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Abstract: The M/V Marathassa oil spill occurred on 8 April 2015 in the English Bay. In the present
study, the trajectory and the transport mechanism of the spilled oil have been studied by using the
three-dimensional and particle-based Oil Spill Contingency and Response (OSCAR) model forced
by the Finite-Volume Community Ocean Model (FVCOM). FVCOM provided the hydrodynamic
variables used by the oil spill model of OSCAR. The results showed that the fraction of the oil on the
water surface and on the shoreline, as well as the amount of oil recovered were affected by the time of
the initial release, the overall duration of the discharge, wind and recovery actions. The hindcast study
of the M/V Marathassa oil spill showed that the likely starting time for the discharge was between
14:00 and 15:00, on 8 April 2015. The release may have lasted for a relatively long time (assumed
to be 22 h in this study). The results of modeling in this study were found reasonably acceptable
allowing for further application in risk assessment studies in the English Bay and Vancouver Harbour.
The trajectory of the spill was mainly controlled by the tidal currents, which were strongly sensitive
to the local coastline and topography of First Narrows and that in the central harbour. The model
results also suggested that a high-resolution model, which was able to resolve abrupt changes in the
coastlines and topography, was necessary to simulate the oil spill in the harbour.

Keywords: oil spill model; FVCOM; OSCAR; M/V Marathassa oil spill; the English Bay;
Vancouver Harbour

1. Introduction

Canada has the world’s largest reserves of oil sands, which are deposits of bitumen in sand
or porous rock [1]. The bitumen extracted from oil sands can be upgraded into various petroleum
fuels (such as gasoline, diesel and aviation fuel) via proper hydro-treating processes. Due to the
increasing bitumen and heavy oil production in Canada, the Trans Mountain Expansion Project
(TMEP) was proposed to increase the capacity of bitumen and heavy oil transportation via pipeline
from the province of Alberta, which has the majority of oil sands in Canada, to the west coastal
province, British Columbia (BC). TMEP intends to triple the pipeline transportation capacity, which
will consequently increase the oil tanker traffic by seven times on the BC coast, as well [2].

The biggest import and export port on the BC coast, Port of Metro Vancouver (PMV), consists
of 34 anchorages (20 in the English Bay, 8 in Vancouver Harbour, 4 in the Indian Arm, 1 in Robert
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Bank, and 1 in Sand Heads), as shown in Figure 1. In 2017, PMV handled about 142 million tonnes of
cargo, which is 5% more than the previous year (2016) [3]. This busy and growing vessel traffic in PMV
increases the potential risk of oil spill. The Canadian Coast Guard (CCG) receives about 600 pollution
reports on the BC coast every year, nearly 40 of which occur in the PMV [4]. For instance, a small oil
spill took place in the English Bay (one of the PMV anchorages) on 8 April 2015, which resulted in at
least 2800 L of oil released from the cargo vessel, M/V Marathassa [4].
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The oil spill was first reported by the public at 16:48 Pacific Time on 8 April 2015 [6]. It was
suspected that IFO-380 (Intermediate Fuel Oil 380) was spilled from the MV Marathassa vessel, which
anchored at the location of latitude: 49◦17.5167′ N, longitude: 123◦11.2333′ W (Anchorage #12) [7].
During this spill event, several aerial overflights, including the National Aerial Surveillance Program
(NASP) flights provided by Transport Canada, were conducted to estimate the pollutant on the
water surface and shoreline as shown in Table S1. At 12:20 on 9 April, it was estimated that about
2800 L of spilled oil remained on the water surface [4]. This estimate did not include any weathered
and previously recovered fuel oil [4]. It was estimated that the Western Canada Marine Response
Corporation (WCMRC) recovered 1400 L of spilled oil by using three vessels with skimmer equipment
(Table S2) [4]. However, the type and efficiency of the skimmers were not clearly recorded. Later on,
the Shoreline Cleanup Assessment Technique (SCAT) teams surveyed over 85 km of shoreline between
9 April and 23 April 2015 and determined that the most contaminated shoreline was the west side
of Stanley Park, North Vancouver, and West Vancouver [7]. On 14 April 2015, the City of Vancouver
provided the spilled oil distribution map shown in Figure 2, which clearly showed the observed spilled
oil on the water surface and the contamination on the shoreline [8]. Unfortunately, the specific cause of
this spill was not clear, and the exact volume of spilled oil was unknown.

