Supplementary Materials:

Table S1. Aerial overflight surveys for the MV Marathassa oil spill.

Date	Time	Observations
8 April	$11: 00$	No pollution observed
	$12: 20$	2800 L oil on water in the English Bay; No shoreline impact
9 April	$18: 06$	667.7 L of oil on water in the English Bay
	$19: 00$	Shoreline contamination reported at the beach of the English Bay
	$09: 12$	40 L of oil on water in the English Bay
10 April	$14: 10$	5.9 L of oil on water; non-recoverable oil
	$10: 36$	A light sheen (about 0.3 L) of oil off the stern of the M/V Marathassa
12 April		

Table S2. Western Canada Marine Response Corporation's (WCMRC) response to the spill

\# of vessels	1	2		3
	Began collecting fuel oil	Began collecting fuel oil	Began collecting fuel oil	Began booming around
Strategies	and skimming at 21:25, on	and skimming at 22:15, on	and skimming at 23:30, on	MV Marathassa at 04:36-
	8 April 2015	8 April 2015	8 April 2015	05:25, on 9 April 2015

Table S3. The chemical composition of IFO 380 in the OSCAR model.

Substance Name	Fraction in IFO380 (\%)
C5-saturates (n-/iso-/cyclo)	0.0000
C6-saturates (n-/iso-/cyclo)	0.0000
	Benzene
C7-saturates (n-/iso-/cyclo)	0.0000
C1-Benzene (Toluene) et. B	0.0000
C8-saturates (n-/iso-/cyclo)	0.0000

C2-Benzene (xylenes; using O-xylene)
C9-saturates (n-/iso-/cyclo)
C3-Benzene
C10

Scenario \#	Spilled volume (L)	Wind	Duration (hours)	Response
1	2800	\times	2	\times
2	2800	\checkmark	2	\times
3	2800	\times	22	\times
4	2800	\checkmark	22	\times
5	2800	\times	2	\checkmark
6	2800	\checkmark	2	\checkmark
7	2800	\times	22	\checkmark
8	2800	\checkmark	22	\checkmark

Each scenario has 5 potential start-releasing time with 12:00, 13:00, 14:00, 15:00, and 16:00.
Table S6. The influence of studied factors on the mass balance of $M V$ Marathassa spilled oil.

Start-releasing time	Scenario \#	Mass Balance (\%)						
		Surface	Atmosphere	Water Column	Sediments	Ashore	Biodegraded	Recovered
12:00	1	15.1	1	0	0	83.6	0.3	0
	2	0	0.8	0	0	98.2	1	0
	3	92.4	1.2	0	0	6.3	0.1	0
	4	54.4	1.3	0.3	0	43.7	0.3	0
	5	11.2	2	0.2	0	78.3	0.3	8
	6	0	1.6	0.1	0.1	89.5	0.8	7.9
	7	88.4	1.5	0.1	0	5.9	0.1	4.1

13:00	8	17.3	0.7	0.2	0	23.4	0.2	55.1
	1	16.9	1	0	0	81.9	0.3	0
	2	4.8	1	0.2	0	93.3	0.7	0
	3	98.9	0.9	0	0	0	0.1	0
	4	49.8	1.3	0.3	0	48.4	0.3	0
	5	13	2	0	0	76.7	0.3	8
	6	0.9	1.9	0.6	0.1	87.9	0.6	7.9
	7	89.7	1.5	0.1	0	4.5	0.1	4.1
14:00	8	28.9	1	0.3	0	30	0.2	39.7
	1	52.5	1	0	0	46.3	0.2	0
	2	7.4	1.3	0.6	0	90.2	0.4	0
	3	95.9	1.2	0	0	2.8	0.1	0
	4	24.9	1.4	0.4	0	72.9	0.4	0
	5	9.6	0.7	0.7	0	9.2	0.1	79.7
	6	1.1	0.8	1.2	0	17.4	0.1	79.3
	7	28.2	0.7	0	0	1	0	70.1
	8	13.4	0.7	0.2	0	23.7	0.1	61.8
15:00	1	91.3	1	0	0	7.5	0.2	0
	2	25.9	1.5	0.8	0	71.6	0.2	0
	3	97.5	1.2	0	0	1.2	0.1	0
	4	43.1	1.4	0.5	0	54.6	0.4	0
	5	60.3	1	0.2	0	1.8	0.1	36.6
	6	16.3	1.3	0.9	0	40.3	0.2	40.9
	7	93	1.5	0.1	0	1.8	0.1	3.5
	8	10.1	0.7	0.2	0	23.3	0.1	65.5
16:00	1	98.7	1.1	0	0	0.1	0.1	0
	2	45.7	1.6	1.4	0	51	0.2	0

3	97.3	1.2	0	0	1.5	0.1	0
4	99.2	0.7	0	0	0	0	0
5	89.4	2.1	0.2	0	0.2	0.1	8
6	31.2	2	1.5	0.1	56.9	0.2	8
7	93.6	1.5	0.1	0	1.4	0.1	3.3
8	8.8	0.7	0.3	0	22.1	0.1	68.1

Detail factors in each scenario was showed in Table S5.

