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Abstract: The results of large-scale ocean dynamics simulation taking into account the
parameterization of vertical turbulent exchange are considered. Numerical experiments were carried
out using k−ω turbulence model embedded to the Institute of Numerical Mathematics Ocean general
circulation Model (INMOM). Both the circulation and turbulence models are solved using the splitting
method with respect to physical processes. We split k−ω equations into the two stages describing
transport-diffusion and generation-dissipation processes. At the generation-dissipation stage,
the equation for ω does not depend on k. It allows us to solve both turbulence equations analytically
that ensure high computational efficiency. The coupled model is used to simulate the hydrophysical
fields of the North Atlantic and Arctic Oceans for 1948–2009. The model has a horizontal resolution
of 0.25◦ and 40 σ-levels along the vertical. The numerical results show the model’s satisfactory
performance in simulating large-scale ocean circulation and upper layer dynamics. The sensitivity
of the solution to the change in the coefficients entering into the analytical solution of the k − ω

model which describe the influence of some physical factors is studied. These factors are the climatic
annual mean buoyancy frequency (AMBF) and Prandtl number as a function of the Richardson
number. The experiments demonstrate that taking into account the AMBF improves the reproduction
of large-scale ocean characteristics. Prandtl number variations improve the upper mixed layer
depth simulation.

Keywords: ocean circulation; numerical modelling; turbulence parameterization

PACS: 92.10.ab; 02.60.Cb; 92.10.Lq; 02.70.Bf

1. Introduction

The simulation of momentum, heat and salt vertical turbulent exchange is very important for
ocean general circulation models (OGCMs). In OGCMs, vertical mixing is parameterized using a
second-order differential operator with variable exchange coefficients KU , KT and KS [1–5]. The two
basic approaches are used to determine these coefficients: (1) they are defined as functions of
stratification and velocity shift or the local Richardson number [1,6–8]; (2) they can be found using
additional turbulence models [3,9–15]. The first approach is more simple and efficient from the
computational point of view. This approach is traditionally used in numerical simulation of large-scale
ocean circulation [6]. The second one gives better results from the physical point of view [15], however,
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the computation cost increases. Therefore, when using the second approach, special attention should
be paid to the construction of an effective numerical technique for solving turbulence equations.

To simulate large-scale ocean circulation we use the traditional Reynolds averaged equations
with parameterized vertical turbulent fluxes u′w′, v′w′, T′w′, S′w′, where u′, v′, w′, T′ and S′ are
turbulent disturbances for the velocity components, temperature and salinity. With the framework
of K-hypothesis, the turbulent fluxes are related to the local gradients of the corresponding mean
quantities by eddy viscosities and diffusivities. With this parameterization, the turbulent coefficients
depend on the both turbulence characteristics and the stability functions, which are also derived from
the equations for turbulent fluxes [15–18].

The turbulence models used for parameterization of turbulent viscosity and diffusivity in OGCMs
are based on the equations for the turbulent kinetic energy (TKE) and the characteristic needed for
closure of the system. Such characteristics may be following ones: ε is specific dissipation rate of
TKE by the water viscosity; ω is frequency characteristic of the turbulence decay process [19] or,
briefly, the turbulent dissipation frequency (TDF); and l is turbulence spatial scale. The corresponding
two-equation turbulence models or closure schemes are referred to as k− ε, k−ω and k− kl. In respect
to formulation, they are similar and can be combined as a “generalized scale method” [15,20].
The characteristics ε, ω and l are connected by algebraic relations, including the TKE k and the

stability function for neutral stratification c0
S: ε = (c0

S)
3 k3/2

l
, ω =

ε

(c0
S)

4k
, l =

k3/2

c0
Sω

[17,19]. The k− kl

Mellor-Yamada level 2.5 model (MY) [13,21,22] and its modifications [16,23] are most used for
parameterization of turbulent viscosity and diffusivity in OGCMs [13,15]. Usage of the k− ε and k−ω

models for the parameterization of KU , KT and KS in OGCMs has some specific features [9,24].
The new closure for definition of KU , KT and KS on the basis of Reynolds stress equations

is proposed in [25]. The coefficients are defined for developed turbulence, low turbulence in the
pycnocline, and in the bottom turbulence zone. In this parameterization [25], the two-equation
turbulence model k− ε is used to compute dissipation in the developed turbulence zone as well.

In our research, we couple an OGCM with the k − ω turbulence model [9,11]. Our choice
is mainly justified by the mathematical advantage of the latter. Novelty consists in applying
the splitting technique for solving the k − ω equations [5,26]. We split k − ω equations into
the two main stages describing transport-diffusion and generation-dissipation processes. At the
generation-dissipation stage, the equation for ω does not depend on k. It allows us to solve (at this
stage) the k−ω equations analytically that ensures high computational efficiency.

The splitting algorithms with respect to physical processes and spatial coordinates are applied
in the both turbulence model and INMOM. It allowed to make the approach to the mixing
parameterization with using the k−ω model more convenient. The aims of the paper are as follows:

1. to present a new splitting algorithm for solving k−ω turbulence equations that allows to reduce
the complete system to the stages of transport-diffusion and generation-dissipation;

2. to find an analytical solution of k−ω equations at the generation-dissipation splitting stage that
is impossible for k− kl and k− ε closures;

3. to demonstrate possibilities of controlling the obtained analytical solution of k− ω equations
through its coefficients by means of different physical factors. We take into account such physical
factors as climatic annual mean buoyancy frequency (AMBF) and Prandtl number as function of
the Richardson number to goal this aim;

4. to compare results of numerical experiments with the INMOM + (k − ω) to data on the
hydrographic structure of the North Atlantic and Arctic Ocean to demonstrate physical effects of
the accounting AMBF and variations of the Prandtl number.
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2. Model and Methods

2.1. Equations of the Ocean General Circulation Model

The INMOM is based on a primitive equation system written in a generalized orthogonal
coordinates on sphere under incompressibility, hydrostatics, and Boussinesq approximations [5,27].
The vertical coordinate is dimensionless variable σ ∈ [0, 1]:

