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Abstract: Impulse waves are generated by landslides or avalanches impacting oceans, lakes or
reservoirs, for example. Non-breaking impulse wave runup on slope angles ranging from 10◦ to 90◦

(V/H: 1/5.7 to 1/0) is investigated. The prediction of runup heights induced by these waves is an
important parameter for hazard assessment and mitigation. An experimental dataset containing
359 runup heights by impulse and solitary waves is compiled from several published sources.
Existing equations, both empirical and analytical, are then applied to this dataset to assess their
prediction quality on an extended parameter range. Based on this analysis, a new prediction equation
is proposed. The main findings are: (1) solitary waves are a suitable proxy for modelling impulse
wave runup; (2) commonly applied equations from the literature may underestimate the runup height
of small wave amplitudes; (3) the proposed semi-empirical equations predict the overall dataset
within ±20% scatter for relative wave crest amplitudes ε, i.e., the wave crest amplitude normalised
with the stillwater depth, between 0.007 and 0.69.
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1. Introduction

Impulse waves are generated by very rapid gravity-driven mass movements including landslides
and avalanches impacting a body of water (Heller et al. [1]). The slide energy is transferred to
the water column and a wave train is generated, which propagates away from the impact location.
Especially water bodies with steep shorelines, e.g., fjords, mountain lakes or reservoirs, are prone to
this tsunami-like hazard. Roberts et al. [2] compiled a global catalogue with 254 landslide-generated
impulse wave events. In the past, extreme absolute impulse wave runup heights were observed
in Lituya Bay, USA, in 1958 with 524 m (Miller [3]), Chehalis Lake, Canada, in 2007 with 38 m
(Roberts et al. [4]), and Taan Fjord, USA, in 2015 with 193 m (Higman et al. [5]).

For hazard mitigation, the runup height R is of primary interest (Figure 1). While the impulse wave
events given above are extreme cases, comparably small runup heights at densely populated lake shores
may already cause substantial damage (Fuchs and Boes [6]). Particularly in reservoirs, where there is a
freeboard of just a few meters between the stillwater level and the dam crest, the prediction of runup by
small impulse wave amplitudes needs to be as accurate as possible to prevent overtopping. Müller [7]
conducted experiments specifically designed to study the runup of impulse waves and derived an
empirical prediction equation for the runup height induced by the first or leading wave, respectively,
of the impulse wave train. However, also equations derived from experiments with solitary waves
are commonly applied to predict runup heights by impulse waves (e.g., Bregoli et al. [8], McFall and
Fritz [9]). While a solitary wave features a single wave crest, impulse waves are characterized by an
outgoing wave train with multiple wave crests and troughs (Figure 1).
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studies on solitary wave runup on gentle slopes (Pujara et al. [10], Hafsteinsson et al. [11]), only 

equations derived from experiments with β ≥ 10° or those commonly applied for this parameter 

range are included. A dataset consisting of measured runup heights from both impulse wave and 

solitary wave (index Sol) runup experiments with β between 10° and 90° (vertical wall) is then 

compiled from published experimental data. Subsequently, the runup equations are applied to these 

data for runup prediction. Based on this comparison, a semi‐empirical runup equation is proposed. 

The discussion includes the limitations of this equation and assesses the significance of scale effects. 

 

Figure 1. Definition plot for impulse (solid line) and solitary wave (dashed line) runup on an inclined 

slope. 

2. Runup Equations 

The governing parameters included in the prediction equations for the runup height described 

below are: wave crest amplitude a, wave height H, wave length L, stillwater depth h, and runup 

slope angle β (Figure 1). While H is a combined parameter of the first wave crest and trough 

amplitudes for impulse waves, H = a for solitary waves. The relative wave crest amplitude is defined 

as ε = a /h. While the length of a solitary wave is infinite (Dean and Dalrymple [12]), it may be 

approximated with LSol as the effective wave length (Lo et al. [13]). For empirically derived 

prediction equations included below, the corresponding datasets are described in the following 

section. 
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In the original publication, the runup slope angle β was expressed in radians, whereas its unit is in 

(°) in Equation (3). Since this equation was derived for solitary wave runup, ε is included as the 

single governing wave parameter. Hall and Watts [14] state the application range for Equation (3) 

with β between 12° and 45°. A different equation is given for β between 5° and 12°. However, the 

Figure 1. Definition plot for impulse (solid line) and solitary wave (dashed line) runup on an
inclined slope.

