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Featured Application: Submersed obstacle avoidance in unknown ocean currents via guidance,
navigation, and control for autonomous underwater vehicles.

Abstract: A considerable volume of research has recently blossomed in the literature on autonomous
underwater vehicles accepting recent developments in mathematical modeling and system
identification; pitch control; information filtering and active sensing, including inductive sensors
of ELF emissions and also optical sensor arrays for position, velocity, and orientation detection;
grid navigation algorithms; and dynamic obstacle avoidance, amongst others. In light of these modern
developments, this article develops and compares integrative guidance, navigation, and control
methodologies for the Naval Postgraduate School’s Phoenix submerged autonomous vehicle,
where these methods are assumed available. The measure of merit reveals how well each of several
proposed methodologies cope with known and unknown disturbances, such as currents that can
be constant or harmonic, while maintaining a safe passage distance from underwater obstacles,
in this case submerged mines. Classical pole-placement designs establish nominal baseline behaviors
and are subsequently compared to performance of designs that are optimized to satisfy linear
quadratic cost functions in regulators as well as linear-quadratic Gaussian designs. Feed-forward
architectures and integral control designs are also evaluated. A noteworthy contribution is a very
simple method to mimic optimal results with a “rule of thumb” criteria based on the design’s
time constant. Since the rule-of-thumb method uses the assumed system model for computation
of the control, it is particularly generic. Cited references each contain methods for online system
parameter identification (with a motivation of use in the finding the control signal), permitting
the rule of thumb’s generic applicability, since it is expressed in terms of the system parameters.
This proposed method permits control design at sea where significant computation abilities are not
available. Very simple waypoint guidance is also introduced to guide a vehicle along a preplanned
path through a field of obstacles placed at random locations. The linear-quadratic Gaussian design
proves best when augmented with integral control, and works well with reduced-order equations,
while the “rule of thumb” design is seen to closely mimic the optimal performance. Feed-forward
augmentation proves particularly efficient at rejecting constant disturbances, while augmentation
with integral control is necessary to counter periodic disturbances, where the augmentations are also
optimized in the linear-quadratic Gaussian procedures, yet can be closely mimicked by the proposed
“rule of thumb” technique.
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1. Introduction

The Naval Postgraduate School’s consortium for robotics and unmanned systems education and
research (CRUSER) uses three autonomous underwater vehicles, the Remus, Aries [1], and Phoenix [2]
vehicles to enhance education and research. The oldest vehicle, Phoenix [3] is used in this study to
investigate integrated methodologies [4] for vehicle guidance, navigation, and control through a field of
obstacles amidst unknown ocean currents that can be approximated by steady state, fixed disturbance
ocean velocities, and can also be represented by harmonically oscillating velocities. This integrated
approach is a natural extension of the recent innovations. The Phoenix vehicle’s nominal mathematical
modeling was articulated in the 1988 article [5] using surge motion to perform system identification.
Recent innovations [6–10] have extended and improved the nominal system identification resulting
in high-confidence mathematically modeling in computer simulations. Such simulations permitted
Wu et al. [11] to redesign the L1 adaptive control architecture for pitch-control with anti-windup
compensation based on solutions to the Riccati equation to guarantee robust and fast adaption of the
underwater vehicle with input saturation and coupling disturbances and the approach was applied
to the pitch channel alone. Stability was emphasized in the single-channel approach to emphasize
dynamic nonlinearities and measurement errors. The Ricatti equation is also utilized in this research
and proves effective when applied to all six degrees of freedom per [4], where the approach is applied
to instances of disturbances that are constant with simultaneous harmonic disturbances simulating
unknown ocean currents and waves. In addition to these recent achievements in control, improvements
have also been made to guidance and navigation. In recent years, Bo He et al. [12] demonstrated,
in simulations and open water experiments, the ability to overcome weak data links and sparse
navigation data using a technique called extended information filter (EIF) applied to simultaneous
localization and mapping (i.e., “SLAM”) that proved computationally easier to implement than the
traditional extended Kalman filter (EKF) SLAM. Low computational cost is emphasized here to keep
the vehicle size low, but also to exaggerate the laudable goal of achieving optimal or near optimal
results with methods that are simple. Such is an overt goal of the new research presented here.

Just last year, Yan et al. [13] integrated the navigation system using a modified fuzzy adaptive
Kalman filter (MFAKF) to combine traditional strap-down inertial navigation with OCTANS and
Doppler velocity log (DVL) to navigate the challenging polar regions where rapidly converging earth
meridians and challenging ocean environments filled with submersed obstacles. This benchmark
achievement requires the research here to utilize similar challenging ocean conditions, and provide
the motivation for selection of simultaneous steady-state ocean currents together with sinusoidal
varying unknown wave conditions amidst an ocean filled with obstacles (where here the non-polar
ocean is used, so mines are added to fulfill the role of malignant submersed obstacles). Furthermore,
simplified waypoint guidance is derived, based on the onboard-calculated distance from the vehicle to
a submerged obstacle. The simplified waypoint guidance is proven effective, and should be considered
in situations where onboard operation of a modified fuzzy adaptive Kalman filter proves to be
computationally prohibitive. The distance to an underwater obstacle was measured by Wang et al. [14]
with a novel method: measuring extremely low frequency (ELF) emissions with onboard inductive
sensors. Such emissions are produced by ship hulls with relatively pronounced amplitudes compared
to small subsurface obstacles, but the harmonic line spectra and fundamental signal frequency relate
directly to the closing speed of approach to the obstacle. Experiments proved that even such small
signals were detectable at long range with high sensitivity and low-noise sensors of the current
state of the art, thus closing the distance to obstacles may now be presumed to be known passively,
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permitting the simplified waypoint guidance proposed in this manuscript. Particularly after ELF
queuing, position, orientation, and velocity of obstacles may be monitored optically, as developed
by Eren et al. [15], and these states may be used as feedback signals together with the waypoint
guidance (desired trajectory) permitting augmentation with linear quadratic Gaussian techniques,
as performed in this manuscript where full-order state observers are together optimized with attitude
controller gains, followed by demonstration that reduced-order observers may also be optimized
allowing vehicle operators to compensate for individually failed or degraded sensors, or instances
where optimally-estimated signals are superior to sensor signals in individual or multiple channels.