σ =
z− ζ

H − ζ
, (1)

where z is the usual vertical coordinate directed downward, H is the ocean depth, and ζ is the sea
surface height, which is positive when under the undisturbed surface. Model equations written in
symmetrized form are [5]:

Dtu− Zσ ( f + η) v = − Zσ

ρ0rx

[
∂

∂x

(
p− g

2
Zρ
)
− g

2

(
ρ

∂Z
∂x
− Z

∂ρ

∂x

)]
+

1
Zσ

∂

∂σ
KU

∂u
∂σ

+ Duu, (2)

Dtv + Zσ ( f + η) u = − Zσ

ρ0ry

[
∂

∂y

(
p− g

2
Zρ
)
− g

2

(
ρ

∂Z
∂y
− Z

∂ρ

∂y

)]
+

1
Zσ

∂

∂σ
KU

∂v
∂σ

+ Dvv, (3)

∂

∂σ

(
p− g

2
Zρ
)
=

g
2

(
ρ

∂Z
∂σ
− Z

∂ρ

∂σ

)
, (4)

− ∂ζ

∂t
+

1
rxry

[
∂

∂x
(
Zσryu

)
+

∂

∂y
(Zσrxv)

]
+

∂wσ

∂σ
= 0, (5)

DtT =
1

Zσ

∂

∂σ
KT

∂T
∂σ

+ DTT − ∂R
∂σ

, (6)

DtS =
1

Zσ

∂

∂σ
KS

∂S
∂σ

+ DSS, (7)

ρ = ρ (T, S, p̂) ≡ ρ̃ (T + T̄, S + S̄, p̂)− ρ̃ (T̄, S̄, p̂) . (8)

Here, x and y are generalized orthogonal coordinates in horizontal subspace; rx and ry are metric
coefficients, in spherical coordinates computes as: rx = RE cos y, ry = RE, RE is the Earth radius;

Z = (H − ζ)σ + ζ, Zσ = H − ζ, Zx ≡
∂Z
∂x

, Zy ≡
∂Z
∂y

:

f = 2Ω̃ sin ϕ, η =
1

rxry

(
∂ry

∂x
v− ∂rx

∂y
u
)

, (9)

l is the Coriolis parameter, ϕ is geographical latitude and Ω̃ is the Earth angular velocity. Dt is the
transport operator written in symmetrized form:

Dtψ ≡ Dt (~u)ψ =
1
2

(
Zσ

∂ψ

∂t
+

∂Zσψ

∂t

)
+

1
2rxry

[
∂

∂x
(
Zσryuψ

)
+ Zσryu

∂ψ

∂x

+
∂

∂y
(Zσrxvψ) + Zσrxv

∂ψ

∂y

]
+

1
2

[
∂

∂σ
(wσψ) + wσ

∂ψ

∂σ

]
,

(10)

where ψ is transported variable, ~u = (u, v, wσ) is the velocity vector in the σ-coordinate system; wσ is
the vertical velocity in the σ-coordinate system defined as

wσ = w−
[
(1− σ)

∂ζ

∂t
+

u
rx

∂Z
∂x

+
v
ry

∂Z
∂y

]
, (11)
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T and S are deviations of potential temperature and salinity from their means T̄, S̄; p̂ = ρ0gZ is an
approximate function of hydrostatic pressure; R is the penetrative solar radiation flux; ρ is the density
computed according to [28]; and KU , KT and KS are the coefficients of vertical turbulent viscosity
and diffusivity.

The operators DT , DS describing lateral mixing of heat and salt along isopycnal surfaces are
DT = DS ≡ Dφ:

Dψψ =
1

rxry

∂

∂x

[
µZσ

ry

rx

(
∂ψ

∂x
− ρx

ρσ

∂ψ

∂σ

)]
− 1

rxry

∂

∂σ

[
µZσ

ry

rx

ρx

ρσ

(
∂ψ

∂x
− ρx

ρσ

∂ψ

∂σ

)]
+

1
rxry

∂

∂y

[
µZσ

rx

ry

(
∂ψ

∂y
−

ρy

ρσ

∂ψ

∂σ

)]
− 1

rxry

∂

∂σ

[
µZσ

rx

ry

ρy

ρσ

(
∂ψ

∂y
−

ρy

ρσ

∂ψ

∂σ

)]
,

(12)

where ψ is diffused variable, µ is lateral diffusion coefficient, ρx ≡
∂ρpot

∂x
, ρy ≡

∂ρpot

∂y
, ρσ ≡

∂ρpot

∂σ
.

Turbulent viscosity operators Du, Dv are a combination of laplacian and biharmonic operators in plain
form performing mixing along σ-surfaces [5].

Model includes interactive module which describes sea ice dynamics and thermodynamics [29].

2.2. The Two-Equation K-Omega Turbulence Model

The OGCM was subsequently coupled with the two-equation k−ω turbulence model. This model
involves the solution of evolutionary equations for the turbulent kinetic energy k (TKE) and the
turbulence dissipation frequency ω (TDF) [15,19]. The coefficients of turbulent viscosity KU and
turbulent diffusivities for heat KT and salt KS are given as functions of TKE and TDF:

KU =
CU

S
c0

S

k
ω

. (13)

Here CU
S is the dimensionless stability function, c0

S = 0.5562 is its value for neutral
stratification [15]; k = 0.5(u′u′ + v′v′ + w′w′) is TKE, the bar above denotes averaging over the
ensemble (or time), and the values with strokes are turbulent pulsations relative to the mean flow

~u = (u, v, w); ω =
ε

(c0
S)

4k
is TDF, ε is rate of TKE transformation to internal thermal energy of water

due to dissipation.

