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Abstract: Nowadays, composite materials have been increasingly used in marine structures because
of their high performance properties. During their service time, they may be exposed to extreme
loading conditions such as underwater explosions. Temperature changes induced by pure mechanical
shock loadings cannot to be neglected especially when smart composite materials are employed
for condition monitoring of critical systems in a marine structure. Considering this fact, both the
thermal loading effect on deformation and the deformation effect on temperature need to be taken
into consideration. Consequently, an analysis conducted in a fully coupled thermomechanical manner
is necessary. Peridynamics is a newly proposed non-local theory which can predict failures without
extra assumptions. Therefore, a fully coupled thermomechanical peridynamic model is developed
for laminated composites materials. In this study, numerical analysis of a 13 ply laminated composite
subjected to an underwater explosion is conducted by using the developed model. The pressure
shocks generated by the underwater explosion are applied on the top surface of the laminate for
uniform and non-uniform load distributions. The damage is predicted and compared with existing
experimental results. The simulation results obtained from uncoupled case are also provided for
comparison. Thus the coupling term effects on crack propagation paths are investigated. Furthermore,
the corresponding temperature distributions are also investigated.

Keywords: peridynamics; thermomechanical; composites; shock loads

1. Introduction

Laminated composite materials have many outstanding mechanical, physical, and chemical
properties. For example, they are an easily fabricated and cost-effective alternative to some other
monolithic materials [1]. Therefore, in recent years, composites have become common materials in
marine industries. One application is for the construction of military vessels [2]. Composite materials
can provide low-radar signatures for stealth operations. In addition, the low electro-magnetic signature
these materials provide can reduce the possibility of detonating magnetic sea mines [3]. However, due to
the special working conditions for military vessels, the composite materials may be subjected to some
severe environments, such as mechanical shock loads, large temperature variations, and exposures [4].
Hence, the damage level of composites induced by such extreme loading conditions becomes a critical
factor with regards to the safety issue in the designation of the vessels. As a result, the failure analyses
of composite materials under shock loadings draws a lot of interest, and has been investigated for years.

It is a challenging task to predict damage in composites. Composites can be defined as two
or more materials combined to form a single material [5]. For fiber-reinforced laminates, there are
mainly four modes of failure: matrix cracking occurs parallel to the fiber; delamination; fiber breakage
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in tension, as well as fiber bulking in compression; and penetration due to impact [6]. Therefore,
the inhomogeneous nature of composites must be taken into consideration in the analysis, in order
to predict the corresponding failure modes. Furthermore, the stacking sequence and thickness also
have an important effect on the failure initiation and evolution [7]. In addition to the complexity of
the composite material properties, shock loadings, which result in high strain rates, also give rise to
additional complexity in the analysis. Large safety factors are typically used in composite structure
design to make sure no damage will occur, resulting a conservative solution or over-design [8].
Therefore, a good understanding of the responses of composite materials under shock loadings
(i.e., explosions) is necessary for the balance between safety and economy issues.

There are three major methods to investigate the responses of composite materials under
explosions: the experimental method, the analytical method, and the numerical simulation method.
As to the experiment method, there are two kinds of experimental tests, according to the scale, i.e.,
a full-scale test and a laboratory-scale test. The full-scale explosive tests can provide important
information on survivability, damage tolerance, and failure modes [9]. They are necessary to validate
the results of analytical and numerical simulations [10]. In 1989, a 3 m × 3 m composite plate was
tested under an underwater blast, to be investigated in full scale [11]. However, the full-scale tests
are performed infrequently, due to high costs. For this reason, the explosive test in the laboratory
scale is adopted for research. A divergent shock tube was designed to investigate the responses
of a clamped test plate under shock loadings [12]. Thus, plane wave fronts and wave parameters
were easily controlled and repeated. LeBlanc and Shukla used a tube filled with water to reproduce
the underwater explosive loads [13]. Wadley [14] developed another test method to investigate the
compressive responses of multilayered lattices during underwater shock loadings. Analytical methods
are generally adopted in the initial design state of composite structures, which give relatively faster
solutions compared to the other two methods. Rabczuk et al. [15] proposed a simplified method
to investigate the effects of fluid–structure interaction in composite structures subjected to dynamic
underwater loads. Hoo Fatt and Palla [16] derived analytical solutions for transient response and
damage initiation of a composite panel subjected to blast loading. However, analytical solutions
are mainly limited to special and simple cases. In contrast, numerical simulation methods can be
applied on various types of loadings, complicated geometries of structures, and complex boundary
conditions. Kazancı [17] conducted a review of the available numerical achievements regarding the
simulation of composite plates under a blast load. The finite element method (FEM) [18], smooth
particle hydrodynamics (SPH) [19], and the finite strip method (FSM) [20] have all been applied to
model composite materials.