This study focuses on non-breaking impulse wave runup on steep slopes, i.e., slope angles β ≥ 10◦

(Figure 1). First, runup equations from the literature are discussed. Since there is a multitude of studies
on solitary wave runup on gentle slopes (Pujara et al. [10], Hafsteinsson et al. [11]), only equations
derived from experiments with β ≥ 10◦ or those commonly applied for this parameter range are
included. A dataset consisting of measured runup heights from both impulse wave and solitary wave
(index Sol) runup experiments with β between 10◦ and 90◦ (vertical wall) is then compiled from
published experimental data. Subsequently, the runup equations are applied to these data for runup
prediction. Based on this comparison, a semi-empirical runup equation is proposed. The discussion
includes the limitations of this equation and assesses the significance of scale effects.

2. Runup Equations

The governing parameters included in the prediction equations for the runup height described
below are: wave crest amplitude a, wave height H, wave length L, stillwater depth h, and runup slope
angle β (Figure 1). While H is a combined parameter of the first wave crest and trough amplitudes
for impulse waves, H = a for solitary waves. The relative wave crest amplitude is defined as ε = a /h.
While the length of a solitary wave is infinite (Dean and Dalrymple [12]), it may be approximated with
LSol as the effective wave length (Lo et al. [13]). For empirically derived prediction equations included
below, the corresponding datasets are described in the following section.

Müller [7] approximated the runup height R of impulse waves based on wave channel
experiments with

R
h
= 1.25

(
H
h

)1.25(H
L

)−0.15(90◦

β

)0.2
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Equation (1) contains the two governing wave parameters, H and L. The last term including β

equals to 1 for 90◦ and increases for decreasing β. To predict the runup height of a solitary wave,
its effective wave length may be approximated with (Lo et al. [13])

LSol =
2πh√
0.75ε

. (2)

Hall and Watts [14] approximated the runup height R of solitary waves also based on wave
channel experiments with

R
h
= 3.05

(
β

180◦
π

)−0.13
ε1.15( β

180◦ π)
0.02

(3)

In the original publication, the runup slope angle β was expressed in radians, whereas its unit is
in (◦) in Equation (3). Since this equation was derived for solitary wave runup, ε is included as the
single governing wave parameter. Hall and Watts [14] state the application range for Equation (3) with
β between 12◦ and 45◦. A different equation is given for β between 5◦ and 12◦. However, the latter will
not be considered in the further analysis, while Equation (3) will be applied to runup angles between
10◦ and 45◦ for simplification.
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As the third empirical runup equation, Fuchs and Hager [15] approximated the runup height R of
solitary waves in wave channel experiments with

R
h
= 3(tan β)−0.05ε (4)

The governing wave parameter is ε. The runup slope β is included in a tangent function. As the
tangent of β = 90◦ is not defined, wave runup at a vertical wall may not be predicted with Equation (4).

Synolakis [16] developed an approximate solution of the nonlinear wave theory and applied it to
derive an equation describing the maximum runup height R of a solitary wave with

R
h
= 2.831(cot β)0.5ε1.25, (5)

referred to as the runup law. Equation (5) is formally correct for ε0.5 � 0.288 tan β (Synolakis [16]).
The theoretical approach is compared to own experimental data for a gentle slope with β ≈ 2.9◦

(tanβ = 1/19.85) as well as to selected experiments with non-breaking wave runup data by Hall and
Watts [14] with β between 5◦ and 45◦. Synolakis [16] finds a satisfactory agreement except for β = 45◦.
Similar to Equation (4), the cotangent of β = 90◦ equals to zero and therefore wave runup at a vertical
wall may not be predicted with Equation (5).

Except for Equation (1), none of the other equations considered runup at a vertical wall,
i.e., β = 90◦. Su and Mirie [17] studied the collision of two solitary waves and conducted a perturbation
analysis of this phenomenon to the third order. If viscosity and surface tension effects are neglected,
the case of two colliding solitary waves with the same amplitude is equal to the runup of a single wave
at a vertical wall (Cooker et al. [18]). The maximum runup height R for β = 90◦ is stated by Su and
Mirie [17] with

R
h
= 2ε +

1
2

ε2 +
3
4

ε3. (6)

For very small relative wave amplitudes, the relative runup height R/h converges to 2ε.
Maxworthy [19] presents experimental results for both wave-wave interaction and wave-wall
interaction, which indicate that the maximum superposed wave amplitude or runup height,
respectively, is approximately 10% higher in the former than in the latter case. However,
these experiments were conducted at stillwater depths between 4.5 and 6.7 cm and viscosity as
well as surface tension effects might have had a more significant influence compared to larger scales.