For the temperature turbulent diffusivity, KT =
CT

S
c0

S

k
ω

. Suppose that CU
S = c0

S and CT
S =

CU
S

Pr
in the elementary σ-layer, where Pr is Prandtl number (see, e.g., equations (2.73)–(2.74) from [30]).
As well, suppose that KS = KT for fully developed turbulent flows. As a result, we use the following

dependencies: KS = KT =
KU
Pr

.
The standard two-equation k−ω turbulence model is [15,19]:

Dtk =
1

Zσ

∂

∂σ

(
KU
σk

∂k
∂σ

)
+ Dkk + Zσ

(
KUG2 − KρN2 − (c0

S)
4ωk

)
, (14)

Dtω =
1

Zσ

∂

∂σ

(
KU
σω

∂ω

∂σ

)
+ Dωω + Zσ

ω

k

(
cω

1 KUG2 − cω
3 KρN2 − cω

2 (c
0
S)

4kω
)

. (15)

Here G2 =

(
1

Zσ

∂u
∂σ

)2
+

(
1

Zσ

∂v
∂σ

)2
and N2 =

g
ρ0

1
Zσ

∂ρ

∂σ
are the velocity shift and buoyancy

frequency in the second degree (N2 > 0 corresponds to stable stratification), Dk and Dω are mixing
operators computed by the Equation (12).
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Note: relations (14)–(15) are used only in layers where the developed turbulence presents and
k > 0.03 cm2/s2 [30]. Otherwise, small background values of exchange coefficients (intermittent
turbulence) KUmin = 1.0 and KTmin = 0.05 cm2/s are used.

2.3. Boundary and Initial Conditions

Boundary conditions for (2)–(8), (14) and (15) are as follows. At the sea free surface σ = 0:

−KU
Zσ

∂u
∂σ

=
τax

ρ0
, −KU

Zσ

∂v
∂σ

=
τay

ρ0
, wσ = 0,

−KT
Zσ

∂T
∂σ

+ αT (T − Tobs) = qT ,

−KS
Zσ

∂S
∂σ

+ αS (S− Sobs) = qS,

− KU
Zσσk

∂k
∂σ

= Cg

(
uS
∗

)3
, − KU

Zσσω

∂ω

∂σ
= 0,

(16)

where τax, τay are the wind stress components, αT , αS are the relaxation coefficients, qT and qS are

the total heat and salt fluxes, Cg is wind generation parameter [13,31,32], uS
∗ =


√

τ2
ax + τ2

ay

ρ0

1/2

is

friction velocity in the upper ocean layer.
At the sea bottom σ = 1:

KU
Zσ

∂u
∂σ

=
τbx
ρ0

,
KU
Zσ

∂v
∂σ

=
τby

ρ0
, wσ = 0,

KT
Zσ

∂T
∂σ

= 0,
KS
Zσ

∂S
∂σ

= 0,

KU
Zσσk

∂k
∂σ

= Cg

(
uB
∗

)3
,

KU
Zσσω

∂ω

∂σ
= 0,

(17)

where τbx = −ρ0CD

√
u2 + v2 + e2

bu and τby = −ρ0CD

√
u2 + v2 + e2

bv are bottom stress components,

CD = 2.5× 10−3, eb = 5 cm/s are empirical constants, uB
∗ =


√

τ2
bx + τ2

by

ρ0

1/2

is friction velocity in

the bottom ocean layer.
Thus, at the top and bottom surfaces we apply the corresponding boundary conditions for

momentum, heat and salt fluxes, turbulent kinetic energy, and dissipation frequency [7,9]. At the
lateral boundary, normal velocity, normal derivative of tangent velocity, heat, salt, turbulent kinetic
energy and dissipation frequency fluxes are assumed to be equal to zero. The corresponding initial
conditions for u, v, ζ, T, S, k and ω are specified at t = 0.

2.4. Numerical Algorithm

The numerical solution of the OGCM + k−ω model is based on the splitting method applying
for evolutionary equations [33]. We formulate the system of governing equations in evolutionary
form and represent the operator of the differential problem as a sum of more simple nonnegative
suboperators. Just for this purpose it is convenient to use σ-coordinate system [5,27]. It allows us (1) to
transform 3D computational domain to 3D volume with unity depth; (2) to exclude time derivative

from boundary condition at the sea surface (w =
dζ

dt
for z-coordinates); (3) to represent transport

operator in convenient nonnegative form acting on D(x, y)× [0, 1]; (4) rewrite, finally, both OGCM
and turbulence model operators in evolutionary form. The key points of the approach proposed are
as follows. When using the splitting method the form of a differential problem is of great importance.
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The most convenient form of equations is their symmetrized form. By the symmetrized form we mean
the form of equations, which satisfies the conditions:

• The symmetrized form gives the form of the adjoint operator, which is close to the original one.
• This form leads to the finite difference approximation retaining the main properties typical of

original differential operators (symmetry, skew-symmetry, nonnegativeness).
• From the form naturally follows the splitting of the problem operator into the sum of simple

nonnegative operators.

Formulation Equations (2)–(8), (14) and (15) in symmetrized form makes it possible to use
the splitting algorithm with respect physical processes and spatial coordinates x, y and σ [27,33].
The equations for u, v, T, S, ζ at each time interval tj < t < tj+1 are split with respect to physical
processes into two macro-stages: transport-diffusion of u, v, T, S:

Dtu− Zσηv =
1

Zσ

∂

∂σ
KU

∂u
∂σ

+ Duu, (18)

Dtv + Zσηu =
1

Zσ

∂

∂σ
KU

∂v
∂σ

+ Dvv, (19)

DtT =
1

Zσ

∂

∂σ
KT

∂T
∂σ

+ DTT − ∂R
∂σ

, (20)

DtS =
1

Zσ

∂

∂σ
KS

∂S
∂σ

+ DSS, (21)

and the adaptation of velocity and density fields:

∂u
∂t
− f v = − 1

ρ0rx

[
∂

∂x

(
p− g

2
Zρ
)
− g

2

(
ρ

∂Z
∂x
− Z

∂ρ

∂x

)]
, (22)

∂v
∂t

+ f u = − 1
ρ0ry

[
∂

∂y

(
p− g

2
Zρ
)
− g

2

(
ρ

∂Z
∂y
− Z

∂ρ

∂y

)]
, (23)

∂

∂σ

(
p− g

2
Zρ
)
=

g
2

(
ρ

∂Z
∂σ
− Z

∂ρ

∂σ

)
, (24)

− ∂ζ

∂t
+

1
rxry

[
∂

∂x
(
Zσryu

)
+

∂

∂y
(Zσrxv)

]
+

∂wσ

∂σ
= 0, (25)

If needed, within the transport-diffusion macro-stage the equations can be secondary split with
respect to separate coordinates x, y and σ. At the adaptation macro-stage, a representation

u = ū + u′, v = v̄ + v′, ū =

1∫
0

udσ, v̄ =

1∫
0

vdσ (26)

is used and implicit time scheme for the treatment of the depth averaged velocities and sea
surface height ζ (linear shallow water equations) is applied. With respect to spatial coordinates,
staggered grid [34], known in meteorology as “C”-grid [35], is used. Note, that the numerical algorithm
for the solution of (2)–(8) is described in more detail in [5,27].