Unlike the FEM, peridynamics (PD) is a new, non-local theory, and utilizes a mesh-free
approach [21]. In FEM, partial differential equations are used to predict the motions of a body,
which creates non-physical singular stress and strain at discontinuities. As a result, remedies such
as the cohesive zone element (CZE) [22] and the extended finite element method (XFEM) [23] are
proposed to improve the shortcomings of the FEM. However, additional assumptions are still needed
to predict the crack propagation path in these methods. In contrast, PD converts the equation of
motion from its traditional partial differential form into an integral form, which remains valid even at
discontinuities [24]. Consequently, PD is well-suited for problems involving discontinuities. As to the
composite materials, PD has been successfully applied on the failure analyses of composites [7,25–29].
However, the composites are mainly the focus on the mechanical field only. When explosion loads are
applied to the test plate, the plate experiences high strain rate stages. Therefore, the coupling effect of
deformation on temperature cannot be neglected, which may have an effect on the crack propagation
path with the induced temperature changes. Therefore, a fully coupled thermomechanical composite
model is necessary for the simulation of thermal and mechanical responses of composites under shock
loadings. Here, a fully coupled approach means both the temperature effects on deformation and the
deformation effects on temperature are included in the simulation [30]. Oterkus et al. [31] proposed
a PD thermal model to simulate the heat conduction in isotropic materials. Then, they generalized
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the model to include the coupling effects on both deformation and temperature [32]. Furthermore,
the model is developed for composite lamina by considering its directional dependency properties [33].
Based on previous work, the fully coupled thermomechanical laminate model formulated by PD is
developed in this paper, including heat conduction and coupling effects in the thickness direction of
the composite laminate.

The paper is organized as follows. Firstly, the PD theory is introduced, and some basic concepts
are explained. Secondly, a mechanical and thermal model for composite materials is formulated by
bond-based PD. Then, the responses of a 13-ply composite plate subjected to an underwater explosion
load are studied, by considering the fully coupled thermomechanical effects. The crack propagation
evolutions are predicted and compared with uncoupled cases. The predicted temperature distributions
are also provided.

2. Peridynamic (PD) Theory

2.1. Basic Concepts in PD Theory

The PD theory which is proposed by Silling and Askari [34] falls into the category of non-local
theory. The material points, x, can interact other material points, i.e., x′, in a neighbourhood Hx.
The maximum interaction distance is called horizon and denoted by δ. Hx is called the family of point
x. As shown in Figure 1, the initial relative position vector is denoted as ξ = x′ − x, in the deformed
configuration, the positions of material points x and x′ are represented by y and y′, respectively.
Hence, the displacements of the points x and family member x′ are u(x) = y− x and u(x′) = y′ − x′,
respectively. Consequently, the relative displacement between x and x′ can be defined as

η = u
(
x′
)
− u(x) =

(
y′ − y

)
−
(
x′ − x

)
(1)

The stretch between two points can be defined as

s =
|y′ − y| − |x′ − x|

|x′ − x| =
|η+ ξ| − |ξ|

|ξ| (2)

The equation of motion in bond based PD theory is [34]

ρ(x)
..
u(x, t) =

∫
Hx

f(ξ, η, t)dV + b(x, t) (3)

where ρ(x) represents density, V represents volume,
..
u(x, t) represents the acceleration, b(x, t)

represents the body force and f(ξ, η, t) represents the pairwise PD force. The pairwise PD force
can be defined as [32]

f(ξ, η, t) = c(s− αT)
ξ + η

|ξ + η| (4)