Integrating these latest technological developments was demonstrated last year by Wei et al. [16],
who integrated the Doppler velocity methods for obstacle monitoring into a dynamic obstacle
avoidance scheme for collision avoidance. Following data fusion, a collision risk assessment model is
used to avoid collisions, and claims to be effective in unknown dynamic environments, although the
experiments did not go so far as to stipulate near-constant ocean currents in addition to harmonic
wave actions. These challenging dynamic environments are addressed in this manuscript as a natural
extension of the current state of the art.

Autonomous vehicle angular momentum control of rotational mechanics may be achieved using
control moment gyroscopes, one potential momentum exchange actuator with a long, historic legacy
of actuating space vehicles, where mathematical singularities have just recently been overcome [17–23],
permitting the use of the actuator for underwater vehicles as recently achieved by Thorton et al. [24,25],
including combined attitude and energy storage control. These developments suffice to reveal that
attitude control is not controversial and, thus, the remainder of this manuscript focuses on guidance
and navigation with a residual necessity to implement nominal, effective pitch and yaw control.

2. Materials and Methods

Assuming the availability of the recent technologies cited in the Introduction, this section describes
the proposed methods to use these technologies to guide a submersed vehicle along a preplanned
path through a field of randomly-placed obstacles. The constituent technologies are investigated
through this section of the manuscript, and then combined in a fully-assembled system demonstration
in Section 3 (Results), where the figure of merit used to assess the efficacy of the proposed methods is
the maintenance of the miss distance from submersible objects in ocean currents.

Submersible vehicles require control systems to guide the vehicle around obstacles that can
present dangers to vehicle health and safety in the presence of ocean currents. The challenge addressed
here is to navigate one of the two Naval Postgraduate School’s submersible vehicle (Figures 1 and 2)
through a simulated minefield whose dimensions are 200 m × 5100 m in the presence of 0.5 m/s ocean
currents. The field will contain at least 30 mines placed at locations using a random number generator.
The resulting controller structure has an inner-outer loop structure, and several technologies will be
described including pole-placement designs, linear-optimal (quadratic) Gaussian techniques, full- and
partial-order observers for online disturbance identification for ocean currents (both constant lateral
underwater ocean currents and also sinusoidal varying currents), tracking systems and feed-forward
control designed to counter open ocean currents, in addition to integral control. The outer loop
controller uses line-of-sight (LOS) guidance to provide a heading command to the inner loop. The inner
loop controller uses output heading feedback to track heading commands. The vehicle is simulated
to traverse a minefield and successfully travels no closer than 5 m from any mine and arrives within
from the commanded destination autonomously; while this overall system design requirement drives
subsystem requirements for trajectory tracking.
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Figure 1. Submersible vehicle sample and notional minefield [1]. (a) Field of randomly-placed 
submersed mines to be avoided by the autonomous vehicle; and (b) Aries submersible in open ocean 
(illustrative sample is not simulated; the Figure 2 Phoenix vehicle is simulated). 

2.1. System Dynamics 

The equations of motion used to simulate the dynamic behavior of the autonomous submersible 
vehicle in a horizontal plane are listed in Equations (1)–(4). All variables in these equations are 
assumed to be in nondimensional form with respect to the vehicle length (7.3 feet) and constant 
forward speed (~3 ft/s). The vehicle weighs 435 lbs and is neutrally buoyant. Time is 
non-dimensionalized such that 1 s represents the time it takes to travel one vehicle length.  

  
(a) (b) 

Figure 2. Vehicle geometry and reference axes. (a) Phoenix in open ocean [1]. The 
experimentally-determined dynamic model for this vehicle is listed in Equations (1)–(6) and forms 
the basis for the simulations in this manuscript; and (b) vehicle geometry and reference axis. 

(𝑚 − 𝑌 )𝜈 − (𝑌 − 𝑚𝑥 )𝑟 = 𝑌 𝜈 + (𝑌 − 𝑚)𝑟 + 𝑌 𝛿 + 𝑌 𝛿  (1) (𝑚𝑥 − 𝑁 )𝜈 − (𝑁 − 𝐼 )𝑟 = 𝑁 𝜈 + (𝑁 − 𝑚𝑥 )𝑟 + 𝑁 𝛿 + 𝑁 𝛿  (2) 𝜓 = 𝑟 (3) 𝑦 = 𝑠𝑖𝑛𝜓 + 𝜈𝑐𝑜𝑠𝜓 (4) 

In addition to the following dependent equation: 𝑥 = 𝑐𝑜𝑠𝜓 − 𝜈𝑠𝑖𝑛𝜓 (5) 

  

Figure 1. Submersible vehicle sample and notional minefield [1]. (a) Field of randomly-placed
submersed mines to be avoided by the autonomous vehicle; and (b) Aries submersible in open ocean
(illustrative sample is not simulated; the Figure 2 Phoenix vehicle is simulated).

2.1. System Dynamics

The equations of motion used to simulate the dynamic behavior of the autonomous submersible
vehicle in a horizontal plane are listed in Equations (1)–(4). All variables in these equations are assumed
to be in nondimensional form with respect to the vehicle length (7.3 feet) and constant forward speed
(~3 ft/s). The vehicle weighs 435 lbs and is neutrally buoyant. Time is non-dimensionalized such that
1 s represents the time it takes to travel one vehicle length.
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Figure 2. Vehicle geometry and reference axes. (a) Phoenix in open ocean [1]. The experimentally-
determined dynamic model for this vehicle is listed in Equations (1)–(6) and forms the basis for the
simulations in this manuscript; and (b) vehicle geometry and reference axis.
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where the variables are and the constants are Yδs = 0.01241
ν Lateral (sway) velocity m = 0.0358 Yδb

= 0.01241
r Turning rate (yaw) Iz = 0.0022 N .

r = −0.00047
ψ Heading angle (degrees) xG = 0.0014 N .

ν = −0.00178
y Lateral deviation (cross-track error) Y.

r = −0.00178 Nr = −0.00390
δs Stern rudder deflection Y .

v = −0.03430 Nv = −0.00769
δb Bow rudder deflection Yr = 0.01187 Nδs = −0.0047

Yv = −0.10700 Nδb
= 0.0035

The constant definitions in the mass m, mass moment of inertia with respect to a vertical axis
that passes through the vehicle’s geometric center (amidships) Iz, position of the vehicle’s center of
gravity (measured positive forward of amidships) xG, with the remaining terms referred to as the
hydrodynamic coefficients. These constants are all presented in non-dimensional form.