To solve (14) and (15) on the time interval tj < t < tj+1 we assume that three velocity components
in the left-hand side of (14) and (15) are known. Splitting of turbulence Equations (14) and (15)
is performed in terms of physical processes into two stages. At the first splitting stage we solve
three-dimensional transport-diffusion equations:

Dtk =
1

Zσ

∂

∂σ

(
KU
σk

∂k
∂σ

)
+ Dkk, (27)
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Dtω =
1

Zσ

∂

∂σ

(
KU
σω

∂ω

∂σ

)
+ Dωω, (28)

with initial conditions k = kj, ω = ω j at t = tj. Note that within the transport-diffusion stage the
equations can be secondary split with respect to separate coordinates x, y and σ [5,26,33]. As a result
we have kj+1 ≡ k(tj+1), ω j+1 ≡ ω(tj+1).

At the second splitting stage, on the same time interval tj < t < tj+1, we solve equations
describing the generation-dissipation process [9–11]:

∂ω

∂t
= B− Cω2, (29)

∂k
∂t

=

(
A
ω
− Dω

)
k. (30)

with initial conditions equal to the solution of the first splitting stage: k = kj+1, ω = ω j+1 at t = tj.
Here we can write separately the coefficients A, B, C and D for (29) and (30), using both the

stability function for diffusivity Cρ
S = CT

S , and the Prandtl number Pr:

A =
1
c0

S

(
CU

S G2 − Cρ
SN2

)
=

CU
S

c0
S

(
G2 − 1

Pr
N2
)

, (31)

B =
1
c0

S

(
cω

1 CU
S G2 − cω

3 Cρ
SN2

)
=

CU
S

c0
S

(
cω

1 G2 −
cω

3
Pr

N2
)

, (32)

C = cω
2

(
c0

S

)4
, D =

(
c0

S

)4
. (33)

Note that B > 0, C > 0 and D > 0 while A can change the sign. On the interval tj < t < tj+1

during the calculating k and ω, variables N2 and G2 do not vary with respect to time.
As an example, we choose the coefficients A and B as functions of the Prandtl number. The latter

is a function of N2 and G2 (see further) rather than a function of time at the interval tj < t < tj+1.
Stability function for momentum is chosen as a constant CU

S = c0
S (see, e.g., Equation (2.73)

from [30]). In this case, the system (29) and (30) has a clear analytical solution at the time step
of the circulation model. The analytical solution is available for k − ω model because at the
generation-dissipation stage equation for ω does not depend upon k. The analytical solution of
(29) and (30) has the form:

ω = −rd(rm + rpar)/(rm − rpar),

k = k0
(

E1

E2

) A
2B
(

E3

E4

) D
2C

,
(34)

where
rd =

√
B/C, rm = ω0 − rd,

rp = ω0 + rd, ar = exp
(

2
√

BC · t
)

,

E1 = (rm + rpar)
2, E2 = 4(ω0)2ar,

E3 = 4r2
dar, E4 = (rm − rpar)

2.

We refer to the algorithm using the analytic solution (34) as the “splitting turbulence
algorithm” (STA).

It follows from (34) that ω →
√

B/C for t→ ∞ [9]. The expression ω =
√

B/C is the asymptotic
of the solution (34). Using it, we can also find the asymptotic behavior of the TKE. Then the asymptotic
solution of (29) and (30) has the form:

ω =
√

B/C, k = k0 exp (γt) , (35)
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where γ =
A
ω
− Dω =

AC− BD√
BC

.

3. Scenarios of Numerical Experiments

A set of experiments EX1–EX4 is performed as summarized in Table 1. The model equations
are written in a spherical coordinate system. The poles are located on the geographical equator at
120◦ W and 60◦ E. The simulation domain includes the Atlantic Ocean north of 30◦ S, Arctic Ocean
and Bering Sea. Open boundaries of the area pass through 30◦ S and the straits of the Aleutian Islands.
As well, the domain includes the Mediterranean, Black and Baltic Seas. The grid spacing in latitude
and longitude is 0.25◦. 40 σ-levels are set along the vertical with refinement near the ocean surface.
The bottom topography is taken from [36]. The data were smoothed in accordance with the horizontal
resolution of the model so that there are no strong bottom gradients. The model is forced at the sea
surface with the CORE historical atmospheric datasets for the period 1948–2009 [37].