In which α is the linear thermal expansion coefficient of the material, T is the average temperature
of point x and x′ with respect to reference temperature, c is the PD constant. It should be noted that in
bond based PD, the pairwise PD forces f and f′ are forced to be equal in magnitude and parallel in
direction. Hence, the Poisson’s ratio is forced to be 1/3 in two dimensional (2D) analysis and 1/4 in
three dimensional (3D) analysis [21].
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Figure 1. Illustration of PD forces

2.2. PD Mechanical Laminate Model

The PD mechanical model developed by Oterkus and Madenci [21,25] for composite laminates
is adopted in this paper. As illustrated in Figure 2, each ply in a laminate is modelled by one-layer
PD nodes (shown in blue, red, and yellow colours for different plies). The multi-layer laminate is
modelled by assembling the single layer models according to the stacking sequence. For a resin-rich
laminate, the properties in the thickness direction are treated as its matrix material properties. Due to
the directionally-dependent properties of the laminate, four kinds of PD bonds are defined in the
model: in-plane fibre bonds, in-plane matrix bonds, interlayer normal bonds, and interlayer shear
bonds. The grid size is represented by ∆x and the fibre direction is denoted by Φ.

Figure 2. Illustration of PD laminate model for δ = 2∆x and fibre direction, Φ = 0.

The discretized form of the PD equation of motion for a material point xn
k in the n layer of a

laminate can be written as

ρ
(
xn

k
) ..
u
(
xn

k , t
)
=

N
∑

j=1

(
µ f c f + cm

)(
sn

kj − αϑTn
kj

) yn
j −yn

k∣∣∣yn
j −yn

k

∣∣∣Vn
j

+ ∑
m=n+1, n−1

cn
(
snm

k − αmTnm
k
) ym

k −yn
k

|ym
k −yn

k |
Vm

k + ∑
m=n+1, n−1

Ns
∑

j=1
cs ϕ(∆x)2 ym

j −yn
k∣∣∣ym

j −yn
k

∣∣∣Vm
j

+b
(
xn

k , t
)

(5)
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The first three terms on the right hand side of Equation (5) represent the PD forces developed by
in-plane bonds (including fibre bonds and matrix bonds), interlayer normal bonds, and interlayer shear
bonds in sequence. If the bond direction is parallel to the fibre direction, µ f is equal to 1, otherwise
it is 0. c f , cm, cn, and cs are PD material constants associated with in-plane fiber bonds, in-plane
matrix bonds, interlayer normal bonds, and interlayer shear bonds, respectively. The definitions for
PD material constants are listed as [21,25,27]

c f =
2E1(E1 − E2)(

E1 − 1
9 E2

)(NF
∑

j=1

∣∣∣ξ jk

∣∣∣Vj

) (6)

cm =
8E1E2(

E1 − 1
9 E2

)
πhδ3

(7)

cn =
Em

hV
(8)

cs =
2Gm

πh
1

(δ2 + h2 ln(h2/δ2
s ))

(9)

In the above equations, E1 and E2 represent the elastic moduli of a single ply in fiber and transverse
directions, respectively. Em represents the elastic modulus of matrix material and Gm represents the
shear modulus of matrix material, h represents the thickness of one ply and ∆x represents the spacing
between material points on the plane of a ply. It is assumed that a material point interacts with other
points in adjacent plies through interlayer normal bonds and interlayer shear bonds. Therefore, the
horizon of interlayer normal bond is taken as equal to thickness of one ply, h. δs is the horizon of
interlayer shear bond determined as δs =

√
δ2 + h2. In Equation (6), N f represents the total number of

family members those connect to the material point with fibre bonds. In Equation (8), the value of V
can be calculated as the average volume of material points connected through interlayer normal bonds.

As to the thermal expansion coefficients appeared in Equation (5), the formulation developed
in [27] is utilized in the current model as

αϑ = αx cos2(ϑ) + αy sin2(ϑ) + αxαy cos(ϑ) sin(ϑ) (10)

where αϑ is the thermal expansion coefficient in the bond direction, ϑ. αx, αy and αxy are thermal
expansion coefficients of the located ply with respect to the global coordinate system. αm represents
thermal expansion coefficient of matrix material.