3. Datasets

Five experimental datasets were included in the analysis presented herein: Müller [7] (n = 166),
Hall and Watts [14] (n = 138), Fuchs [20] (n = 19), Street and Camfield [21] (n = 22), and Maxworthy [19]
(n = 14) with a total of n = 359 experiments. Their respective key parameter ranges are summarized in
Table 1. In Müller’s [7] experiments, wave trains with multiple wave crests and troughs were generated
to reproduce landslide generated impulse wave characteristics, while the other experimental series
document solitary waves, i.e., a = H (Figure 1). Therefore, the waves generated in the experiments by
Müller [7] will be referred to in the following as impulse waves, while the remaining are solitary waves.
The generated relative wave amplitudes ε range from 0.007 to 0.69 and runup slope angles β from 10◦

to 90◦ (vertical wall). While empirical prediction equations were directly derived from the datasets
by Müller [7], Hall and Watts [14], and Fuchs [15] as described in the previous section, the data by
Street and Camfield [20] and Maxworthy [19] for β = 90◦ is included to assess the analytically derived
Equation (6) by Su and Mirie [17].
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Table 1. Parameter ranges of datasets included in the analysis.

Dataset h (m) β (◦) ε (-) R/h (-) a/H (-)

Müller [7] 0.2–0.6 18.4–90 0.007–0.495 0.014–1.143 0.57–1.04
Hall and Watts [14] 0.15–0.69 10–45 0.05–0.56 0.09–1.82 1 (1)

Fuchs [20] 0.2 11.3–33.7 0.10–0.69 0.33–2.30 1 (1)

Street and Camfield [21] 0.152–0.305 90 0.10–0.65 0.18–1.75 1 (1)

Maxworthy [19] 0.045–0.067 90 0.12–0.67 0.28–1.55 1 (1)

(1) Solitary wave.

Müller [7] conducted experiments in a wave channel with a length of 19.25 m, a width of 1 m,
and a depth of 1.2 m. The impulse waves were generated by a rectangular box falling vertically onto
the water surface at one end of the channel. The box mass ranged from 118 to 422 kg. By adjusting
box mass, drop height, and water depth, tests with differing wave characteristics were achieved.
Parallel wire wave gauges were applied for measuring the water surface displacement. The installed
slope angles β were 18.4◦, 45◦ and 90◦. For tracking the maximum runup height R of the first wave
at the vertical wall (β = 90◦), also wire wave gauges were applied. For the two milder slopes, R was
optically recorded. The accuracy of the wave gauges is given with ±0.1 mm and for the optical method
with ±1 to 2 mm. Repeatability tests yielded deviation < 1% for runup heights R > 40 mm and a larger
scatter of 10% for R < 40 mm. Figure 2 shows the wave crest celerities c (see Figure 1) of the first
outgoing wave within the impulse wave train as a function of ε. Compared to the celerity of a solitary
wave defined by Russell [22] as:

cSol√
gh

=
√

1 + ε, (7)

the measured impulse wave celerities mainly scatter between 95% and 103% of the solitary wave
celerity. This agrees with the findings by McFall and Fritz [23] and Evers et al. [24] for spatial impulse
wave propagation in wave basins. The relative wave length L/h of Müller’s [7] experiments range
between 9 and 56. According to Dean and Dalrymple [12], the generated waves cover the transition
zone from intermediate-water (2 < L/h≤ 20) to shallow-water (L/h > 20). The measured wave celerities
confirm this classification. In line with the additional text information in Müller [7], experiments no. 474,
589, 601, and 602 were not included in the analysis. The experiments featuring roughness elements at
β = 18.4◦ (no. 562–588) were also not considered. All other experiments from Müller’s [7] appendix
providing sufficient information on the impulse wave characteristics as well as the runup height
were included in the analysis. The number of experiments included from Müller [7] is n = 166 (63 at
β = 18.4◦, 17 at β = 45◦, 86 at β = 90◦).