Defining the state vector {x} ≡ { ν r ψ y }T and the control {u} ≡ { δs δb }T and
assuming small angles, the dynamics expressed in Equations (1)–(4) may be expressed in state space
form as

{ .
x
}
= [A]{x}+ [B][u] where:

[A] =


−1.4776 −0.3083 0 0
−1.8673 −1.2682 0 0

0 1 0 0
1 0 1 0

 [B] =


0.2271 0.1454
−1.9159 1.2112

0
0

0
0

 (6)

The system may also be expressed in a transfer function ratio of outputs divided by inputs in
Laplace form using Equation (7) where the observer matrix [C] is merely a proper identity matrix to
this point of the manuscript. Equation (7) yields two transfer function relationships between each of
the two possible rudder inputs as seen in Equations (8) and (9). Notice that both transfer functions have
poles and zeros at the origin, while pole-zero cancellation is possible in the case of the stern rudder.
On the other hand, even after pole-zero cancellation in the bow rudder Equation (9), there remains
an open loop pole at the origin that must be dealt with during the control design, since it represents
a potentially unstable element (at the very least, in the instance where the estimated constants are
exactly correct, and these equations of motion exactly describe the system, an oscillatory element exists
that will not decay). Nonetheless, the dynamics accord to nature. Consider trying to steer a row-boat
using the rear rudder: it is much more stable than trying to steer the rowboat using a rudder in the
front. This analogy applies to the submersible vehicle and is verified in these results.

G(S) = [C](s[I]− [A])−1[B] (7)

G(S)|δs
≡ Y(s)

δs(s)
=

0.2271s3 + 0.875s2

s4 + 2.746s3 + 1.298s2 =
s2(0.2271s + 0.875)

s2(s2 + 2.746s + 1.298)
(8)

G(S)|δb
≡ Y(s)

δb(s)
=

1.211s2 + 1.518s
s4 + 2.746s3 + 1.298s2 =

s(1.211s + 1.518)
s2(s2 + 2.746s + 1.298)

(9)

In Figure 3, the uncontrolled system is analyzed by merely performing a circular turn with each
(and then both) rudders. The bow and stern rudders alone are each compared to the combined use of
both bow and stern rudders. The bow rudder was deflected +15 degrees for about 21 s, while the stern
rudder was deflected for −15 degrees for about 11 s. When both rudders were deflected the maneuver
was completed in roughly 8 s. Two initial conditions for the sway velocity were investigated (ν(0) = 0
and then ν(0) =

√
8). In all cases, the bow rudder alone performed the poorest, with the stern rudder

alone performing the turn in a smaller radius and shorter time. Furthermore, the combined use of both
rudders resulting in tightest maneuver.
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Figure 3. Analysis of uncontrolled system: comparison of rudder performance. (a) Counter-clockwise
turn, ν(0) = 0; and (b) initial sway velocity ν(0) =

√
8.

Two simulation methodologies were used to investigate sensitivities to integration method.
MATLAB was used with Euler integration, while SIMULINK was used with Runge-Kutte integration
with identical timesteps, ∆t = 0.1 s. Both software packages are manufactured and supplied by
Mathworks®, Natick, Massachusetts, USA. The results were nearly negligible and are displayed in
Table 1, from which insensitivity to the integration approach is established.

Table 1. Comparison of simulation integration methodologies.

Rudder Deflected Euler: x-Distance 1 Runge-Kutte: x-Distance 1 Euler: y-Distance 1 Runge-Kutte: y-Distance 1

Bow 6.5471 6.5469 6.8647 6.8646
Stern 3.1665 3.1665 3.5768 3.5768
Both 2.4546 2.4546 2.6567 2.6567

1 Distances calculated to traverse one circular path.

2.2. Control Law Design

In the system analysis, the optimal rudder implementation scheme was determined to be the
application of both rudders, where the rudders were slaved to the same maneuver angle magnitude
with the opposite sign, i.e., a “scissored-pair”, per Equation (10). In the case where only variable
y is to be measured, the new state space formulation of the system equation components are in
Equation (11). Under the assumption of rudders constrained to behave as a scissored-pair the transfer
function from rudder input to output y is given by Equation (12) whose poles and zeros are listed in
Equation (13), with Equation (14) revealing the system’s eigenvalues, noting the values are identical to
the location of the poles in accordance with theory. The controllability and observability matrices ([CO]
and [OB], respectively) are listed in Equation (15) (whose matrix product [OC] is in Equation (16))
verifying these system equations are both controllable and observable, since these matrices are full-rank,
while the determinant of the controllability matrix is 63.1778, a large value with a small value of the
matrix condition number, 13.4513. The non-zero determinant of the controllability matrix proves
controllability, but to see how close the system is to being uncontrollable, the matrix condition number
proves more useful. These two figures of merit indicate the system equations are highly controllable
and, accordingly, this manuscript will investigate and compare several options for navigation control:
pole placement, linear quadratic optimal control, linear quadratic Gaussian, and time optimal control.
The same holds true for observability and, thus, linear quadratic Gaussian. The matrix product [OC] is
the same for every definition of state variables for the given system.
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A change in system parameters results in disparate system equation coefficients in Equations (1)–(5)
which may be expressed in state space or transfer-function formulations and correlated modifications
to Equations (6), (8), and (9). Nonetheless, these equations form the basis for finding linear-quadratic
Gaussian optimal solutions or the simpler rule-of-thumb procedure driven by system time-constant.
Since the process for finding the optimal solutions is inherently more challenging than simple control
calculations using the time-constant, the rule of thumb technique is generically superior in regards to
computational overhead, regardless of system parameters chosen.

