure 7b indicate that for 10 of the stations,
the observation falls into the primary cluster, as reflected by the positive cluster skill scores. In other
words, the general timing of the peak total water level is skillfully forecast and a majority of
ensemble members have trajectories generally similar to the observation. For example, the observation
corresponding to the New Port reforecast shown in Figure 6a peaks around Point 2, the point at
which 48% of the ensemble members forecast an observed peak to occur. It is noted that for New Port
β > 0.25 (Figure 7a), which explains the modest cluster forecast skill for that station. A comparison
of Figure 7a,b shows that stations with the larger β are the stations with generally lower cluster skill.
In fact, the Pearson correlation between CSS and β is −0.55, indicating that β may be a useful metric
for assessing the likelihood of the verifying cluster being wrongfully forecast. The overall (average)
cluster forecast skill for the Sandy reforecasts is 0.30, which is negatively impacted by the unskillful
forecasts at the Bridgeport, Kings Point, and New Haven stations. For the phase-aware ensemble
forecasts corresponding to the original 13 ensemble forecasts, the overall cluster forecast skill is similar
and equal to 0.18.

Additional sources of error were identified by setting SR in Equation (20) to the RMSE calculated
between the sub-ensemble mean of the verifying cluster and the observation. The reference score SSre f
was set to the RMSE computed between the observation and tide. The RMSE skill scores were plotted
as a function of the cluster skill scores to demonstrate the importance of cluster forecast skill on the
overall forecast quality. The first days of the forecast periods (time points before 28 October) were
excluded from the RMSE calculations because the meteorological uncertainty is virtually non-existent
during those periods.

Figure 9a indicates that the forecasts with the largest cluster skill are generally the forecasts with
the highest RMSE sub-ensemble skill. In fact, the correlation between CSS and RMSE skill is 0.61 and
thus RMSE error is related to the number of clusters and to the number ensemble members in the
verifying cluster. The results for the corresponding phase-aware ensemble forecasts were found to be
nearly identical (not shown). At least some of the remaining error is likely related to the sub-ensemble
spread around the sub-ensemble means. These results suggest that the number of ensemble members
in each cluster can be used to anticipate potential forecast errors because greater cluster forecast skill
implies more ensemble members in the verifying cluster. The composite skill score averaged over all
13 stations in this situation is 0.25, indicating overall positive skill.
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ensemble members belonging to the verifying cluster.
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Given the importance of the peak total water level on the maximum potential of flood events,
the spread-error skill score ES∗ was calculated using the distribution of peak values associated with
the verifying cluster. The reference spread-error score in this analysis was computed using all peak
values and thus ES∗ > 0 means that the sub-ensemble peak value distribution is a better representation
of the truth distribution than is the distribution of all peak values. A CSS relationship with ES∗ was
demonstrated by plotting ES∗ as a function of CSS.

As shown in Figure 9b, about 50% of stations have SS > 0, suggesting that the sub-ensemble
probabilistic peak forecasts associated with those stations are more skillful than the full ensemble
peak distributions. The least skillful probabilistic forecasts are those with negative cluster skill
scores, suggesting that the number of ensemble members within each cluster may be an indicator of
potential forecast error. This result is not surprising because negative cluster skill scores imply that
the verifying clusters comprise few ensemble members so that the distributions of peak values are
unlikely to adequately represent the truth distributions. The composite skill score averaged over all 13
stations is −1.5 reflecting overall poor probabilistic skill when using the full ensemble as a reference
forecast. However, the mean composite skill score calculated using the phase-aware ensemble forecasts
corresponding to the original 13 ensemble forecasts is −0.42, suggesting that increasing the number of
ensemble members could improve forecast skill.

7. Conclusions and Discussion

This paper demonstrated how clusters arise naturally in total water level ensemble forecasts as
a result of the superposition of storm surge and tide. Clusters in total water level ensemble systems
are determined largely by the temporal locations of ensemble member global maxima, the global
maxima clustering around local maxima in the tidal signal. It was found that the existence of ensemble
member clustering impacts the interpretation of common forecast metrics such as the ensemble mean
and exceedance probability.

It was further shown that clusters represent an additional source of uncertainty in total water level
forecasts and thus the presence of clusters should be considered when assessing the overall uncertainty
of a forecast and potential forecast errors. Given that the clusters arise naturally from the interaction
of the tide and storm surge, this source of uncertainty cannot be eliminated. Furthermore, forecast
errors are related to forecast uncertainty so that the presence of clusters may limit coastal flood forecast
skill even for forecast lead times of a few days. Future work could include understanding how the
number of clusters in coastal flood forecasts changes with lead time. Such future work could identify a
maximal lead time for which coastal flood forecasts can no longer be skillful.

Practical applications of the cluster-tide algorithm to total water level reforecasts for Sandy
revealed that sub-ensemble statistics are globally more representative than traditional ensemble
statistics. A cluster uncertainty index was used to show that the Sandy reforecasts contained
considerable cluster uncertainty in some cases. The cluster skill score showed that the NYHOPS
model has skill in predicting the cluster into which the observation will fall. A cluster skill score
relationship with the cluster uncertainty index was identified, which is the cluster analog of the
traditional spread-skill relationship. Thus, the cluster uncertainty index may be a useful index for
assessing potential errors in a forecast. It was found that sub-ensemble forecast skill generally increases
as the cluster forecast skill increases.

One limitation of the present study is that only clusters arising from the tidal signal were
considered. Other ensemble member clusters may be present that cannot be extracted using the
cluster-tide algorithm Thus, additional sources of uncertainty may arise from clusters not identified in
this study. Future work could include the identification of other types of ensemble member clusters
through the application of more general clustering algorithms to total water level forecasts.

While clustering was shown to be a necessary post-processing step for total water level forecasts,
the step adds complexity to the conveyance of important flood information to the general public. Future
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work could thus include developing methods to better summarize the output from the cluster-tide
post-processing method adopted in this study.
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