To understand the fate/trajectory of spilled oil in the marine environment, oil spill models may be
used. Examples of this type of model includes: the SPILLCALC by Tetra Tech [9], the GNOME (General
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NOAA Operational Modeling Environment) model by NOAA (National Oceanic and Atmospheric
Administration) [10], the OSCAR model by SINTEF (Stiftelsen for INdustriell of TEknisk Forskning ved
NTH—Foundation for Industrial and Technical Research) [11], the OILMAP and SIMAP models by
RPS-ASA (Applied Science Associates, Inc.) [12,13], the MOHID water model by MARETEC (Marine
and Environmental Technology Research Center) [14] and the MIKE Oil Spill model by DHI (Dansk
Hydraulisk Institut) [15]. For application to the TMEP, several organizations and consulting companies
have simulated the potential risk of the oil spill in the Burrard Inlet, which geographically includes the
English Bay, Vancouver Harbour, as well as in the Salish Sea (the mouth of Burrard Inlet opens onto
the Salish Sea) by using various oil spill models. For example, the SPILLCALC model was used to
simulate the possible trajectory of spilled diluted bitumen (dilbit) in 2013 [16]; the GNOME model
was used to simulate the potential dilbit spill trajectory in 2015 [17]. However, these previously used
models were limited by the following aspects: the stochastic model in SPILLCALC was 2D, which only
tracked the surface transport of oil and did not provide the probability of water column contamination,
and the study using the GNOME model simulated the trajectory of oil based on rough wind conditions
and currents’ information, but not the fate/weathering processes.

Oil spill modeling typically incorporates the modeling of hydrodynamic forcing. H3D is a 3D
hydrodynamic model that has been used in several studies of the oil spill in the Salish Sea and Burrard
Inlet [16,18,19]. However, the resolution of this H3D model was relatively low in the study area, with a
1 km× 1 km horizontal grid space. In order to get a more accurate hydrodynamic forcing for the Salish
Sea, the NEMO (Nucleus for European Modeling of the Ocean) model has been applied. The horizontal
grid space of the NEMO model was almost uniform from 440 m × 440 m to 500 m × 500 m in the
Salish Sea [20]. Unfortunately, this model was unable to simulate currents in the English Bay and
Vancouver Harbour. Therefore, a high-resolution hydrodynamic model was needed for the modeling
of the oil spill in the English Bay and Vancouver Harbour.
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Figure 2. The M/V Marathassa oil spill situation map (map provided by the City of Vancouver, BC).
This map shows the observed spilled oil trajectory on the water surface and the contamination on the
shoreline in the English Bay and Vancouver Harbour from 8 April 2015 to 10 April 2015 [8]. Areas with
oil sheen are numbered as 1–10, and contaminated shoreline areas are labeled as A–P.
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This study aims to validate a three-dimensional (3D) and high-resolution hydrodynamic model
(the Finite-Volume Community Ocean Model (FVCOM)) as the first step. Then, the validated FVCOM
output was incorporated into a 3D oil spill model (the Oil Spill Contingency and Response model
(OSCAR)) to model the oil spill in the English Bay. Forty numerical simulations were carried out
to test this coupled oil spill model based on historical information from the MV Marathassa oil
spill. Specifically, the mass balance and trajectory of MV Marathassa spilled oil were simulated
by varying different factors, including the oil start of release time, discharge duration, wind forcing
and recovery action.

2. Materials and Methods

2.1. Hydrodynamic Forcing: FVCOM

2.1.1. FVCOM Description

The hydrodynamic forcing used for this study was generated using the Finite-Volume Community
Ocean Model (FVCOM). It is a 3D, finite-volume and unstructured grid ocean model, which was first
developed by Chen et al. [21] and further upgraded by joint efforts from researchers at the University
of Massachusetts, Dartmouth and Woods Hole Oceanography Institution [22–25]. FVCOM allows the
use of different resolutions to fit complex coastline and topography by using the triangle mesh system.
The model used in the present study was based on the model set up by Wu et al. [26]. The model was
capable of achieving relatively high resolution in the region of interest (English Bay and Vancouver
Harbour in this case), as shown in Figure 3. For instance, the horizontal grid spacing is about 10 m in
Vancouver Harbour and about 2 m around the bridge bases in the Second Narrows. The vertical grid
has twenty-one sigma levels that were stretched gradually, in order to gain higher resolution in the
surface and bottom layers. More detailed information of the model can be found in Wu et al. [26].
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Vancouver Harbour. The horizontal grid space is 10 m in Vancouver Harbour and about 2 m around
the bridge bases in the Second Narrows.