δb = −δs (10)

[A] =


−1.4776 −0.3083 0 0
−1.8673 −1.2682 0 0

0 1 0 0
1 0 1 0

 [B] =


0.0816
−3.1271

0
0

 [C]= [0 0 0 1] [D] = [0] (11)

G(S)|δ ≡
Y(s)
δ(s)

=
0.08164s2 − 2.06s− 4.773

s4 + 2.746s3 + 1.298s2 (12)

poles at : s = 0, 0,−0.6070, −2.1388; zeros at : s = −6.1279× 10 13, near− 0, near− 0 (13)

eig(A) = λ = 0, 0,−0.6070, −2.1388 (14)

[CO] =


0.0816 0.8433 −2.4216 5.5544
−3.1271 3.8132 −6.4105 12.6514

0 −3.1271 3.8132 −6.4105
0 0.0816 −2.2838 1.3916

[OB] =


0 0 0 1
1 0 1 0

−1.4776 0.6917 0 0
0.8917 −0.4217 0 0

 (15)

[OC] =


0 0.0816 −2.838 1.3916

0.0816 −2.2838 1.3916 −0.8561
−2.2838 1.3916 −0.8561 0.5441
1.3916 −0.8561 0.5441 −0.3825

 (16)

Diagonalizing the original system [A] matrix, the spectral decomposition
[T][Λ] = [A][T]→ [Λ] = [T]−1[A][T] in Equation (17) may be used to verify a diagonal
matrix of eigenvalues [Λ], and then write the system of equations in normal-coordinate form
{ .

x′} = [A′]{x′}+ [B′][u]; {y′} = [C′][x′] using the following transformation: [A′] = [Λ] = [T]−1[A][T],
[B′] = [T]−1[B], and [C′] = [C][T] whose results are in Equation (18):

[Λ] =


0.4663 −0.1074 0 0

1 0.3033 0 0
−0.4676
0.0006

−0.4996
1

0 0
1 −1


−1

︸ ︷︷ ︸
T−1


−1.4776 −0.3083 0 0
−1.8673 −1.2682 0 0

0
1

1
0

0 0
1 0


︸ ︷︷ ︸

A


0.4663 −0.1074 0 0

1 0.3033 0 0
−0.4676
0.0006

−0.4996
1

0 0
1 −1


︸ ︷︷ ︸

T

(17)

[A′] =


−2.1388 0 0 0

0 −0.6070 0 0
0 0 0 0
0 0 0 0

, [B′] =


−1.2502028
−6.1888806
−8.4625× 107

−8.4625× 107

, [C′] =
{

0.0006 1 1 −1
}

(18)

{u}baseline = {δ} = −Kυυ− Krr− Kψψ− Kyy (19)

For the pole placement proportional-derivative (PD) controller articulated in Equation (19),
the poles are set to have roughly the same time constant, while avoiding exactly coincident poles.
Gains are iterated for various time constants as displayed in Figure 4, but the following rule of
thumb is asserted as well to quickly achieve performance that closely mimics the performance of
linear-quadratic optimal (LQR) gains where the control effort and tracking error are equally weighted
in the cost function of the optimization. Since the rule-of-thumb method uses the assumed system
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model for computation of the control, it is particularly generic. References [7,9,10] each contain
methods for online system parameter identification (with a motivation of use in the finding the
control signal), permitting the rule of thumb’s generic applicability, since it is expressed in terms of the
system parameters.

RULE OF THUMB: Select unity time-constant tc to roughly locate closed-loop poles per Equation (20).
Then place other poles at slightly different locations (e.g., sp = s1 ± 0.01 ∀ p)

Pole : s1 =
1
tc

(20)

The gains achieved using the rule of thumb KR.O.T. = {0.5070−0.3687−0.7157−0.1972} (see Table 2)
have quite different values compared to the gains calculated through the matrix Ricatti equation in the
linear-quadratic optimization KLQR = {−0.0939 −1.2043 −2.2138 −1}, but, nonetheless, the resulting
behaviors are indeed very similar.
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Figure 4. Gain values for each state iterated for various time constants.

Next, the initial feedback control design was evaluated in simulations where the ship is initially
located off the desired track by one ship’s length port side with zero heading, and rudder deflection
was limited to 0.4 radians (~23 degrees). Next, another simulation was performed to test an initial
heading angle of 30 degrees starboard where the initial y(0) = 0. The results are displayed in Figure 5a,b,
respectively. All state variations were plotted in Figure 4, highlighting the fact that y converges to zero
along with the other states. Furthermore, the results of rudder-limited simulations are displayed in
Figure 6 for both scenarios, while the comparison of rule of thumb to LQR is shown in Figure 7.J. Mar. Sci. Eng. 2018, 6, x 9 of 26 
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Figure 5. Simulations testing the initial baseline feedback controller in two scenarios. (a) Initially one
ship’s length port side; and (b) initial heading 30◦ starboard.
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Figure 6. State variations for both scenarios simulated using pole-placement gains via rule of thumb.
(a) Initially one ship’s length port side; and (b) initial heading 30◦ starboard.
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Figure 7. Rudder-limited trajectory track using pole-placement gains via rule of thumb and LQR.
(a) Initially one ship’s length port side; and (b) initial heading 30◦ starboard.

Table 2. Gains for various time constants and also solution to linear quadratic optimization.

Time Constant Kν Kr Kψ Ky

0.5 −1.5135 −1.7005 −5.1508 −3.22524
1 0.5070 −0.3687 −0.7157 −0.1972
2 1.1248 0.2870 −0.0906 −0.0116

LQR −0.0939 −1.2043 −2.2138 −1
1 Reminder: state definition {x} ≡

{
ν r ψ y

}T .

2.3. Observer Design

To design a state observer, the system must be observable [4], verifiable through examination
of the observability matrix [OB] per Equation (21), where for example [C] = [ν r ψ y] = [0 1 1 1],
while several such examples will be iterated in this investigation. The condition of the observability
matrix reveals the degree of observability, and it is defined by the ratio of maximum to minimal
singular values:
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[OB] =


C

CA
CA2

...
CAn−1

 (21)

2.3.1. Full-Order Observer Design

{
.
x̂} = [A]{x̂}+ [B][u] + [L]({y} − [C]{x̂}) (22){ .

x
}
− {

.
x̂} = [A]{x} − [A]{x̂} − [L]([C]{x} − [C]{x̂}) (23){ .

e
}
≡
{ .

x
}
− {

.
x̂} = ([A]− [L][C])({x} − {x̂}) (24){ .

e
}
= ([A]− [L][C]){e} (25)

Assuming that only ν measurements are available, a mathematical model of the estimated system
is shown in Equation (22) with a full-order observer design using the observer error Equation (23)
leading to the error vector in Equation (24) allowing the re-expression of Equation (22) as Equation (25),
where the dynamic behavior of the error vector is determined by the eigenvalues of matrix [A]− [L][C],
where [L] gains of the observer may be chosen as desired for systems that prove observable, such that
the error vector will converge to zero for any stable [A]− [Ke][C]. In the following paragraphs, [L] is
designed by solving the matrix Ricatti equation leading to linear quadratic optimal gains, and also by
solving the rule of thumb relationship between gains and time constant as done for the controller gains
resulting in Table 3.