The experiments by Hall and Watts [14] were conducted in a wave channel with a length of 25.9 m,
a width of 4.3 m, and a depth of 1.2 m. The solitary waves were generated with a “pusher type” wave
generator featuring a vertical pusher face mounted to a trolley, which was mechanically linked to a
gravitationally accelerated drop weight. Both, wave height and runup height were optically measured.
Besides slope angles β = 10◦, 15◦, 25◦, and 45◦, also β = 5◦ was installed in the channel. However,
the latter was not included into this analysis. The measured wave celerities cSol are within 88% to 94%
of Equation (7) (Figure 2). Two experiments were not included into the analysis for this study as they
were quite outside the trend of neighboring data points and therefore classified as obvious outliers
(R/h = 0.535 and 0.679, both at β = 10◦). The number of experiments included from Hall and Watts [14]
is n = 138 (38 at β = 10◦, 37 at β = 15◦, 31 at β = 25◦, 32 at β = 45◦).
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Fuchs [20] conducted experiments with a pneumatic piston-type wave generator in an 11 m long,
0.5 m wide, and 1 m deep channel. The inclinations of the runup slopes were set to tan β = 1/5, 1/2.5,
and 1/1.5; i.e., β ≈ 11.3◦, 21.8◦, and 33.7◦. The solitary wave profiles were tracked with ultrasonic
distance sensors and runup heights were measured optically. The measured wave celerities average
out at 99.1% of Equation (7) (Figure 2). The number of experiments included from Fuchs [20] is n = 19
(7 at β = 11.3◦, 6 at β = 22.8◦, 6 at β = 33.6◦).

Street and Camfield [21] studied solitary wave reflection at a vertical wall, i.e., β = 90◦, in a 17 m
long subsection of a channel with a length of 35 m and a width of 0.91 m. The piston-type wave
generator was controlled with a hydraulic-servo-electronic system. Wave amplitudes were measured
with capacitance wave gauges. Near shore deformation details were optically recorded. The runup
data by Street and Camfield [21] was extracted with WebPlotDigitizer [25] from the original publication.
The number of experiments included from Street and Camfield [21] is n = 22.

Maxworthy [19] studied solitary wave reflection at a vertical wall as well as head-on collision
between two solitary waves in a 5 m long, 0.2 m wide, and 0.3 m deep channel. Only runup data at the
wall was considered for this study. The waves were generated manually by pulling a plate through the
channel. The wave characteristics and the runup height were measured optically. The runup data by
Maxworthy [19] was extracted with WebPlotDigitizer [25] from the original publication. The number
of experiments included from Maxworthy [19] is n = 14.

In total, 359 experiments were included into the analysis. The available information on wave
celerities and lengths indicates that the waves contained in the dataset may be classified into the
transition zone from intermediate-water to shallow-water or long waves, respectively. Figure 3a
shows the runup height R over the wave amplitude a versus the slope parameter So introduced by
Grilli et al. [26] with

So = 1.521
tan β√

ε
, (8)
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for the overall dataset except for the experiments with β = 90◦. So allows for assessing whether a
solitary wave is breaking or non-breaking during runup. Grilli et al. [26] stated So > 0.37 as the criterion
for non-breaking solitary wave runup. As β approaches 90◦, So tends to infinity. Therefore, experiments
with β = 90◦ are not included in Figure 3. All other experiments satisfy So ≥ 0.37. The experiment by
Fuchs [20] with So = 0.37 (Figure 3), β ≈ 11.3◦, and ε = 0.69 is shown in Figure 4 and features no distinct
wave breaking characteristics. It is therefore assumed that the overall dataset consists of non-breaking
wave runup. The limiting criterion ε0.5 � 0.288 tanβ for Equation (5) stated by Synolakis [16] may be
reformulated as So � 5.28 (Pujara et al. [10]) and is also included in Figure 3. Several experiments
feature So values close to and larger than 5.28.
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Hall and Watts (HW) [14], and Fuchs (Fu) [20]. 