2.1.2. FVCOM Validation

The overall validation of the model has been done in Wu et al. [26] using tidal gauge water
elevations and the ship-mounted Acoustic Doppler Current Profiler (ADCP) current data. Here,
we further evaluate the model using surface drifter data, which were obtained from two Surface
Current Tracker drifters (SCT). SCT is comprised mainly of wood for the structural support and
cellulose sponge for floatation [27]. Four aluminum fins are mounted below the sponge to increase
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the surface area, and a zinc weight is installed at the very bottom of the unit to act as ballast [27].
There is also a thin aluminum disk installed above the cellulose sponge to facilitate labeling of the SCT
with drifter ID and contact information [27]. SCT is a low-cost, low-impact, easily deployable drifter,
tracks the surface currents and reports its location and timestamp [27]. Two SCT, named SCT1 and
SCT2, were released in Vancouver Harbour (SCT1: 49◦17.8812′ N, 122◦57.6414′ W; SCT2: 49◦17.8788′

N, 122◦57.6432′ W) at 15:11 on 8 November 2015. The drifter’s locations and velocities were recorded
every 2–6 min. It is notable that a time step of five minutes was applied during simulations.

The modeled trajectory was compared with the observed drifters’ trajectory. In addition,
the prediction ability of FVCOM was statistically assessed by computing the following measures
as shown in Equations (1)–(4) [28,29]: the Root-Mean-Square-Error (RMSE):

RMSE =

{
1
N ∑N

i=1 (Xmod − Xobs)
2
} 1

2
(1)

the relative average error (E):

E = 100%
∑N

i=1 (Xmod − Xobs)
2

∑N
i=1 (

∣∣Xmod − Xobs
∣∣2+∣∣Xobs − Xobs

∣∣2) (2)

the correlation coefficient:

R =
∑N

i=1 (Xmod − Xmod) (Xobs − Xobs)

[∑N
i=1 (Xmod − Xmod)

2
∑N

i=1 (Xobs − Xobs)
2
]

1
2

(3)

and the quantitative agreement between model and observations:

Skill = 1− ∑N
i=1|Xmod − Xobs|2

∑N
i=1 (

∣∣Xmod − Xobs|+|Xobs − Xobs
∣∣)2 (4)

where X is the variable being compared with a time mean X. The subscripts “mod” and “obs” represent
the model results and observations, respectively.

After validating FVCOM, it was run for 10 days (from 5 to 15 April 2015) with a time step of 1 s
and saved every 1 h to generate the hydrodynamic forcing, which did not include the waves, because
the study period was reported as “very calm”, the surveillance photo showed no signs of breaking
waves (white caps) and the non-breaking wave would also be very low due to low wind. The wave
height used in the OSCAR model was computed from winds.

2.2. Oil Spill Model: OSCAR

The OSCAR model was used to simulate the mass balance and trajectories of the oil spill, based
on the MV Marathassa oil spill’s observation data in the English Bay. This is a 3D particle-based
model, which is designed based on SINTEF’s experimental field and laboratory data to support oil
spill contingency and response decision making. The general structure of the OSCAR model is similar
to most oil spill models as shown in Figure 4. The OSCAR model is capable of calculating the oil
contamination on the sea surface and shorelines, in the water column and sediment, along with
several oil weathering processes. Various oil weathering processes can be simulated by using the
OSCAR model, including spreading, drifting, natural dispersion, chemical dispersion, evaporation,
stranding, dissolution, adsorption, settling, emulsification and biodegradation of spilled oil. Overall,
the OSCAR model has broad applications in oil spill modeling and has been validated in many related
studies [30–33].
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2.3. Wind Forcing: HRDPS Model