Table 3. Full-order observer gains designed by rule of thumb for various time constants as multiple of
controller time constant, tc.

Multiple of the Controller Time
Constant Used for the Observer Observer Gain Matrix

1
2 tc

1 {
−0.7464 1.8077 8.8270 5.1942

}T

10tc 103 ∗
{
−1.5909 −3.4121 1.5953 −0.0020

}T

1 Reminder: 1
2 tc is used in subsequent simulations.

Figure 8 displays the results of simulations revealing the accuracy of state estimation when [L]
is calculated by the rule of thumb, where the time constant is chosen to be half (tc = 1/2) the time
constant of the controller (tc = 1), and the simulation is initialized with the heading angle 30 degrees
off, while Figure 9 displays the simulation initialized at the one boat-length starboard position.

2.3.2. Reduced-Order Observer Design

Assuming that some measurements are available from sensors, this paragraph describes the
possible iterations and reveals states that are relatively more important to measure with sensors.
Four possible output matrices are used to investigate observability. Four options for output
matrices [C]i for i = 1, . . . , 4 result in four reduced-order observers [OB]i for i = 1, . . . , 4 are
detailed in Equations (26)–(29). The output matrix [C]1 produces an observability matrix [OB]1
with rank = 4 (observable) and determinant not nearly equal to zero. The output matrix [C]2
produces an observability matrix [OB]2 with rank = 4 (observable) and determinant not nearly equal
to zero. The output matrix [C]3 produces an observability matrix [OB]3 with rank = 4 (observable)
and determinant nearly equal to zero. The matrix condition number is very high indicating the
system is barely observable. The output matrix [C]4 produces an observability matrix [OB]4 with
rank = 3 (not observable) and determinant equal to zero with a matrix condition number equal to
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infinity. This means if all other states are measured by sensors, it is not possible to use an observer
(even an optimal observer) to determine lateral deviation (cross-track error), y. It is a key state to
measure with sensors. The sensor combinations that include y are observable. Using every other
sensor, (except y) results in a system that is not observable. Furthermore, measuring y alone results in
a barely observable system.

[C]1 =


ν

r
ψ

y

 =


0
1
1
1

→ [OB]1 =


C

CA
CA2

...
CAn−1

 =


0 1 1 1

−0.8673 −0.2682 1 0
1.7823 1.6074 0 0
−5.6352 −2.5879 0 0

 (26)

[C]2 =


ν

r
ψ

y

 =


0
1
0
1

→ [OB]2 =


C

CA
CA2

...
CAn−1

 =


0 1 0 1

−0.8673 −1.2682 1 0
3.6496 2.8756 0 0
−10.7624 −4.7717 0 0

 (27)

[C]2 =


ν

r
ψ

y

 =


0
0
0
1

→ [OB]3 =


C

CA
CA2

...
CAn−1

 =


0 0 0 1
1 0 1 0

−1.4776 0.6917 0 0
0.8917 −0.4217 0 0

 (28)

[C]2 =


ν

r
ψ

y

 =


1
1
1
0

→ [OB]4 =


C

CA
CA2

...
CAn−1

 =


1 1 1 0

−3.3450 −0.5764 1 0
6.90190 1.7621 0 0
−12.1843 −4.0900 0 0

 (29)

J. Mar. Sci. Eng. 2018, 6, x 11 of 26 

 

output matrix [𝐶]3  produces an observability matrix [𝑂𝐵]3  with rank = 4 (observable) and 

determinant nearly equal to zero. The matrix condition number is very high indicating the system is 

barely observable. The output matrix [𝐶]4 produces an observability matrix [𝑂𝐵]4 with rank = 3 

(not observable) and determinant equal to zero with a matrix condition number equal to infinity. 

This means if all other states are measured by sensors, it is not possible to use an observer (even an 

optimal observer) to determine lateral deviation (cross-track error), y. It is a key state to measure 

with sensors. The sensor combinations that include y are observable. Using every other sensor, 

(except y) results in a system that is not observable. Furthermore, measuring y alone results in a 

barely observable system.  

[𝐶]1 = {

𝜈
𝑟
𝜓
𝑦

} = {

0
1
1
1

} → [𝑂𝐵]1 =

[
 
 
 
 
𝐶
𝐶𝐴
𝐶𝐴2

⋮
𝐶𝐴𝑛−1]

 
 
 
 

= [

0 1 1 1
−0.8673 −0.2682 1 0
1.7823
−5.6352

1.6074
−2.5879

0
0

0
0

] (26) 

[𝐶]2 = {

𝜈
𝑟
𝜓
𝑦

} = {

0
1
0
1

} → [𝑂𝐵]2 =

[
 
 
 
 
𝐶
𝐶𝐴
𝐶𝐴2

⋮
𝐶𝐴𝑛−1]

 
 
 
 

= [

0 1 0 1
−0.8673 −1.2682 1 0
3.6496
−10.7624

2.8756
−4.7717

0
0

0
0

] (27) 

[𝐶]2 = {

𝜈
𝑟
𝜓
𝑦

} = {

0
0
0
1

} → [𝑂𝐵]3 =

[
 
 
 
 
𝐶
𝐶𝐴
𝐶𝐴2

⋮
𝐶𝐴𝑛−1]

 
 
 
 

= [

0 0 0 1
1 0 1 0

−1.4776
0.8917

0.6917
−0.4217

0
0

0
0

] (28) 

[𝐶]2 = {

𝜈
𝑟
𝜓
𝑦

} = {

1
1
1
0

} → [𝑂𝐵]4 =

[
 
 
 
 
𝐶
𝐶𝐴
𝐶𝐴2

⋮
𝐶𝐴𝑛−1]

 
 
 
 

= [

1 1 1 0
−3.3450 −0.5764 1 0
6.90190
−12.1843

1.7621
−4.0900

0
0

0
0

] (29) 

 

  
(a) (b) 

  

(c) (d) 

Figure 8. Simulations starting 30 degrees off heading with gains via rule of thumb state observer gains.
(a) True and estimated sway velocity, ν(t); (b) true and estimated turning rate, r(t); (c) true and estimated
heading angle, ψ(t); and (d) true and estimated cross track, y(t).
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Figure 9. Simulations starting one boat-length starboard with gains via rule of thumb. (a) True and
estimated sway velocity, ν(t); (b) true and estimated turning rate, r(t); (c) true and estimated heading
angle, ψ(t); and (d) true and estimated cross track, y(t).