Table 1. Model parameters corresponding to the numerical experiments EX1–EX4

Experiments Prandtl Number Computation of k and ω Accounting AMBF Viscosity and Diffusivity

EX1
Pr =


1, Ri ≤ 0.2
5Ri, 0.2 < Ri < 2
10, Ri ≥ 2

, A = G2 − N2,
B = cω

1 G2 − cω
3 N2

αM = 1,
αCl = 0

KU =
k
ω

,

KT = KS =
KU
PrRi =

N2

G2

EX2 Pr =


1, Ri ≤ 0.2
5Ri, 0.2 < Ri < 2
10, Ri ≥ 2

A = G2 − N2
s ,

B = cω
1 G2 − cω

3 N2
s ,

N2
s = αM N2

M + αCl N2
Cl

αM = 0.1,
αCl = 0.9

KU =
k
ω

,

KT = KS =
KU
Pr

EX3
Pr =


Pr0, Ri ≤ 0.2
aPRi2 + bPRi+
+cP, 0.2 < Ri < 2
10, Ri ≥ 2

A = G2 − 1
Pr

N2,

B = cω
1 G2 −

cω
3

Pr
N2

αM = 1,
αCl = 0

KU =
k
ω

,

KT = KS =
KU
PraP = 1.3227, bP = 2.2487,

cP = 0.2116, Pr0 = 0.7143

EX4 No No No

KU =
K0

(1 + 5Ri)2 + Kb,

KT = KS =

=
KU

1 + 5Ri
+ KTb,

K0 = 100 cm2/s,
Kb = 1 cm2/s,
KTb = 0.05 cm2/s

The initial conditions are climatic average January temperature and salinity fields taken from [38],
no motion, and no sea ice. All the experiments were performed for the period 1948–2009. The OGCM
equations are solved with a time step τocm = 1 h. At the transport-diffusion splitting stage the
k−ω equations are solved with the same time step τocm = 1 h. At the generation-dissipation stage,
in experiments EX1–EX3, an analytical solution is used with time step τT = 5 min for secondary
splitting with using fractional step method. Note that coefficients A and B in the analytical solution
depend on Prandtl number and AMBF.

Basic experiment EX1. In the EX1, in coefficients A and B we put Pr = 1, and for turbulent
exchange coefficients, Pr is calculated according to [39] in the form:

Pr =


1, Ri ≤ 0.2
5Ri, 0.2 < Ri < 2
10, Ri ≥ 2

. (36)

Here, the functions N2, G2, Ri =
N2

G2 , Pr are constant at the interval tj < t < tj+1.

The parameterization (36) proposed in [39] is currently used to define turbulent diffusivity in the
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OGCM (see, e.g., [23]). As well, the articles appeared where Pr is computed as a function of buoyancy
frequency and turbulent characteristics [12,13,22].

Experiments EX2. The climatic annual mean buoyancy frequency NCl (AMBF) is used in
coefficients A and B for the EX2. AMBF is reliably defined by the World Ocean Atlas data using
the climatic annual mean potential density for the whole period of observations: ρCl = ρ(TCl , SCl) [40],
where TCl is the potential temperature [41] and SCl is the salinity [42]. The simple argument is used
in the favour of taking AMBF into account. Annual mean vertical density gradients are lower than
instantaneous ones in the warm season and are higher in the cold season. This favors to the mixing
balance in the ocean within the annual cycle. In coefficients A and B, instead of N2, we used:

N2
S = αM

1
Zσ

g
ρ0

∂ρM
∂σ

+ αCl N2
Cl , (37)

where N2
Cl =

g
ρ0

1
Zσ

∂ρCl
∂σ

, ρM is the potential density calculated in the OGCM at the time tj+1, and αM

and αCl are the weights of the contributions of the OGCM buoyancy frequency in the second degree
and the AMBF in the second degree to the total N2

S , αM + αCl = 1. In the first experiment with αCl = 0.1,
the stability of the model solution to the accounting of the AMBF was verified. Further, EX2 results are
demonstrated and analyzed for αCl = 0.9, which allowed us to obtain the most adequate results.

Experiment EX3. The aim of the EX3 is to study the sensitivity of the model solution to the
Prandtl number variation. For neutral or unstable density stratification, we use either Pr0 = 0.7143 [43]
or Pr0 = 1.0 [39]. For stable stratification, the Prandtl number is usually given as a function
of the Richardson number Ri [39,43]. It is assumed that the Prandtl number depends on the
Richardson number:

Pr =


Pr0, Ri ≤ 0.2
aPRi2 + bPRi + cP, 0.2 < Ri < 2
10, Ri ≥ 2

, (38)

where aP, bP and cP are constant. The two variants were considered:

1. aP = 0.6790, bP = 3.5062, cP = 0.2716 and Pr0 = 1;
2. aP = 1.3227, bP = 2.2487, cP = 0.2116 and Pr0 = 0.7143.

Both variants are chosen to reduce Pr relative to (36). We do it to increase mixing in the tropical
regions with respect to the EX1 results. The experiments showed that both variants yield close results.
Further, we show the results of the second variant only.

Experiment EX4. In the EX4, the vertical coefficients of turbulent viscosity and diffusivity were
calculated as functions of Richardson number according to [8] (see the Table 1).

4. Discussion

The experiments showed that computational time of the INMOM with the STA did not noticeably
differ from the one in the EX4. It demonstrates the computational efficiency of the proposed STA with
analytical solution. At the same time, the quality of reproducing ocean characteristics with using the
STA is noticeably higher than in the EX4.

Based on the results of the numerical simulations, consider the two main questions concerned
with (a) model adequacy with using the STA and (b) sensitivity of simulated characteristics to the
change of turbulent mixing parameterization EX1–EX4. Analysis of temperature T(t) and salinity
S(t) time series for EX1–EX4 from Equator to Arctic does not show any significant trends after the
period of 15 years, when the model solution becomes quasi-stationary in the layer 0–500 m. Therefore,
we consider just the period after stabilization of solutions when comparing the experimental results
with the observations.
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4.1. Comparison to the Generalized Observational Data

We use the data of the World Ocean Atlas for temperature TCl [41] and salinity SCl [42].
Consider the spatial distribution of the model T and S deviation from climatic data TCl and SCl
and quality of reproducing vertical structure of the ocean upper layer.