The present study used the wind forcing from the High-Resolution Deterministic Prediction
System (HRDPS), which has been employed for weather prediction on the West Coast of Canada [34].
HRDPS is a set of the nested and Limited-Area Models (LAM) with forecast grids from the
non-hydrostatic version of the Global Environmental Multiscale (GEM) model. This GEM has a
2.5-km horizontal grid spacing. The example of wind speed and direction at 16:00 on 8 April 2015 is
shown in Figure 5. The dominant wind directions are south, southwest and southeast with speeds
below 7 m/s near the release point from 5–12 April 2015, as shown in Figure 6.
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2.4. Hindcast Study of the M/V Marathassa Oil Spill

2.4.1. Identification of Spilled Oil

PMV collected the polluted samples and identified that the spilled oil had an API gravity degree
of 13 and a density of 978–979 kg/m3 (979 kg/m3 at 15 ◦C). The oil chemical compositions were
tested as well, and the results showed that the spilled oil contained about 96–99% of bunker fuel.
Further testing on oil physiochemical properties illustrated that the spilled oil had comparable physical
and chemical properties as IFO-380 [4].

IFO-380 is typically classified as a heavy fuel oil with an API gravity of 10–17.1 degrees (density
of 950–1000 kg/m3) [7,35]. It has a relatively high viscosity (maximum viscosity of 380 cSt [36–38])
and behaves as a semi-solid product at ambient temperature, which leads to a low rate of dispersion
and evaporation [7,35]. The detailed chemical composition of IFO-380 was adapted from OSCAR’s oil
database as shown in Table S3.

2.4.2. Potentially Influential Factors

As reported, the oil probably began to spill between 11:00 and 16:48 on 8 April 2015, but the
exact start time of the release is still unknown. Five possible starting times (12:00, 13:00, 14:00, 15:00
and 16:00) were explored in this study. Although the wind forcing can be obtained via the HRDPS
model as illustrated in Section 2.3, the wind speed was reported as quite low (<2.6 m/s) during
8–11 April 2015 [7]. It is therefore interesting to study the spilled oil fate and trajectory without taking
the influence of the wind into consideration. Because of the lack of information on the duration of oil
release and the lack of documentation on the details of recovery actions, the duration of discharge and
recovery actions was included in the model study as two additional factors. The discharge duration
was assumed as 2 h (a case of a relative instantaneous release) and 22 h (a case of slow release over a
long period of time). The case with or without recovery actions was studied to investigate the impact
on the fate and trajectory of the spilled oil. It is notable that the assumptions of oil recovery actions
were made based on the CCG’s report, as shown in Table S4 [4] and the Western Canada Marine
Response Corporation’s (WCMARC) website. A summary of the above-mentioned factors that might
influence the fate and trajectory of spilled oil is presented in Table 1, and detailed setup information
for each simulation is shown in Table S5.
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Table 1. The studied factors and their corresponding settings.

Factor Setting

Starting-releasing time 12:00 13:00 14:00 15:00 16:00
Wind forcing With Without

Discharge duration 2 h 22 h
Recovery action Yes No

2.4.3. Deterministic Approach

The oil spill modeling can use both deterministic and stochastic approaches. A deterministic
approach is used to simulate the fate and behaviour of oil from a single model run. This approach is
helpful when studying a known historical oil spill event. A stochastic approach, on the other hand,
is used to analyze the probability of oil contamination in the area of concern by overlaying a great
number (tens to thousands) of individual deterministic simulations.

In this study, a deterministic approach was employed to study the mass balance and trajectories
of the oil spill occurring on 8 April 2015. For each simulation, the oil was assumed to be released
at Anchorage #12 (latitude: 49◦17.5167′ N, longitude: 123◦11.2333′ W) in the English Bay and then
tracked for 3 days. A track duration of 3 days was used, because only a trace amount of spilled oil
(5.9 L) remained on the water surface after 3 days, as reported by Transport Canada [4]. A time step
of 20 min was selected to run the model. Since the hydrodynamic forcing was hourly, the use of a
20-min time step based on interpolation of current data helps to simulate a relatively smooth particle
trajectory with less computation requirement compared with smaller steps (such as 1 min). The mass
balances and trajectories for each individual simulation were saved every 1 h and represented by using
5000 particles. The chosen number of particles would affect the simulation to some extent. The use
of 5000 is based on the preliminary test using 1000, 5000 and 10,000 particles. While the use of 1000
can produce a trajectory similar to that of 10,000, the use of a large number retains more details of the
concentration field. Using 5000 can provide better details with less computational demand. This was
also discussed in Reed and Hetland [39].