In Equation (5) ϕ represents the shear angle of the diagonal shear bonds, the effect of temperature
is included as

ϕ =
[(

snm
kj − αmTnm

kj

)
−
(

snm
jk − αmTnm

jk

)]∣∣∣ξnm
kj

∣∣∣/(2h) (11)

where snm
kj is the stretch between nodes xn

k and xm
j , and Tnm

kj is the temperature difference between
nodes xn

k and xm
j , with respect to reference temperature. It should be noted that because of the adoption

of bond based PD theory, the four material constants existing in a laminate—i.e., E1, E2, ν12, and
G12—reduce to two constants: E1 and E2. The major Poisson’s ratio ν12 is limited to 1/3, and the major
shear modulus is G12 = ν12E2

1−ν12ν21
with ν12/E1 = ν21/E2.
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2.3. PD Thermal Laminate Model

PD thermal model was developed in [32] and extended into composite lamina by Oterkus and
Madenci [33] as

ρcv
.
T(xn

k , t) =
N

∑
j=1

(µ f κ f + κm

)Θ
(

xn
j , t
)
−Θ

(
xn

k , t
)∣∣∣ξn

kj

∣∣∣ −Θ0

(
µ f β f + βm

) .
en

kj

Vn
j (12)

where cv is the specific heat capacity, T
(
xn

k , t
)

is the temperature change,T
(
xn

k , t
)
= Θ

(
xn

k , t
)
− Θ0,

qb
(
xn

k , t
)

is the volumetric heat source, and
.
e is the time rate of the change of stretch, which is defined

as
.
e = η+ξ

|η+ξ| ·
.
η.

In Equation (12) κ f and κm represent the micro-conductivities associated with in-plane fibre bonds
and in-plane matrix bonds. The expressions for these micro-conductivities in PD concept are given
as [33]

κ f =
2(k1 − k2)
N f

∑
j=1

∣∣∣ξn
kj

∣∣∣Vn
j

(13)

κm =
6k2

πhδ3 (14)

where k1 and k2 represent the thermal conductivities for fibre and transverse directions in a ply. PD
thermal modulus β depends on the PD material bond constant [32,33,35]. β f and βm are associated
with in-plane fibre bonds and in-plane matrix bonds which can be expressed as

β f =
1
2

c f αϑ (15)

βm =
1
2

cmαϑ (16)

where c f and cm represent the PD material bond constant provided in Equations (6) and (7).
In this study, the heat conduction equation given for a lamina is modified to represent a composite

laminate by taking into account the interaction between the plies as

ρcv
.
T
(
xn

k , t
)
=

N
∑

j=1

[(
µ f κ f + κm

)Θ
(

xn
j , t
)
−Θ(xn

k , t)∣∣∣ξn
kj

∣∣∣ −Θ0

(
µ f β f + βm

) .
en

kj

]
Vn

j

+ ∑
m=n+1, n−1

[
κn

Θ(xm
k , t)−Θ(xn

k , t)
|ξnm

k |
−Θ0βn

.
enm

k

]
Vm

k

+
Ns
∑

j=1

[
κn

Θ
(

xm
j , t
)
−Θ(xn

k , t)∣∣∣ξnm
kj

∣∣∣ −Θ0βs
.
enm

kj

]
Vm

j + ρqb
(
xn

k , t
)

(17)

where κn represents the micro-conductivity for both interlayer normal and shear bonds as

kn =
km

2πh3(δs − h)
(18)

where km is the thermal conductivity of the matrix material. PD thermal modulus for interlayer normal
bonds and interlayer shear bonds can be expressed as

βn =
1
2

cnαm (19)

βs =
1
2

csαm (20)
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2.4. Failure Criteria