Deviation of simulated temperature and salinity from the climatic data in the ocean upper
layer. Denote the differences “model minus climate” for T and S as dT and dS respectively for the
period 1963–2009. dT are in the range ±(0.2− 0.7) ◦C in the predominant part of the domain for the
EX1, EX2 and EX3 in 0–30 m layer (Figure 1). Temperature in the EX1 is more than a one degree lower
than the climatic data in the Equatorial currents, Sargasso and Norwegian seas. Using the AMBF in
the EX2 significantly reduces dT in comparison to the EX1 (see Figure 1a,b). Negative dT of more
than 2 ◦C disappear in the EX2 on the Equator and in the Tropics. Square of negative deviations more
than 1 ◦C are halved. As well, negative dT decrease significantly in the Caribbean sea and African
upwelling area. There is a significant decrease in positive dT in the Gulf Stream, the North Atlantic
and Labrador currents. Negative dT in the EX3 at the Equator, in the Caribbean and Norwegian Seas,
in the African upwelling region decrease even more (see Figure 1c). However, the positive dT in the
EX1 and EX2 change to the negative ones in the EX3 for the North Atlantic Current. It is due to the
additional entrainment of cold water from the seasonal thermocline by decreasing the Prandtl number
relative to the EX1 and EX2.

Figure 1. Average for 1963–2009 temperature deviations (in ◦C) in the 0–30 m layer from climatic
data [41] in the experiments EX1 (a), EX2 (αCl = 0.9) (b) and EX3 (c). Coordinates of the model:
the geographical grid is replaced by a two-pole orthogonal (poles on the geographical equator at points
with coordinates 120◦ W and 60◦ E). The outlines of continents and islands are shown.

dS are in the range of ±(0.02–0.1) PSU in the greater part of the domain for all the experiments
in the 0–30 m layer (Figure 2). Simulated S > SCl at the Equator, in the Guiana Current and the Gulf
Stream, in the Canadian sector of the Arctic. dS reaches 0.5 PSU in the EX3 in the region of the Subpolar
Gyre of the North Atlantic (Figure 2c). The same disadvantages are in the EX4. These disadvantages
of the EX4 and EX3 are substantially reduced in the EX1 and EX2. Module of dS reduced for EX2
on the Equator, Tropics and Subtropics, North Atlantic, Nordic Seas (Figure 2). T − S diagrams are
reproduced most realistically for the EX1 and EX2. Deviations dT and dS are compensated in the
density in all the experiments in different degree: for dT > 0, dS > 0 and for dT < 0, dS < 0. The best
compensation is observed in the EX2.
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Figure 2. Average for 1963–2009 deviation of salinity (in PSU) in the 0–30 m layer from the climatic
observational data [42] in the experiments EX1 (a), EX2 (b) and EX3 (c). The model coordinates are
used (see the caption under Figure 1).

The greatest positive dS in 0.5–2.0 PSU and dT up to 5–6 ◦C occur in the frontal zone of the
Gulf Stream for all experiments (Figure 1 and 2). These high dT and dS can be related both to the
relatively coarse spatial resolution of the model and to the complex dynamics in the zone of high T
and S gradients. Data on the climatic variables TCl and SCl in this region may experience appreciable
variations depending on the change in the amount of observations. The compensation of dT and dS in
the density allows to reproduce realistic currents, front dynamics, meanders and eddies.

Vertical structure of the upper ocean layer. We choose the “climatic” period of 30 years 1980–2009 to
compare simulated T and S profiles to the ones from the Ocean Atlas. The most observations were
performed for this period. We compare the profiles of simulated T and S mean for thirty February and
August for 1980–2009 with the climatic monthly mean TCl and SC1 for February and August [41,42].
February is period of the greatest loss of buoyancy by the ocean. August is month of the greatest
inflow of buoyancy from the atmosphere to the ocean. We choose the regions with the most different
mixing conditions.

Deviation of T(z) for the EX2 from the climatic one decreases by 0.7–0.9 ◦C in the 0–300 m layer
relative to the other experiments in the Sargasso Sea in February (Figure 3a). Zone of developed
turbulence increases for EX2 in August relative to the EX1, and seasonal thermocline is closer to the
observations (Figure 3b). Negative 3 ◦C deviation of T(z) from TCl(z) exists in the 0–50 m layer for
EX4 in August. There is no such deviation for the EX2. Salinity deviations from climate in the EX4 and
EX3 are noticeable, especially in the February (Figure 3c). The S profiles are the best reproduced in the
EX1 and, especially, in EX2 (Figure 3c,d). EX2 better simulates T and S profiles relative to the other
experiments both during August and February in the Sargasso Sea (Figure 3).



J. Mar. Sci. Eng. 2018, 6, 95 12 of 23

Figure 3. T (in ◦C) and S (in PSU) profiles for February and August averaged for 1980–2009 in the
Sargasso Sea (center of the one-degree model cell near 36◦ N, 51◦ W): the columns are February (left)
and August (right), rows are temperature (top) and salinity (bottom). Black solid thick line with crosses
represents the climate; Green solid line with dark circles—EX1; Black dash/double dot line with dark
circles—EX2; Black solid thin line with hollow circles—EX3; Red solid line with hollow squares—EX4.

Significant deviations of profiles T and S from climatic values for the EX1 are eliminated for the
EX2 in the central part of the North Atlantic Current (Figure 4). These deviations were not for the
first 20 years of the EX1. Thermocline is very well reproduced in the August for EX2 (Figure 4b).
Temperature profiles are better simulated in the EX2 relative to the other experiments in February and
August (Figure 4a,b). The main drawback of the parameterization EX4 is high deviation of salinity
profiles from the climatic data (Figure 4c,d). The salinity profiles are the best reproduced in the EX2
and EX3 (Figure 4c,d).
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Figure 4. T (in ◦C) and S (in PSU) profiles for February and August averaged for 1980–2009 in the
North Atlantic Current (center of the one-degree model cell near 52◦ N, 38◦ W): the columns are
February (left) and August (right), rows are temperature (top) and salinity (bottom). Black solid thick
line with crosses represents the climate; Green solid line with dark circles—EX1; Black dash/double
dot line with dark circles—EX2; Black solid thin line with hollow circles—EX3; Red solid line with
hollow squares—EX4.