Assuming y is to be measured by a sensor, Table 4 reveals that measuring ν in addition to y
produces the most observable system, and is recommended for designing reduced-order observers.
The drawback is measuring ν requires a Doppler sonar, which may not always be available. If all
states are measureable except ν the resulting reduced-order observer merely estimates ν using gains
on the measureable states displayed in Table 5. Figure 10 reveals a very good estimation of ν

when all other states are sensed, and this estimated value of ν was fed to the motion controller
in addition to the measured states (the poorly estimated states were neglected instead favoring
the more-accurate measurements). State convergence to zero is achieved in the instance of state
initialization 30 degrees off-heading. Figure 11 displays similar results for the instance of state
initialization one boat-length starboard.

Table 4. Observability matrix condition number for options to supplement the y measurement.

Sensors Used to Measure States Observability Matrix Condition Number 1

y and ν 8.8456
y and r 21.1306
y and ψ 31.2919

1 Reminder: a high condition number means a less observable system.
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Table 5. Reduced-order observer gains designed by rule of thumb for various time constants as a multiple
of the controller time constant, tc.

Multiple of the Controller Time Constant Used for Observer Observer Gain Matrix
1
10 tc

1 {
−0.2174 0 0.1164

}T

2tc
{

0.4069 0 −0.2179
}T

10tc
{

0.5941 0 −0.3182
}T

1 Relatively faster 1
10 tc is used in subsequent simulations.
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Figure 10. Simulations starting 30 degrees off heading gains via rule of thumb reduced-order state
observer gains. (a) True and estimated sway velocity, ν(t) versus time (seconds); (b) true and estimated
turning rate, r(t) versus time (seconds); (c) true and estimated heading angle, ψ(t) versus time (seconds);
and (d) true and estimated cross track, y(t) versus time (seconds).
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Figure 11. Simulations starting one boat-length starboard with gains via rule of thumb reduced-order
state observer gains. (a) True and estimated sway velocity, ν(t) versus time (seconds); (b) true and
estimated turning rate, r(t) versus time (seconds); (c) true and estimated heading angle, ψ(t) versus
time (seconds); and (d) true and estimated cross track, y(t) versus time (seconds).

2.3.3. Gain Margin and Phase Margin

Figure 12 compares the loop gains of the system with and without a compensator via the gain
margin and phase margin with full-state feedback, while Figure 13 displays the loop gains when
output-feedback via observers is used. Each has relative strengths. Full state (theoretical) feedback
yields an infinite gain margin, yet a relatively lower phase margin (usually consider more important of
the two), while output feedback (real-world) yields a good (but lesser) gain margin with an increased
phase margin.
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2.4. Tracking Systems and Feed-Forward Control in the Presence of Constant Disturbance Currents 

This section evolves the earlier developed system equations and performance analysis by 
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Figure 13. The 61.4 degree gain margin and 145 degree phase margin using a reduced-order observer
(both rule of thumb gains for half-controller tc = 0.5, and compensator with rule of thumb gains (tc = 1).
(a) Root locus; and (b) Bode plot.

2.4. Tracking Systems and Feed-Forward Control in the Presence of Constant Disturbance Currents

This section evolves the earlier developed system equations and performance analysis by adding
non-quiescent conditions, in particular an introduction of a lateral underwater ocean current with
an absolute velocity, υ0, requiring a modification of the system equations to add the lateral current to
Equation (4) resulting in Equation (30):

.
y = sinψ + νcosψ + υ0 (30)

2.4.1. Analysis of Disturbed System in Ocean Currents via State Equations and Simulations

Using the controller (Equation (19)) and the modified system equations where Equation (4) is
replaced by Equation (29), and applying the final value theorem: f (t)t→∞sF(s)s→0, a steady state value
1/ω+1 has some variable quantity added to unity for various υ0. Thus, steady-state errors exist in all
cases with such disturbances, which is verified by simulations depicted in Figures 14 and 15 using gain
values from the rule of thumb (ROT) for the unity time constant. The steady-state errors are directly
proportional to the disturbance magnitude. Figure 8 displays the maximum rudder deflection for the
maximal lateral ocean current in the study (to verify the control design this continues to remain less
than 0.4 radians).
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Figure 14. Steady-state position error for various lateral underwater ocean currents.
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Figure 15. Feedback alone is unable to counter the constant lateral underwater ocean currents.
(a) Rudder deflection, υ0 = 0.5; and (b) steady state error vs. υ0.

2.4.2. Elimination of Steady-State Error Using Feed-Forward Control

The control law is modified to {u} f eed f orward = {δ} = −K1υ− K2r− K3ψ− K4y− K0 in order
to eliminate the steady-state error, where K0 is chosen to ensure zero steady-state error, where the
feedback gains are chosen by the rule of thumb, and the results are displayed in Figures 16 and 17.
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Figure 16. Feed-forward element included to counter constant lateral underwater ocean currents.
(a) Rudder deflection, υ0 = 0.5; and (b) all states when υ0 = 0.5.
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Figure 17. Comparison: feedback control with and without feed-forward (υ0 = 0.5).

2.5. Disturbance Estimation with Reduced-Order Observer and Integral Control

Section 2.4 demonstrated feed-forward control effectively countered the disturbance currents,
but the current was presumed to be known. To be truly effective, the reduced-order observer is next
augmented to include estimation of the unknown disturbance current velocity ν̂c, where the observer
now estimates the disturbance current velocity, the lateral sway velocity, ν, the lateral deviation
(cross-track error), y, and the heading angle, ψ. Figure 18a,b displays the estimates of the unknown
current for two current velocity conditions: ν̂c1 = νest1 = 0.1 and ν̂c2 = νest2 = 0.5, respectively,
while Figure 18c,d display the y and ψ states for each current velocity condition. Notice how large
rudder deflections modify the heading angle to the command-tracking value which counters the
disturbance current (sometimes referred to as “crabbing”), and after establishing the crab heading
angle, the rudder deflection shifts towards zero, illustrating the effectiveness of command tracking.