Figure 3. (a) Runup height over wave amplitude R/a and (b) runup height over stillwater depth R/h
versus slope parameter So for experiments from data sources from Müller (Mü) [7] (without β = 90◦),
Hall and Watts (HW) [14], and Fuchs (Fu) [20].
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4. Results

4.1. Existing Prediction Equations

Equation (1) by Müller [7] predicts its underlying data well within a±20% scatter range (Figure 5).
Only few experiments with β = 18.4◦ exceed this range, i.e., the actually measured runup heights
are more than 20% larger than the predicted values. Equation (2) was applied to get the effective
wave length LSol to allow for the prediction of the solitary wave experiments by Hall and Watts [14],
Fuchs [20], Street and Camfield [21], and Maxworthy [19]. However, these experiments are broadly
underestimated and the measured runup heights are up to 70% higher than their prediction.
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Figure 5. Measured over predicted (Equation (1) by Müller [7]) runup height Rmeas/Rpred versus
relative wave crest amplitude ε for experiments from data sources from Müller (Mü) [7], Hall and Watts
(HW) [14], Fuchs (Fu) [20], Street and Camfield (SC) [21], and Maxworthy (Ma) [19].

The data by Hall and Watts [14] is predicted well within a ±20% scatter range by their empirically
derived Equation (3) (Figure 6). Additionally, the runup experiments by Street and Camfield [21]
and Maxworthy [19] with β = 90◦ are predicted within this range, although vertical walls were not
considered by Hall and Watts [14]. For small relative wave amplitudes ε < 0.05 to 0.1, the measured
runup heights are up to 50% larger than the predicted values. Mainly the impulse wave data by
Müller [7] is affected by this underestimation, as it features small ε. For ε > 0.1, impulse wave runup is
also well predicted.
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Figure 7 excludes runup data at vertical walls, since Equation (4) by Fuchs and Hager [15] is not
defined for β = 90◦. Equation (4) predicts its underlying data well. Additionally, the measured runup
heights at β = 10◦, 15◦, and 18.4◦ scatter within ±20% of the prediction. However, the runup data for
β = 25◦ and 45◦ are predicted too conservatively for ε < 0.2, i.e., the actual runup heights are up to 40%
smaller than their predicted values.
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Figure 7. Measured over predicted (Equation (4) by Fuchs and Hager [15]) runup height Rmeas/Rpred

versus relative wave crest amplitude ε for experiments from data sources from Müller (Mü) [7]
(without β = 90◦), Hall and Watts (HW) [14], and Fuchs (Fu) [20].

Equation (5) by Synolakis [16] yields runup heights equal to zero for β = 90◦. Therefore,
these experiments are excluded from Figure 8. The measured values scatter broadly around the
predicted runup heights both for solitary and impulse waves. While the measured runup heights
for ε > 0.2 are up to 50% smaller, the measurements for ε < 0.2 are up to 100% above the prediction.
The slope parameter So of the latter experiments is close to 5.28, the upper limiting criterion of
Equation (5).
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Figure 8. Measured over predicted (Equation (5) by Synolakis [16]) runup height Rmeas/Rpred

versus relative wave crest amplitude ε for experiments from data sources from Müller (Mü) [7]
(without β = 90◦), Hall and Watts (HW) [14], and Fuchs (Fu) [20].

Equation (6) by Su and Mirie [17] was analytically derived for solitary wave runup at a vertical
wall. Both impulse and solitary wave experiments with β = 90◦ scatter narrowly within ±20% around
the prediction (Figure 9). There is no distinct effect of ε on the prediction quality, even for small ε. Also,
the data with β = 45◦ scatter within this range. With decreasing slope angle β, the measured runup
heights are more and more underestimated. For β < 20◦, the measurements are up to 80% larger than
the predictions. However, this underestimation appears to be smaller for large ε.
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Figure 9. Measured over predicted (Equation (6) by Su and Mirie [17]) runup height Rmeas/Rpred

versus relative wave crest amplitude ε for experiments from data sources from Müller (Mü) [7], Hall and
Watts (HW) [14], Fuchs (Fu) [20], Street and Camfield (SC) [21], and Maxworthy (Ma) [19].