In classical mechanics, singular stress and strain occur at crack tips, which are non-physical.
Therefore, additional assumptions are needed to simulate crack propagation paths. On the contrary,
in PD theory, the equation of motion is converted into its non-local form. As a result, failure can be
simulated without any additional assumptions [36]. The form of equations in PD theory makes it
suitable for failure analysis. The approach to simulate failure in PD theory is simply to break a bond
once its stretch is beyond the critical stretch value, s0. The PD forces of broken bonds become zero
permanently. Because of the existing of four kinds of PD bonds in PD laminate model, different critical
stretch values are defined for different types of PD bonds. The definitions of these critical stretch
values are listed as [7,25,34]

s f t =
σ1t
E1

(21)

s f c =
σ1c
E1

(22)

sm =

√
5GIC
9Kmδ

(23)

sn =

√
2GIC
hEm

(24)

ss =

√
GI IC
hGm

(25)

In the above equations, s f t and s f c are critical stretch values of fibre bonds in tension and
compression states, respectively. sm, sn, and ss are related with matrix bonds, interlayer normal
bonds, and interlayer shear bonds. GIC and GI IC are the critical energy release rates for first and
second failure modes, respectively. Km is the bulk modulus of the matrix material. σ1t and σ1c are
longitudinal tension and compression strength properties of a single ply. By applying the above failure
criteria, it can be observed that the fibre bonds can fail both in tension and compression. The matrix
bonds, interlayer normal bonds, and interlayer shear bonds are only allowed to fail in tension.

A history dependent function, µ(ξ, t), is introduced to indicate the status of a bond, i.e., being 1
for intact bond and being zero for broken bond. The definitions of parameter, µ(ξ, t) for different
kinds of PD bonds can be defined as

µ f f =

{
1, (s− αϑT) < s f t and (s− αϑT) > s f c
0, (s− αϑT) ≥ s f t or (s− αϑT) ≤ s f c

(26)

µm =

{
1, (s− αϑT) < sm

0, (s− αϑT) ≥ sm
(27)

µn =

{
1, (s− αmT) < sn

0, (s− αmT) ≥ sn
(28)

µs =

{
1, ϕ < ss

0, ϕ ≥ ss
(29)

where µ f f , µm, µn, and µs are related with fibre, matrix, interlayer normal, and interlayer shear bonds,
respectively. Subsequently, a local damage parameter, i.e., the ratio of the number of broken bonds to
the number of total bonds, is introduced to represent the damage level of a point, shown as [21]

ϕ(x, t) = 1−
∫

H µ(ξ, t)dV∫
H dV

(30)
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3. Numerical Implementation

In this study, the heat conduction equation and the equation of motion are solved simultaneously
for each time increment by using explicit time integration.

3.1. Problem Description

The bond based PD laminate model is implemented in FORTRAN program to predict the responses
of a 13 ply laminate subjected to shock loading which was previously considered by Diyaroglu et al. [37].
Note that, in this study, the temperature changes due to mechanical deformations and their effects on
damage evolution are taken into account by solving fully coupled thermomechanical equations whereas
thermal effects are ignored in [37]. The composite material properties is provided in Table 1.

Table 1. Material properties of composite [8].

Mechanical Properties Thermal Properties

E1 (GPa) 39.3 α1 (µm/m/K) 8.6
E2 (GPa) 9.7 α2 (µm/m/K) 22.1

G12 (GPa) 3.32 k1 (W/mK) 10.4
Poisson’s ratio ν12 0.33 k2 (W/mK) 0.89

ρ
(

kg/m3
)

1850 cv (J/(kg ·K)) 879
Em (GPa) 3.792 αm (µm/m/K) 63
Gm (GPa) 1.422 km (W/mK) 0.34

Poisson’s ratio νm 0.33 Θ0(K) 285

Because of the adoption of bond based PD, the major shear modulus changed to be 3.32 GPa
according to the constraint on material constants. As illustrated in Figure 3, the 13 ply test plate is in a
circle shape with outer radius, Rout = 132.715 mm and inner radius, Rin = 114.3 mm. The thickness of
each ply in the laminate is same as h = 0.254 mm. The region between the inner circle and outer circle
is constrained in top and bottom plies, and is left free for other plies. The constraint is implemented by
applying six bolts with a radius of r = 4 mm. Thus the fixed end allows the specimen to absorb the
full energy of the applied load. The stacking sequence is

[
0/90/0/90/0/90/0

]
(shown in Figure 3).