Figure 19 displays all the states versus time in seconds and also the trajectory when a worst-case
unknown disturbance current υc = 0.5 is applied and estimated by the reduced-order observer where
the observer gains are solutions to the linear quadratic Gaussian optimization. Meanwhile Figure 20
displays the results in cases utilizing command tracking with reduced order observer and with
command: ψ = −0.5 and sinusoidal disturbance current υc(0) = Asin(0.1t), but no disturbance
estimation or feed-forward, while Figure 20 uses disturbance estimation, feed-forward, and rule
of thumb gains. Figure 21 displays utilization of command tracking with reduced order observer,
with command: ψ = −0.5, sinusoidal disturbance current νc0 = Asin(0.1t), disturbance estimation,
and feed-forward and rule of thumb gains. Lastly, Figure 22 displays the performance of reduced-order
observers, which is especially useful in instances of limited at-sea computational capabilities.
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Figure 18. Reduced-order observer state estimates versus time (seconds) for two disturbance 
currents 𝜐𝜐𝑐𝑐0 = [0.1 0.5] , where Δ  is the rudder deflection using these estimates when the 
worst-case disturbance current is applied. (a) Sway velocity; (b) disturbance current; (c) lateral 
deviation (cross-track error); and (d) heading angle. 
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Figure 19. Performance with disturbance estimation and command tracking using LQR and rule of 
thumb gains in a reduced-order observer, and command tracking to 𝜓𝜓 = −0.5 amidst a constant 
disturbance current 𝜐𝜐c = 0.5. (a) States; and (b) trajectory. 
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Figure 20. Utilization of command tracking with reduced order observer, with command: 𝜓𝜓 = −0.5 
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Figure 18. Reduced-order observer state estimates versus time (seconds) for two disturbance currents
υc0 = [ 0.1 0.5 ], where ∆ is the rudder deflection using these estimates when the worst-case
disturbance current is applied. (a) Sway velocity; (b) disturbance current; (c) lateral deviation
(cross-track error); and (d) heading angle.
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Figure 19. Performance with disturbance estimation and command tracking using LQR and rule
of thumb gains in a reduced-order observer, and command tracking to ψ = −0.5 amidst a constant
disturbance current υc = 0.5. (a) States; and (b) trajectory.
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Figure 20. Utilization of command tracking with reduced order observer, with command: ψ = −0.5
and sinusoidal disturbance current νc0 = Asin(0.1t), but no disturbance estimation or feed-forward.
(a) All states vs. time (seconds); and (b) trajectory.
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Figure 21. Utilization of command tracking with reduced order observer, with command: ψ = −0.5,
sinusoidal disturbance current νc0 = Asin(0.1t), disturbance estimation, and feed-forward and rule of
thumb gains.
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Figure 22. Utilization of command tracking with reduced order observer, with command: ψ =−0.5 and
sinusoidal disturbance current νc0 = Asin(0.1t). (a) With disturbance estimation (and feed-forward),
reduced order observer; and (b) with integral control, but no disturbance estimation or feed-forward.

2.6. Waypoint Guidance

A simple line-of-sight guidance routine was employed based on fixing waypoints through
a minefield in order to navigate to a specified point and safely return home. The coordinates are fed to
a logic determining when to turn per Equation (31), where d is the distance to the waypoint, and the
heading command was autonomously calculated per Equation (32):

Turn i f :
√
(xc − x)2 + (yc − y)2 ≤ d (31)

ψcommand = Ktan−1
(

yc − y
xc − x

)
(32)

Particular attention is brought to the inverse tangent calculation, since quadrants must be
preserved in the calculation since the vehicle will navigate in 360 degrees.

3. Results

The following paragraphs mirror Section 2 above to provide a concise description of the
simulation experiments to provide a concise and precise description of the experimental results,



J. Mar. Sci. Eng. 2018, 6, 98 20 of 26

their interpretation, as well as the experimental conclusions that can be drawn in each sub-topic
introduced and developed so far. Some new developments naturally follow in the paragraphs of the
results in response to the lessons learned.

3.1. System Dynamics

Some basic lessons come from a brief analysis of the uncontrolled system dynamics. The open
loop plant equations are potentially unstable (at least persistently oscillatory) with respect to only
the bow rudder, while the relationship can be stable with respect to the stern rudder alone. Can be
stable is exaggerated to emphasize the presence of pole-zero cancellation, which is an unwise practice
(especially in this instance with both poles and zeros at the origin on the stability boundary) unless the
estimates for the constants in the system equations are very well known. The analysis of the dynamics
also revealed the bow rudder was least relatively-effective at maneuvering alone when compared to
the stern rudder, however, the bow rudder does enhance vehicle maneuverability when used together
with the stern rudder as a “scissored-pair” where the sign of the maneuver angle is opposite for each
rudder. This “scissored-pair” constraint simplified the many-in-many-out (MIMO) control design,
allowing the design engineer to treat the system as a single-in-single-out (SISO) design, since one
rudder’s deflection becomes a dependent variable constrained to the other rudder’s deflection.

3.2. Control Law Design

Baseline proportional-derivative control designs effectively stabilized the dynamics, but were
ineffective in the presence of a constant lateral open ocean current. Gains selected by rule of thumb
performed similar to the linear-quadratic optimal control designs, so this underwater vehicle control
could be designed at sea with rudimentary math in instances when higher level computational
abilities are not available. Augmentation of the control including gains tuned to reject the constant
current proved effective, but required the current to be measured to permit the control component
to be properly tuned. Furthermore, when the lateral disturbance current had sinusoidal variation,
the controller was rendered ineffective in rejecting the disturbance.

3.3. Observer Design

The submersible vehicle’s system equations were verified observable by calculation of
a full-ranked observability matrix in Section 2.3. A full sate observer was designed first to permit
vehicle control with “full state feedback”, yet without directly measuring velocity. Observer gains
may be tuned using classical methods in the general spirit of duality between controller and
observers. Their dual nature also permits the matrix Ricatti equation to produce optimal gains
for a linear-quadratic cost function that exclusively emphasizes state estimation error, unlike the
controller optimization where the cost function balanced control effort with state error. State observers
permit the vehicle operator to have smooth, calculated estimates of all states at all times, which proves
useful in the event of sensor interruptions or failures, and reduced-ordered observers may be used
in instances where computations on-board the vehicle must be limited, for example to minimize
computer size, weight, and/or power.

Especially in light of naturally occurring (roughly) sinusoidal variations in ocean current,
the system equations were augmented to include the presumed-unknown disturbance as a state.