2.5. Statistical Analysis on Mass Balance

A full factorial design that incorporates the studied factors and their corresponding settings
(Table 1) was generated by using Minitab software (version 18.1), resulting in 5 × 2 × 2 × 2 = 40
combinations in total. The mass balance (%) of oil calculated for the water surface, shoreline, water
column, atmosphere, biodegradation and recovery was selected as the studied response. Analysis
Of Variance (ANOVA) was carried out to evaluate the influence statistically of the studied factors on
the mass balance. A p-value < 0.05 indicates that a certain factor has a significant influence on the
mass balance. The normal distribution and constant variance on the error terms were assured during
analysis, as well.

3. Results

3.1. FVCOM Validation

In order to validate the FVCOM, the simulated trajectory and velocities (U-velocity and V-velocity)
from the model were compared with the observational data from the SCT drifters (SCT1 and SCT2).
The simulated and observed trajectory are plotted in Figures 7 and 8 for SCT1 and SCT2, respectively.
It can be noticed that both SCT1 and SCT2 moved from east to west (Central Harbour to Second Narrow
to Vancouver Harbour), and the modeled trajectory was comparable to the observed trajectories for
both SCT1 and SCT2.
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To quantify the prediction ability of FVCOM for velocities, statistical analysis, including the
RMSE, relative average error (E), correlation coefficient (R) and skill, was carried out as presented
in Table 2. Both RMSE and E for FVCOM were satisfactorily low (less than 0.16 m/s and 77%,
respectively) indicating that only a slight difference existed between modeled and observed velocities.
The correlation between the modeled and observed velocities was represented by R values, and their
significance levels were indicated by p-values. As shown in Table 2, all p-values were lower than
0.05, which again demonstrated the satisfied correlation between modeled and observed velocities.
The skill values were all greater than 0.51, which further verified the agreement between modeled and
observed velocities.

The time series velocities from simulations and observations for SCT1 and SCT2 are plotted in
Figures 9 and 10, respectively. In general, the simulated velocities matched well with that of observed
data, even though some data were not recorded for unknown reasons. Overall, FVCOM was validated
by using data from observed drifters, including trajectory and velocities in this study.
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Table 2. Results of statistical analysis between model simulations and observations.

Statistical Measures
SCT1 SCT2

U-Velocity V-Velocity U-Velocity V-Velocity

Root-Mean-Squared-Error (RMSE) (m/s) 0.149 0.056 0.158 0.052
Relative average error (E) (%) 48.65 76.38 73.42 68.44

Correlation coefficient (R) 0.618 0.256 0.310 0.383
p-value for R 0.000 0.001 0.003 0.000

Skill 0.719 0.514 0.577 0.551

3.2. Impacts of Studied Factors on Oil Mass Balance and Trajectory

After validating FVCOM for hydrodynamic forcing, it was incorporated into the OSCAR model to
study the mass balance and trajectory of the oil spilled from the M/V Marathassa. Four potential factors
mentioned in Section 2.4.2 might influence the spilled oil mass balance, including the release start
time, oil discharge duration, wind forcing and recovery actions. The raw data on their influence on the
mass balance of oil (e.g., water surface, shoreline, water column, sediments, atmosphere, biodegraded
and recovered) are presented in Table S6. Since the mass balance for the water column, sediments,
atmosphere and biodegraded were all less than 3% due to the very weak wind/waves, only the oil
components at the water surface, on the shoreline and the oil recovered were statistically analyzed in
this study. Analysis of Variance (ANOVA) was carried out, and the p-values for the influence of studied
factors on the oil mass balance are presented in Table 3. The detailed mass balance distributions (after
three days of tracking) are provided in Figure 11. In addition, the examples of trajectory comparison
are shown in Figures S1–S4.