Figure S1. Example of oil trajectories for oil spill with different oil start-releasing time.
Figures from top to bottom are oil start release oil at (a) 12:00, (b) 13:00, (c) 14:00, (d) 15:00, and (e) 16:00.

Figure S2. Example of oil trajectories for spilled oil forced without wind (top) or with wind (bottom).

Figure S3. Example of oil trajectories for oil discharge instantly (top) or continuously (bottom).

Figure S4. Example of oil trajectories for oil spill without (top) or taken (bottom) recovery actions.
Table S7. Water surface contaminant comparison. The simulated results were compared with observation data.

	7	\times	$\sqrt{ }$	$\sqrt{ }$	\times	20						
	8	$\sqrt{ }$	\times	$\sqrt{ }$	$\sqrt{ }$	\times	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\times	70
	1	\times	0									
	2	\times	$\sqrt{ }$	$\sqrt{ }$	\times	20						
	3	\times	$\sqrt{ }$	\times	10							
	4	\times	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\times	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\times	70
15:00	5	\times	0									
	6	\checkmark	\times	\times	\times	\times	\times	\times	$\sqrt{ }$	$\sqrt{ }$	\times	30
	7	\times	$\sqrt{ }$	$\sqrt{ }$	\times	20						
	8	\times	$\sqrt{ }$	\checkmark	\checkmark	$\sqrt{ }$	\times	$\sqrt{ }$	\checkmark	\checkmark	\times	70
	1	\times	0									
	2	\times	$\sqrt{ }$	\times	10							
	3	\times	\checkmark	\times	10							
	4	\times	\times	\checkmark	\checkmark	\times	\checkmark	\checkmark	$\sqrt{ }$	$\sqrt{ }$	\times	60
16:00	5	\times	0									
	6	\times	$\sqrt{ }$	\times	10							
	7	\times	$\sqrt{ }$	\times	10							
	8	\times	\times	$\sqrt{ }$	$\sqrt{ }$	\times	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\checkmark	\times	60

Detail factors in each scenario was showed in Table S5. " x " represents the simulated results does not match with the observed data; " $\sqrt{ }$ " indicates the simulated results matches the observed data.

Table S8. Shoreline contaminant comparison. The simulated results were compared with observation data.

Time to start spill	Scenarios \#	Labels of shoreline contaminant																Matches (\%)
		A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	
12:00	1	\checkmark	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\times	\checkmark	$\sqrt{ }$	$\sqrt{ }$	\checkmark	\times	\checkmark	\times	\times	\checkmark	\times	68.75
	2	\times	\times	\times	\times	\times	\times	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\times	\times	\checkmark	$\sqrt{ }$	\times	$\sqrt{ }$	\times	37.5

16:00	4	\times	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\times	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\times	$\sqrt{ }$	\times	$\sqrt{ }$	\times	\times	62.5
	5	\times	\checkmark	\times	\checkmark	\checkmark	\times	\checkmark	$\sqrt{ }$	\checkmark	\checkmark	\times	\checkmark	\times	\times	\checkmark	\times	56.25
	6	\times	\checkmark	\times	$\sqrt{ }$	\times	$\sqrt{ }$	$\sqrt{ }$	\times	$\sqrt{ }$	\times	68.75						
	7	\times	\checkmark	\times	\checkmark	$\sqrt{ }$	\times	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\times	$\sqrt{ }$	$\sqrt{ }$	\times	$\sqrt{ }$	\times	62.5
	8	\times	\checkmark	$\sqrt{ }$	\checkmark	$\sqrt{ }$	\times	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\times	$\sqrt{ }$	\times	$\sqrt{ }$	\times	\times	62.5
	1	\times	\times	\times	\times	$\sqrt{ }$	\times	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\times	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\times	$\sqrt{ }$	\times	50
	2	\times	\checkmark	\times	\checkmark	$\sqrt{ }$	\times	\times	$\sqrt{ }$	$\sqrt{ }$	\times	$\sqrt{ }$	\times	37.5				
	3	\times	\times	\times	\times	\times	\times	$\sqrt{ }$	\checkmark	$\sqrt{ }$	\times	$\sqrt{ }$	\checkmark	$\sqrt{ }$	\times	\checkmark	\times	56.25
	4	\times	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\times	$\sqrt{ }$	\times	$\sqrt{ }$	\times	\times	68.75					
	5	\times	\times	\times	\times	$\sqrt{ }$	\times	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\times	$\sqrt{ }$	$\sqrt{ }$	\times	$\sqrt{ }$	\times	50
	6	\times	\checkmark	\times	\checkmark	\checkmark	\times	\checkmark	\checkmark	$\sqrt{ }$	\times	\times	\checkmark	$\sqrt{ }$	\times	\checkmark	\times	56.25
	7	\times	\times	\times	\times	$\sqrt{ }$	\times	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\times	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\times	$\sqrt{ }$	\times	50
	8	\times	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\times	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\times	\checkmark	\times	\checkmark	\times	\times	62.5

Detail factors in each scenario was showed in Table S5. " x " represents the simulated results does not match with the observed data; " $\sqrt{ }$ " indicates the simulated results matches the observed data.