3.4. Tracking Systems and Feed-Forward Control in the Presence of Disturbance Currents

Simple feed-forward control elements proved effective against known or estimated constant lateral
disturbance currents by allowing the vehicle to autonomously perform “set-and-drift” principles where
a highly-trained helmsman would turn the bow of a ship into a current, but the simple feed-forward
elements were ineffective at countering currents with sinusoidal variation. In the set and drift principle
the heading is de facto non-zero, so the vehicle cannot simultaneously maintain center-pointing
while countering the disturbance. If such a requirement were added, designers must decouple the
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scissored-pair rudder constraint and design the rudder commands separately to simultaneously
counter the disturbance while maintaining centerline pointing.

3.5. Disturbance Estimation and Integral Control

Full-ordered observers effectively estimated constant and sinusoidal disturbance currents and
proved useful in the control designs for feed-forward control, but, furthermore, reduced-ordered
observers were applied in cases where disturbances were forces and moments and feed-forward
control was not used. Integral control was used instead to drive the steady-state error to zero where
sufficiently large time constants were used for the integrator, i.e., the fifth pole in the pole placement
control must be less negative than the other poles.

3.6. Fully-Assembled System Demonstration

In light of all these results, a fully-assembled control system was used to navigate the
proper mathematical models of the Phoenix autonomous submersible vehicle through a simulated
200 m × 500 m minefield in the presence of unknown ocean currents. The field was populated
randomly with 30+ mines, and the vehicle successfully traversed the minefield in the presence of
an unknown 0.5 m/s current with a miss distance from the nearest mine not less than 5 m, navigating
from the starting point to pass within 0.5 m of a commanded en route point at sea, and then return to
the start point. The outer loop controller used line-of-sight guidance to provide heading commands to
the inner loop, and the inner loop controller was an output-feedback heading controller. Two control
strategies both proved effective: linear-quadratic Gaussian, and approximate optimal pole-placement
by rule of thumb. In the linear-quadratic Gaussian case, both the controller gains and observer gains were
selected by optimization of the respective matrix Ricatti equation. Figure 23 displays the completed
maneuver where each dot displays the location of a randomly-placed mine. Full state feedback was
achieved with state observers via the certainly equivalence principle and the states were utilized
in a proportional-derivative-integral feedback control architecture. Detailed outputs and figures of
merit are plotted in Figures 24–28, including performance of a second transit of the minefield for
validation purposes.
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4. Discussion 

The results of this study establish both classical and modern control paradigms to guide 
autonomous submersible vehicles through obstacles in unknown ocean currents. Assuming the 
availability of the recent technologies cited in the Introduction, methods were investigate to use 
these technologies to guide a submersed vehicle along a preplanned path through a field of 
randomly place obstacles. The constituent technologies investigated in Section 2 were then 
combined in a fully-assembled system demonstration in Section 3 (Results), where the figure of 
merit used to assess the efficacy of the proposed methods is the maintenance of the miss distance 
from submersible objects in ocean currents. The conclusions from the experiments follow: both 
elegant and simplified autonomous controls proved effective (achieving consistent miss distance 
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4. Discussion

The results of this study establish both classical and modern control paradigms to guide
autonomous submersible vehicles through obstacles in unknown ocean currents. Assuming the
availability of the recent technologies cited in the Introduction, methods were investigate to use these
technologies to guide a submersed vehicle along a preplanned path through a field of randomly
place obstacles. The constituent technologies investigated in Section 2 were then combined in
a fully-assembled system demonstration in Section 3 (Results), where the figure of merit used to
assess the efficacy of the proposed methods is the maintenance of the miss distance from submersible
objects in ocean currents. The conclusions from the experiments follow: both elegant and simplified
autonomous controls proved effective (achieving consistent miss distance from mines greater than
the goal of five meters), making this technology immediately accessible to low-end technology
implementations. The results are consistent with the significant body of literature on motion mechanics
in the presence of unknown disturbances with the added complication of restricted path planning due
to randomly-placed obstacles, where mines were used in this study driving an additional requirement
of minimum safe distance for obstacle passage. This consistency with the current literature leads to
a natural direction for future research, since recent innovations in nonlinear idealized (and sometimes
also adaptive) methods have recently proven to be natural extensions of technology in these fields.
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These recent innovations stem from the imminent realization that the United States has been,
for many years, preoccupied with low-intensity conflicts against technologically inferior opponents at
a time when competitor nations have made great technological advancements in navigation and motion
mechanics. The advancements in motion mechanics, as embodied in recent warhead maneuvering
advancements for nuclear weapons, are exacerbated by a glaring reduction in the technical prowess of
the American nuclear enterprise resulting in a very recent reinvigoration of the critical thinking abilities
of the enterprise through education efforts designed to return the American enterprise to the forefront
of technology in these areas. The idealized nonlinear methods are a part of the renewed education
effort, and accompanying the renewed emphasis in this direction, the sequel to this manuscript should
include an investigation of idealized nonlinear and adaptive methods with a direct comparison to
the current state-of-the art including time-optimal control methods. The implications of the current
American deficit expanded in this year’s nuclear posture review indicate a steady funding source for
such education in the near future.

Immediate future research will attempt to improve obstacle avoidance performance using
nonlinear Feed-forward methods from the referenced literature when they show real promise.
Another area of future research is the investigation of the limiting conditions of system parameter
variation under which the rule-of-thumb technique remains effective, although it is assumed to
be generically effective, since the system time constant method would be appropriately applied
to any system equation. They key to effectiveness lies in online knowledge of the parameter
variations, which is a natural extension of the nonlinear feed-forward methods to be investigated.
The impetus for this research is the realization the United States has been preoccupied in the
Middle East [26] and has lost the technical edge. In light of recent diplomatic failures [27] together
with blatant signs of an insufficiently educated enterprise [28,29], and coupled with a resurgently
aggressive defense posture [30,31], new efforts seek to elevate the critical thinking abilities of the
enterprise with focused education including the topics elaborated in this manuscript amongst many
others [32–36] in hopes that future enterprise members will be increasingly well prepared for highly
technical defense missions [37–39]. A natural sequel to this manuscript would utilize most recent
advancements in vehicle kinematics [40] in addition to the aforementioned methods ([32–36] in
particular), which comprise nonlinear mathematical amplifications of the linear methods utilized here,
and the impacts on critical thinking of enterprise members should be assessed after these methods are
incorporated into a standard curriculum.
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