3.2.1. Influence of Release Start Time

From Table 3, it can be clearly seen that the oil start of release time had a significant impact
on the mass balance of water surface, shoreline and recovered, as their p-values were less than 0.05.
About 32.7% of spilled oil remained on the water surface and heavy contamination on the shoreline
(63%) when the oil started spilling at 12:00, as shown in Figure 11a. In comparison with the 12:00 start
of release time, the shoreline contamination was reduced (52.8%) along with an increased amount
of spilled oil on the water surface (37.9%). If recovery was conducted, 7.46% of the oil was removed
when it was released at 13:00. Interestingly, much more spilled oil (36.4%) can be recovered when
the start of release time was 14:00, along with 32.9% contamination on the shoreline. The similar
contamination on the shoreline was also observed if the oil spill started at 15:00 and/or 16:00, but
larger amounts of spilled oil remained on the water surface (54.7% for and 70.5% for 16:00), rather
than being recovered. In terms of oil trajectory, overall, the earlier the oil spill occurred, such as 12:00,
the greater the contamination of the water surface and shoreline. However, this difference was not
significant when the oil spill started at 14:00 and 15:00 (Figure S1).
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Figure 11. The influence of studied factors (a) release start time, (b) wind, (c) discharge duration and (d) recovery action on the mass balance of water surface,
shoreline and recovered.
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3.2.2. Influence of Wind

The effect of the wind was to increase the amount of oil on the shoreline and decrease the amount
of oil on the water surface compared to the no-wind simulation (Table 3 and Figure 11b). Specifically,
the fraction of oil remaining on the surface decreased from 67% to 23%, and the amount of oil on
the shore increased from 21% to 56%. This can be seen in the trajectory results (Figure S2), which
illustrate the heavy contamination on the shoreline of West Vancouver and the western side of Stanley
Park. The amount of oil recovered stayed roughly constant at 15–20% and was not influenced by wind
forcing in this study.

3.2.3. Influence of Discharge Duration

A short discharge duration (2 h) led to more serious shoreline contamination (54.1% vs. 22.2%)
than that of long discharge duration (22 h) and resulted in less oil on the water surface (29.6% for 2 h
vs. 54.1% for 22 h). Most of the contaminant was still concentrated on the water surface around the
release location after 3 days tracking when a long discharge duration was taken into consideration
(Figure S3). The discharge duration did not play a significant role in the amount of oil recovered.

3.2.4. Influence of Recovery Action

Whether the recovery action did not significantly influence the mass balance of the oiled shoreline
(Table 3), as well as the oil trajectory (Figure S4), only about 34.4% of the spilled oil remained on the
water surface, if the recovery action removed 30.2% of the oil, and 33.5% ended up on the shoreline,
as shown in Figure 11d. When no recovery action was taken (0% of recovered oil), 55.6% of spilled oil
remained on the water surface, and 42.8% contaminated the shoreline.

Table 3. The p-values for the influence of studied factors on oil mass balances. Significant influence
(p-value < 0.05) is shown in bold.

Source Water Surface Shoreline Recovered

Start-releasing time 0.000 0.001 0.008
Wind 0.000 0.000 0.196

Discharge duration 0.000 0.000 0.760
Recovery action 0.003 0.179 0.000

4. Discussion

4.1. FVCOM Validation

In general, the simulated trajectory and velocities from the FVCOM were comparable with that
of SCT drifters in this study. However, it was relatively less capable of predicting SCT2 U-velocity,
as shown in Table 2. This is likely due to the following three reasons: (1) The SCT drifter used in
this study was a shallow water drifter that worked close to the water surface. This type of shallow
drifter was therefore susceptible to the surrounding windage, which could potentially cause higher
uncertainty on recorded data. This was supported by a similar statement that was proposed by
Halverson et al. [40] to explain the inconsistency of radial and observed velocities. (2) Relatively more
observed data of SCT2 velocity were missed, which resulted in a less thorough comparison of modeled
and observed data. (3) The difference between the model and the drifters may also be due to the winds
and waves, which are not included in FVCOM.

4.2. Hindcast of the MV Marathassa Oil Spill

4.2.1. Comparison of Oil Trajectory

The model simulations of oil trajectory were evaluated and compared with the observed oil
distributions, as shown previously in Section 1 (Table S1 and Figure 2). The oil distribution map
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indicated the observed oil trajectory on the water surface and the contamination on the shoreline in
the English Bay and Vancouver Harbour from 8 April 2015 to 10 April 2015 [8]. The contaminated
water surface area was labeled as 1–10, and the contaminated shoreline area was labeled as A–P.
The comparison of the results of modeled and observed for water surface and shoreline contamination
are listed in Tables S7 and S8, respectively. Four scenarios achieved the highest matches with the
observation data. The studied factors’ setting in these four scenarios was: (1) oil started to release at
14:00, discharged continuously (22 h), with wind and without recovery actions (labeled as Scenario
#4 in Table S5); (2) oil started to release at 14:00, discharged continuously (22 h), with wind and
recovery actions (labeled as Scenario #8 in Table S5); (3) Scenario #4, which started to discharge at
15:00; (4) Scenario #8, which started to discharge at 15:00.