Figure 3. Geometry dimension illustration of the test laminate. (Blue colour represents 0◦ and yellow
colour represents 90◦ plies).

The PD discretization of one ply is presented in Figure 4. The grid size is ∆x = 2.6543× 10−3 m.
The horizon size is chosen as δ = 3.015∆x. The material points located within the bolt regions are
deleted in order to represent the actual shape of the test plate. Based on such discretization, the critical
stretch value related with bonds failures can be calculated [7]. The critical energy release rate for
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matrix failure is GIC = 11.85× 10−3 MPa, thus sm is calculated as sm = 1.47× 10−2. The tension
and compression strength properties are σ1t = 965 MPa and σ1c = −883 MPa. Therefore, the critical
stretch value for fibre failure in tension is s f t = 2.46× 10−2 and in compression is s f c = −2.25× 10−2.
As to the interlayer bonds, the critical stretch values are calculated as sn = 7.015 × 10−2 with
GIC = 2.73× 10−3 MPa and ss = 0.14 with GI IC = 7.11× 10−3 MPa. The time step size for an explicit
time integration is ∆t = 7.69× 10−8 s. The total simulation time is set as 0.3641× 10−3 s.

Figure 4. Illustration of PD discretization for one ply (blue colour represents the fixed boundary region
and orange colour represents the inner part).

Several dynamic loadings generated by explosions are modelled by using different time-dependent
pressure functions. The pressure shock applied in the experiment conducted by LeBlanc and Shukla [8]
is utilized here. The charge which is equivalent to 1.32 g TNT is located at 5.25 m away from the test
plate. The pressure wave is cause by rapid expansion of explosive gases. The speed of these gases can
be approximated as the speed of sound in water [38]. The pressure linearly increases until it reached its
peak value, Pmax, followed by the exponential decay, expressed in Equation (31) and shown in Figure 5.
Here Pmax is set to be 9.65 MPa.

P(t) =


Pmax ×

(
t/4× 10−5) t < 0.04× 10−3 s

Pmax 0.04× 10−3 s < t < 0.08× 10−3 s
Pmaxe−1000(t−0.08)/0.2 0.04× 10−3 s < t < 1× 10−3 s

(31)

Figure 5. Pressure load distribution for the test plate.



J. Mar. Sci. Eng. 2018, 6, 38 10 of 19

Generally, there are two approaches for modelling the shock load depending on the distance
(stand-off distance) between the charge source and the object of interest [17]. The explosion load is
assumed to be uniform if the stand-off distance is long enough, which is termed as far-field explosion.
On the contrary, the near-field explosion adopts non-uniform load distribution. There are also two
approaches to simulate the non-uniform pressure shock loads, i.e., decoupling the load and the
structural response and coupling the load and response. In this paper, a non-uniform pressure
load simulated and decoupled approach is utilized, i.e., the pressure shock load is in a form of
P(r, t) = P1(r)P2(t). A non-uniform distribution of shock loading over the plate is simulated by
adopting the pressure distribution derived by Turkmen and Mecitoglu [39] as

P(r) = −0.0005r4 + 0.01r3 − 0.0586r2 − 0.001r + 1 (32)

where r represents the distance from the collective node to the centre of the test plate. The test plate
adopted here is slightly larger than the one in [39]. Consequently, the distribution profile is extended
by 0.83 cm correspondingly, as illustrated in Figure 6. Finally, the explosion load is defined as

P(r, t) =

{
P(t)

(
−0.0005(r− 0.83)4 + 0.01(r− 0.83)3 − 0.0586(r− 0.83)2 − 0.001(r− 0.83) + 1

)
r > 0.83 cm

P(t) r < 0.83 cm
(33)

Figure 6. (a) Illustration of non-uniform pressure distribution over the top ply and (b) pressure profile.