Thermal inversion is maintained by the stratification of salinity in the recirculation zone of the
West Spitsbergen Current all year round (Figure 5). Vertical structure of T and S for the EX2 is in
the maximum agreement with the climatic data relative to the other experiments over here. This is
particularly true for the reproduction of a typical cold water interlayer in the 50–130 m layer (see
Figure 5b). As well, the EX3 yields a good approximation to the climatic data. EX4 overestimates the
salinity gradient in the winter halocline in the layer 50–100 m (Figure 5c) that leads to unreal great
temperature inversion (Figure 5a). This drawback overcomes in the experiments using the splitting
turbulence algorithm (STA).
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Figure 5. T (in ◦C) and S (in PSU) profiles for February and August averaged for 1980–2009 in
the recirculation region of the West Spitsbergen Current (center of the one-degree model cell near
75◦ N, 2◦ W): the columns are February (left) and August (right), rows are temperature (top) and
salinity (bottom). Black solid thick line with crosses represents the climate; Green solid line with dark
circles—EX1; Black dash/double dot line with dark circles—EX2; Black solid thin line with hollow
circles—EX3; Red solid line with hollow squares—EX4.

In general, the use of STA in mixing parameterization for the OGCM significantly reduces the
salinity deviation from climatic data compared to the EX4 (Figures 3c,d, 4c,d and 5c,d). The vertical
distributions of T and S in the EX2 (using AMBF) are in the best agreement with climatic data.

4.2. Sensitivity of Ocean Model Characteristics to the Changes in Mixing Parametrization

The analysis of model sensitivity to the changes in mixing parametrization is accompanied by
qualitative comparison of the upper mixed layer (UML) depth, currents and sea surface height (SSH)
to the observations.

Thickness of the ocean upper mixed layer. Distribution of the maximum UML depth in the
North Atlantic is shown in the Figure 6. This distribution is typical for all winters of the whole period
1948–2009. Maximum UML depth is defined as the level where water density differs from the sea
surface density less than 0.15 kg/m3. UML depth is highly sensitive to the used parameterizations
(Figure 6). UML depth reaches 2–3 km in the Labrador, Norwegian and Greenland seas for the EX1.
Area of these regions are sharply reduced for the EX2. UML depth is nowhere greater than 3 km
for the EX3. Distribution and values of the UML depth are most similar to their estimates from
observations [44] for the EX2 and EX3. EX3 reproduces a deeper UML than the EX1 and EX2 in the
frontal zone of the Gulf Stream (Figure 6). The reason for this is in the greater diffusivity of heat
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and salt due to the smaller Prandtl numbers in the zone of decaying turbulence at relatively small
UML depths.

Figure 6. Maximum thickness of the upper mixed layer (in meters) for the 50th year of integration
(February 1997) in the EX1 (a), EX2 (b), EX3 (c) in model coordinates.

Ocean currents. Changes in the fields of temperature, salinity and density associated with
the change in the mixing parameterization cover almost the entire upper half of the baroclinic
layer (Figures 3–5). This causes a high sensitivity of the circulation and SSH to the change of the
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mixing parameterization. The greatest changes in ocean currents happen by the transition from
parameterization EX4 using a simple dependence of the turbulent coefficients on the Richardson
number to EX1–EX3 where STA is used.

Vectors of the velocity difference between EX1–EX3 using STA and EX4 are collinear with the
mean circulation vectors in the Gulf Stream and Subpolar Gyre of the North Atlantic for the 0–50 m
layer during 1980–2009 (Figure 7). There is an increase in velocities for EX1-EX3 by 20 cm/s and
more relative to EX4. Maximum velocity increase occurs in the Gulf Stream separation from the coast
(Figure 7a). This brought the current velocities closer to real values. Differences in the velocity between
the EX1, EX2 and EX3 can reach 5–10 cm/s in the 0–50 m layer in separate regions. The results show
that using AMBF in the EX2 allows to reproduce thermohaline characteristics better, and it should be
recommended to use AMBF for computation of circulation.

Figure 7. The average in the 0–50 m layer for thirty February of 1980–2009: the difference in the
velocities between the EX1 and EX4 (EX1 minus EX4) (a); the velocity in the EX1 (b). The model
coordinates are used (see the caption under Figure 1). The direction is shown by vectors, and the
magnitude in cm/s is shown by shading.
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Sea surface height. SSH is also sensitive to the change of parameterizations. SSH is associated
with the annual cycle of sea ice extent. Figure 8 shows the SSH simulated in the EX4 (a), EX1 (b), EX2 (c)
and EX3 (d), for the 62nd year of integration in April 2009. Sea ice extent reached its maximum in this
month for the Arctic Ocean and Nordic Seas (NSIDC data). Beaufort Gyre is here the most characteristic
feature of the circulation and SSH field. SSH distribution is more similar to the reconstruction according
to the climatic data [38] for the EX2 relative to the other experiments. Beaufort Gyre is better expressed
in the SSH field for EX2. Unrealistic overestimation of SSH was obtained for the EX4 in the region of
the Siberian shelf. The greatest difference in the maximum SSH between the EX2 and EX1 is 15 cm in
the Beaufort Gyre. EX3 reproduces high SSH values on the periphery of the Beaufort Gyre due to the
steric effect as the result of the greater entrainment of dense water from the pycnocline into the upper
ocean layer (Figure 8d). So, SSH is reproduced most realistically in the EX2 with taking into account
the AMBF in the equations of turbulence (Figure 8c).

Figure 8. Sea surface height (in cm plus 30) in the EX4 (a), EX1 (b), EX2 (c) and EX3 (d) in April 2009
(The 62nd year of integration). April 2009 is the month of the maximum sea ice extent for the Arctic
Ocean and Nordic Seas according NSIDC data. The model coordinates are used (see the caption under
Figure 1, the point with coordinates (0,0) corresponds to the North Pole).

Heat flux at the ocean surface. Heat fluxes at the upper boundary of the ocean are calculated
using the model SST. Model SST depends on turbulent mixing in its upper layer. Thus, the forcing for
the OGCM also depends on the used mixing parameterization. Typical example for the sum of the
latent LE and sensible QT heat fluxes shows that the space distributions of the heat fluxes are close to
each other in the EX1, EX2 and EX3 for the period of maximum heat loss by the ocean in February
(Figure 9). However, quantitative differences of fluxes can reach 50–200 W/m2 in some regions.
For example, sensitivity of the heat fluxes to the change of the mixing parameterization revealed in
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the subtropics. Low heat losses LE + QT < 50 W/m2 for EX1 changes to greater ones for the EX2
(Figure 9a,b). This is due to the following process. Turbulence zone penetrates to deeper layers in the
preceding warm period for the EX2. Greater accumulation of heat in the upper ocean layer occurs.
More significant water-air temperature differences for the EX2 relative to the EX1 arises in the winter.