As described in Sections 3.2.1 and 3.2.4, there was almost no difference between the oil trajectories
whether or not the recovery action was used, and the difference of trajectories was not significant when
oil started to discharge at 14:00 and 15:00. Therefore, as shown in Tables 4 and 5, those four scenarios
mentioned above have achieved 70% and 62.5% matches in the comparison of surface contamination
and shoreline contamination, respectively.

The oil trajectory in Scenario #4 that started at 14:00 is plotted in Figure 12. It can be seen that oil
was first transported east of the oil release point and then moved to the southwest in the next twelve
hours under the forcing of hydrodynamics and wind. Spilled oil was forced and moved into the First
Narrow and eventually entered into Vancouver Harbour, which resulted in heavy oil contamination
on the water surface and the shoreline around Vancouver Harbour and the First Narrow. There was no
oiled shoreline until 19:00 (9 April 2015) when the oil reached English Bay Beach, which conformed
well to the observed information [4,7]. The majority of shoreline contamination was on the west side of
Stanley Park, West Vancouver, and North Vancouver, which matched the observation data well [4,7].

Table 4. Examples of water surface contaminant comparison. The simulated results were compared
with observation data.

Start-Releasing Time Scenarios #
Labels of Surface Contaminant

Matches (%)
1 2 3 4 5 6 7 8 9 10

14:00
4

√
×

√ √
×

√ √ √ √
× 70

8
√

×
√ √

×
√ √ √ √

× 70

15:00
4 ×

√ √ √ √
×

√ √ √
× 70

8 ×
√ √ √ √

×
√ √ √

× 70

Scenario #4 represents oil discharged continuously (22 h), which then moves with the wind and without recovery
actions; Scenario #8 represents oil discharged continuously (22 h), which then moves with wind and recovery
actions. Detail factors’ setting in each scenario is shown in Table S5. “×” means the simulated results do not match
with the observed data; “

√
” indicates the simulated results match the observed data.

Table 5. Examples of shoreline contaminant comparison. The simulated results were compared with
observation data.

Time to Start Spill Scenarios #
Labels of Shoreline Contaminant

Matches (%)
A B C D E F G H I J K L M N O P

14:00
4 ×

√ √ √ √
×
√ √ √ √

×
√
×
√
× × 62.5

8 ×
√ √ √ √

×
√ √ √ √

×
√
×
√
× × 62.5

15:00
4 ×

√ √ √ √
×
√ √ √ √

×
√
×
√
× × 62.5

8 ×
√ √ √ √

×
√ √ √ √

×
√
×
√
× × 62.5

Scenario #4 represents oil discharged continuously (22 h), which then moves with the wind and without recovery
actions; Scenario #8 represents oil discharged continuously (22 h), which then moves with wind and recovery
actions. Detail factors’ setting in each scenario is shown in Table S5. “×” means the simulated results do not match
with the observed data; “

√
” indicates the simulated results match the observed data.
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4.2.2. Comparison of Mass Balance

The oil mass balance in the simulations of the above-mentioned four scenarios was compared
with that from the 2D, Automated Data Inquiry for Oil Spills (ADIOS, version 2.0) model (in CCG’s
report) [7]. In CCG’s report, the ADIOS2 model was employed to study the mass balance of spilled
IFO-380. Three metric tons (about 3067 L) of IFO-380 were assumed to be spilled at 4 Coordinated
Universal Time (UTC) on 9 April 2015 (18:00 Pacific time on 8 April 2015) and then tracked for five
days. A constant wind speed of 10 knots (about 5.14 m/s) was selected in CCG’s modeling [7].