3.2. Numerical Results

3.2.1. Subjected to Uniform Pressure Loading

First, the test laminate is subjected to uniform pressure load, P(t) without allowing failure.
The regions between the inner circle and outer circle are fixed in three dimensions for all plies. During
the simulation, the central points in each ply experience the same vertical (z) displacement evolutions.
Therefore, the vertical displacement evolution of the central point on the top ply is plotted in Figure 7a.
It can be observed that the test plate firstly deforms in the negative z direction, then it will recover to
some extent with velocity in positive z direction. The largest deformation occurs at approximately
3700 time steps, corresponding to 0.28453× 10−3 s. The vertical displacement distribution over the top
ply at 0.28453× 10−3 s is shown in Figure 7b.
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Figure 7. (a) Variation of the displacement in z direction of the central point as a function of time;
(b) Vertical displacement distribution for the top ply at 0.28453× 10−3 s.

Fully coupled thermomechanical simulation under the uniform pressure load P(t), i.e., far field
explosion, is also investigated for further comparison. The crack propagations and temperature
change distributions at 0.1538× 10−3 s are provided in Figure 8 for top ply, Figure 9 for middle ply,
and Figure 10 for bottom ply. It can be inferred from the matrix damage plots that all the plies in the
laminate experience the tear failure near the constraint boundary condition. Furthermore, the damage
region in the bottom ply is larger than the top ply, indicting a combination of tension failure mode
and tear failure mode. As to the temperature distribution, the temperature increases near cracks are
observed for all plies, which are more obvious in the top ply provided in Figure 8b. Temperature drop
is also observed in tension state, which is obvious in the bottom ply provided in Figure 10b.

Figure 8. (a) Matrix damage and (b) temperature change distribution (K) of top ply at 0.1538× 10−3 s.

Figure 9. (a) Matrix damage and (b) temperature change distribution (K) of middle (7th) ply at 0.1538×10−3 s.
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Figure 10. (a) Matrix damage and (b) temperature change distribution (K) of bottom ply at 0.1538× 10−3 s.

3.2.2. Subjected to Uniform Non-Uniform Pressure Load

In this section, the test laminate is subjected to non-uniform pressure load P(r, t), i.e., near field
explosion. The matrix damage and temperature distribution in deformed shape are provided in
Figure 11. Matrix damage predictions at 0.28453× 10−3 s and 0.3461× 10−3 s obtained from coupled
and uncoupled cases are are shown in Figures 12–17.

Figure 11. (a) Matrix damage and (b) temperature change distribution (K) of the laminate at 0.3461× 10−3 s.

Figure 12. Matrix damage comparison of top ply for (a) coupled case and (b) uncoupled case at
0.28453× 10−3 s.

For the fully coupled simulation case, by comparing the damage of the plies at different times, it is
obvious that the damaged zone gets larger as time progresses. The damage patterns are different for
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each ply when compared at the same time. The cracks mainly occur near the clamped boundary region
for the top ply, indicating a tear failure mode. On the other hand, the central part experiences the largest
level of damage for the bottom ply, indicating a tension failure mode. Consequently, the different
force states give rise to the different level of damages. However, for all plies, the crack propagations
present a cross-shaped pattern. It can be explained that the fiber direction of each ply is either zero
or 90 degrees. The matrix damage occurs parallel to the fiber direction. For a ply with fiber direction
being zero, the matrix crack will occur along the horizontal direction. However, the fiber directions
for its adjacent plies are 90 degrees. Hence, the matrix crack will also occur in the vertical direction
due to the contribution of the interlayer bonds. Consequently, the final cracks are in cross shapes.
The damages present highest levels near the central vertical lines for all plies. This phenomenon is also
observed in the experiment [13], as shown in Figure 18. As it can be seen in Figures 8–10, there are
damages around the bolt holes and these damages were also observed in experiments [13] as it can be
seen in Figure 18.

As shown in Figures 12–17, different damage patterns are observed for coupled and uncoupled
cases. As the time progresses, temperature change increases and the differences in damage plots
become more obvious. Considering the small temperature changes induced by the applied pressure
shock, the coupling term effect on damage is significant. It can be inferred that the difference in damage
due to coupling effect will become more significant with larger strain rates. Temperature decreases
where there is local tension and as a result local compression is created due to temperature drop which
reduces the extent of damage observed by the uncoupled cases (Figures 12–17).