Figure 9. The sum of latent and sensible heat fluxes (W/m2) at the ocean surface in February for the
50th year of the runs (1997) in the experiments EX1 (a), EX2 (b) and EX3 (c).
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4.3. Turbulent Energy and Omega

The spatial distribution and temporal evolution of TKE and TDF, differing from one experiment
to another, are generally similar in EX1, EX2 and EX3. In all the experiments, the period of turbulence
temporal variability (1/ω) varies from seconds in layers of high density gradients, to several minutes
in well-mixed layers. Such quantities are close to the observations [45]. In the evolution of TKE and
TDF, the annual cycle is well pronounced. Against this background, there is a very high synoptic
variability of these characteristics over time. Figure 10 shows the TKE field for the 62nd year of
integration (2009) in the 0–30 m layer (for August). Zones of the Northern Trade winds and Westerlies
in the Northern Hemisphere are marked with high TKE values ∼50–100 cm2/s2 associated with high
wind speeds. Low TKE values of 1–3 cm2/s2 are observed in Horse Latitudes and the Intertropical
Convergence zone. South of the Equator, the TKE values of 100–150 cm2/s2 are due to the loss of heat
by the ocean in the winter of the Southern Hemisphere.

Figure 10. Turbulent kinetic energy (cm2/s2) in the 0–30 m layer in August 2009 (the 62nd year of
integration). The model coordinates are used (see the caption under Figure 1).

4.4. Numerical Aspects, Data Assimilation

One of the rapidly developing areas of numerical modelling of the oceanic and marine circulation
is the assimilation of observational data [46–51]. In the nearest future, we plan to develop a
high-resolution model of the Arctic Ocean and include in it 4D VAR data assimilation procedure.
A successful solution of this problem is connected with the choice of an economical numerical
algorithm for solving the optimality system—a coupled system of forward and adjoint ocean
dynamics equations [50]. Here we can use the developed algorithm to solve the k − ω turbulence
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equations. The algorithm is based on an effective splitting technique with respect to physical processes.
The formulation of an individual splitting stage describing the generation-dissipation process, allows
one to solve them analytically which determines the computational efficiency. Our experiments
showed the computational efficiency of the algorithm for forward simulation of Arctic—North Atlantic
general circulation. This algorithm, in our opinion, will also be effective in solving 4D VAR data
assimilation problems.

5. Summary

New results in the problem of vertical mixing parameterization for the ocean general circulation
model (OGCM) are shown at the example of the simulation of climatic characteristics for North
Atlantic and Arctic Ocean for 1948–2009. Like OGCM equations, turbulence equations are solved using
multicomponent splitting methods. This allowed us to rationally improve the mixing parametrization
using the k−ω model. A new splitting algorithm is proposed for solving turbulence equations that
allows to reduce the complete system to the stages of transport-diffusion and generation-dissipation.
An analytical solution was found for the k − ω equations at the generation-dissipation splitting
stage that is impossible for k− kl and k− ε closures. This opens new possibilities to control ocean
characteristics of the OGCM’s numerical experiments by means of some physical factors through
coefficients of the proposed analytical k−ω model solution. We demonstrate examples of possibilities
for controlling the OGCM solution by such physical factors as climatic annual mean buoyancy
frequency (AMBF) and Prandtl number as function of the Richardson number.

For this purpose, the OGCM INMOM coupled with a two equation k−ω turbulence model is
used for simulation of hydrophysical fields in the North Atlantic and Arctic Ocean. The model has
horizontal resolution 0.25◦ with 40 σ-levels along the depth.

The numerical results show the model’s satisfactory performance in simulating large-scale
ocean circulation and upper layer dynamics. The deviations between simulated and observed
temperature and salinity in the upper mixed layer are about ±(0.2–0.7) ◦C and ±(0.02–0.10) PSU
respectively. The vertical structure of temperature and salinity and their gradients in the pycnocline
are acceptably reproduced. The simulations show that taking into account of the AMBF data improves
the reproduction of temperature and salinity in the upper ocean layer. During the warm-up period in
the tropics, accounting AMBF data increases zones of developed turbulence and makes the seasonal
thermocline more realistic. In the Subarctic, Greenland and Norwegian seas, the temperature inversion
and cold intermediate layer are more realistically reproduced. The experiments demonstrate that
taking into account AMBF improves reproduction of the large-scale thermohaline and dynamical
characteristics. Prandtl number variations improve the upper mixed layer depth simulation especially
for high latitudes.

Replacement of the simple relation between turbulent viscosity and diffusion and the Richardson
number [8] by k − ω parameterization increases velocity of currents in the upper 50 m layer by
10–20 cm/s or more. This is noticeable for the Gulf Stream, Greenland, Labrador and North Atlantic
currents. The Subpolar Gyre of the North Atlantic becomes more intense and realistic. The SSH is also
sensitive to the choice of turbulent parameterization. The largest SSH difference in the center of the
Beaufort Gyre between different runs is about 15 cm. In experiments with the analytical solution of
the k−ω equations, SSH in the Beaufort Gyre is well reproduced, especially with taking into account
the AMBF in the equations of turbulence. Experiments with the Prandtl number tuning show that the
increase of pycnocline waters entrainment into the mixed layer due to the steric effect has a significant
influence on the Arctic Ocean circulation.

The experiments also demonstrate the computational effectiveness of the proposed approach
based on the splitting method with respect to physical processes. We split k − ω equations into
the two main stages describing transport-diffusion and generation-dissipation processes. At the
generation-dissipation stage, the equation for ω does not depend on k. It allows us to solve both
turbulence equations analytically that ensures high computational efficiency.
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