The modeling results from the ADIOS2 model (Figure 13) indicated that approximately 11% and
2% of the oil was expected to evaporate and disperse, respectively after three days post spill. The other
87% of spilled oil was expected to remain on the water surface. This proportion of evaporation and
remaining oil was totally different from OSCAR’s modeling. In Scenario #4, as shown in Figures 14
and 15, around 1.4% of spilled oil was predicted to evaporate after three days of tracking. About 24.9%
and 43.1% of the spilled oil were expected to contaminate the shoreline in Scenario #4 that started
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at 14:00 and 15:00, respectively. There are a number of reasons that could contribute to the different
mass balance in the ADIOS2 and OSCAR models. The first main reason is that oil was trapped on
shorelines as observed by oil spill responders. This process was included in the OSCAR model because
it is a 3D fate/transport model that uses geographic and bathymetry data. By contrast, ADIOS2 is
a weathering only model, and it has a limitation in accurately representing the significant onshore
component. Another main difference is the evaporation, of which the rate is affected by wind, wave,
currents and temperature [7]. The wind and currents conditions are very different in this study and
CCG’s modeling.
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Figure 13. Automated Data Inquiry for Oil Spills (ADIOS, version 2.0) model’s predictions of
evaporated, dispersed and remaining (surface) Intermediate Fuel Oil 380 (IFO-380) oil after three
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Figure 14. OSCAR model’s predictions of evaporated, dispersed, remaining (surface contaminant)
and ashore (shoreline contaminant) IFO-380 oil after three days of tracking in Scenario #4 and started
at 14:00.
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Figure 15. OSCAR model’s predictions of evaporated, dispersed, remaining (surface contaminant)
and ashore (shoreline contaminant) IFO-380 oil after three days of tracking in Scenario #4 and started
at 15:00.

By comparison, a lesser proportion of the spilled oil remained on the water surface in Scenario #8
due to recovery actions. Nearly 61.8% (1730 L) and 65.5% (1834 L) of the spilled oil were recovered
when oil was discharged at 14:00 and 15:00, respectively. The modeled recovered oil was more than
the actual volume of spilled oil recovered, which was probably due to the lack of information reported
by the response vessels.

Overall, among the total number of forty studied scenarios, the results from four scenarios agree
well with observations. The results indicate that the M/V Marathassa oil spill was most likely started
between 14:00 and 15:00 on 8 April 2015. This spill was most likely a continuous slow release for an
unknown period (assumed to be 22 h in this study) instead of an instantaneous release.

5. Conclusions

The FVCOM implementation for English Bay and Vancouver Harbour was further validated in
this study by comparing the simulated trajectory and velocities with that of observed data from SCT
drifters (SCT1 and SCT2). This validated FVCOM was then used to generate the hydrodynamic forcing
in English Bay and Vancouver Harbour, which was input in the state-of-art OSCAR model to simulate
the M/V Marathassa oil spill.

The M/V Marathassa oil spill event was numerically simulated to assess the ability of the coupled
oil spill model. Forty scenarios were performed using the OSCAR model to study the effects of various
input parameters on the fate and transportation of spilled oil. The results were compared with the
available data of the M/V Marathassa oil spill. The trajectories from four scenarios match well with the
observed data. The assumed recovery actions were performed better in the scenario of oil discharged
continuously (22 h) with winds at 14:00 than that in the other simulations. The combined results of
trajectory and mass balance indicated that the M/V Marathassa oil spill probably started between 14:00
and 15:00 (8 April 2015) and kept discharging oil for a relatively long time (assumed to be 22 h in this
study). The weathering processes and movement of spilled oil and contamination distribution in the
surrounding waters and coastlines were affected by wind and currents.

In general, the oil spill model integrating the OSCAR and FVCOMs has effectively simulated
the offshore and onshore distributions of the M/V Marathassa oil spill. To our best knowledge, this is
the first study that modeled the oil spill in the English Bay and Vancouver Harbour by using the
OSCAR model.
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trajectories for spilled oil forced without wind (top) or with winds (bottom); Figure S3. Example of oil trajectories
for oil discharge instantly (top) or continuously (bottom); Figure S4. Example of oil trajectories for oil spill
without (top) or with (bottom) recovery actions; Table S1. Aerial overflight surveys for the MV Marathassa oil spill;
Table S2. Western Canada Marine Response Corporation’s (WCMRC) response to the spill; Table S2. The chemical
composition of IFO 380 in the OSCAR model; Table S4. Assumptions for mechanical response strategies (recovery
actions); Table S5. Factors’ setting in each simulation; Table S6. The influence of studied factors on the mass
balance of MV Marathassa spilled oil; Table S7. Water surface contaminant comparison. The simulated results
were compared with observation data; Table S8. Shoreline contaminant comparison. The simulated results were
compared with observation data.
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