Figure 13. Matrix damage comparison of middle (7th) ply for (a) coupled case and (b) uncoupled case
at 0.28453× 10−3 s.

Figure 14. Matrix damage comparison of bottom ply for (a) coupled case and (b) uncoupled case at
0.28453× 10−3 s.



J. Mar. Sci. Eng. 2018, 6, 38 14 of 19

Figure 15. Matrix damage comparison of top ply for (a) coupled case and (b) uncoupled case at
0.3461× 10−3 s.

Figure 16. Matrix damage comparison of middle (7th) ply for (a) coupled case and (b) uncoupled case
at 0.3461× 10−3 s.

Figure 17. Matrix damage comparison of bottom ply for (a) coupled case and (b) uncoupled case at
0.3461× 10−3 s.
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Figure 18. Material damage during test [13].

The extent of damage in interlayer shear bonds was also investigated, and only slight differences
were observed in the top few plies between the coupled and uncoupled cases (Figure 19). The middle
ply experienced the most severe damage, as shown in Figure 20. Thus, it can be inferred that the
interlayer shear bond damages occur mainly in the middle plies of the test laminate. Hence, it can be
concluded that there is delamination failure in the middle plies.

Temperature changes induced by the applied pressure shock loading are presented for different
plies in Figures 21–23. It is observed that as the loading increased, the temperature changes of PD nodes
increased. For all plies, the temperature change profiles all have similar patterns as the corresponding
crack damage patterns. As shown in Figures 21–23, there is a temperature rise where there is local
compression, and there is a temperature drop where there is local tension, as explained in [21]. In the
top ply, most of the region was under compression and a temperature rise was observed; on the other
hand, the bottom ply was mostly under tension, and a consequent temperature drop was observed,
as shown in Figure 23. In the cracked surfaces, temperature drops were observed because of the local
tension; however, temperature rise was observed near the crack tips. Thus, the crack propagation
paths do have effects on the temperature distributions.

Figure 19. Interlayer shear damage comparison for (a) coupled case and (b) uncoupled case at
0.3461× 10−3 s.
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Figure 20. Interlayer shear damage of middle ply in coupled case at 0.3461× 10−3 s.

Figure 21. (a) Distribution of temperature change (K) of top ply at 0.28453× 10−3 s; (b) Distribution of
temperature change (K) of top ply at 0.3461× 10−3 s; (c) Maximum stretch distribution of top ply at
0.3461× 10−3 s.

Figure 22. Cont.
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Figure 22. (a) Distribution of temperature change (K) of middle ply at 0.28453× 10−3 s; (b) Distribution
of temperature change (K) of middle ply at 0.3461× 10−3 s; (c) Maximum stretch distribution of middle
ply at 0.3461× 10−3 s.

Figure 23. (a) Distribution of temperature change (K) of bottom ply at 0.28453× 10−3 s; (b) Distribution
of temperature change (K) of bottom ply at 0.3461× 10−3 s; (c) Maximum stretch distribution of bottom
ply at 0.3461× 10−3 s.

4. Conclusions

In this paper, a bond-based PD laminate model was applied to predict the responses of a 13-ply
composite under a pressure shock loading. Both the deformation effect on the temperature field and
the temperature effect on deformation were taken into consideration in the generalized PD model.
Hence, the simulation was conducted by considering fully coupled thermomechanical effects. Firstly,
the matrix damages of the laminate were predicted at different simulation times. It was observed
that each ply within the laminate experienced a different level of matrix crack. Then, the breakages
of the interlayer shear bonds were investigated. The delamination failure occurred mainly in the
middle part of the laminate. The PD-predicted damage pattern agrees well with the experimental
result. Furthermore, the temperature change evolution induced by the applied mechanical pressure
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shock was also simulated. The temperature distributions presented similar patterns with the crack
propagations. Finally, the crack propagation patterns were compared for coupled and uncoupled cases.
Results showed that the coupling term has an effect on crack propagation pattern. The developed
model can be used for predicting more realistic crack patterns. In conclusion, the PD theory is able to
predict both thermal and mechanical responses of marine composites under shock loadings.
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