4.2. New Prediction Equation

Based on the findings in the previous sections, a new prediction approach is proposed.
While Equation (1) by Müller [7] adequately captures the effect of the slope angle β from 18.4◦

to 90◦, Equation (6) by Su and Mirie [17] yields good runup predictions at vertical walls for a broad
range of wave amplitudes ε. In Figure 10, the runup heights of the overall experimental dataset are
approximated (R2 = 0.98) with:

R
h
=

(
2ε +

1
2

ε2 +
3
4

ε3
)(

90◦

β

)0.2
. (9)

The first bracket includes Equation (6) by Su and Mirie [17] and the second bracket includes the
effect of β from Equation (1) by Müller [7]. For β = 90◦ the latter term equals to 1 and for β = 10◦ it is
approximately 1.55, i.e., the runup height increases with decreasing β. The measured runup heights
scatter within circa ±25% of the prediction (Figure 10). The 2.5th and 97.5th percentile whiskers in
Figure 11a show that more than 95% of the experiments are within a ±20% range. The maximum
deviations of single experiments are within ±30%. These experiments include ε < 0.2 as well as large ε

at comparatively gentle slope angles β = 10◦ and 11.3◦. Figure 11b shows the direct comparison of the
measured relative runup heights Rmeas/h versus the predicted Rpred/h.
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Fuchs (Fu) [20], Street and Camfield (SC) [21], and Maxworthy (Ma) [19].
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Figure 11. (a) Histogram and boxplot with whiskers at 2.5th and 97.5th percentile of measured over
predicted (Equation (9)) runup heights Rmeas/Rpred and (b) measured versus predicted runup heights
R over stillwater depth h of the overall dataset.

As a simplified version of Equation (9), the following prediction equation for non-breaking
impulse and solitary wave runup on steep to vertical slopes is proposed (R2 = 0.98):

R
h
= 2εe0.4ε

(
90◦

β

)0.2
. (10)

The term 2εe0.4ε in Equation (10) approximates Su and Mirie’s [17] Equation (6) by multiplying the
minimum runup height of 2ε for very small relative wave amplitudes ε with an exponential function
accounting for the second- and third-order effects, which become significant for large ε. 33 additional
experiments are added as a validation dataset to Figure 12, including data from Pedersen et al. [27]
(n = 5; β = 10◦), Li and Raichlen [28] (n = 22; β = 25.7◦), and Losada et al. [29] (n = 6; β = 45◦, 70◦,
90◦; taken from Maiti and Sen [30]). The additional relative wave crest amplitudes ε range from
0.026 to 0.48. The scatter plot (R2 = 0.98) of Equation (10) in Figure 12 is very similar to Figure 10
based on Equation (9). As shown in Figure 13a, the overall scatter is slightly shifted to the side of
caution, i.e., overestimation, by this approximation therefore having a minor effect on the overall
prediction quality. Figure 13b compares the approximation 2εe0.4ε with Equation (6). The deviations
are around ±2% within the range of the analyzed dataset (ε ≤ 0.69) and −4% for a maximum ε = 0.78
(McCowan [31]).
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Figure 12. Measured over predicted (Equation (10)) runup height Rmeas/Rpred versus relative wave
crest amplitude ε for experiments from data sources from Müller (Mü) [7], Hall and Watts (HW) [14],
Fuchs (Fu) [20], Street and Camfield (SC) [21], Maxworthy (Ma) [19], Pedersen et al. (Pe) [27], Li and
Raichlen (LR) [28], and Losada et al. (Lo) [29].
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Figure 13. (a) Histogram and boxplot with whiskers at 2.5th and 97.5th percentile of measured over
predicted (Equation (10)) runup height Rmeas/Rpred of the overall dataset; (b) 2εe0.4ε over Equation (6)
versus relative wave amplitude ε.

5. Discussion

With So ≥ 0.37, the overall dataset is assumed to include non-breaking wave runup. Considering a
maximum relative wave crest amplitude ε = 0.78 before runup according to McCowan [31],
the minimum slope angle satisfying So = 0.37 is β = 12◦. For this study, also experiments with
β = 10◦ and 11.3◦ were analyzed, which would lead to wave breaking for ε = 0.78 according to So.
Equation (10) tends to overestimate runup heights by large ε on these slopes (Figure 12). Therefore
So = 0.37 is considered the lower application boundary of Equation (10) for β from 10◦ to 90◦.
Pujara et al. [10] proposed a more conservative breaking criterion So ≈ 0.4 to 0.5. With So > 0.5
to ensure no wave-breaking at β = 10◦, the maximum amplitude is ε ≤ 0.3, which still provides a useful
range of application for less steep slopes.

Compared to Equation (1) by Müller [7], the new prediction Equation (10) contains solely the
relative wave crest amplitude ε as the governing wave parameter instead of the wave height H and the
wave length L. For the assessment of landslide generated impulse wave events, prediction equations
are applied in sequence to cover a particular process chain, e.g., wave generation and runup
(Bregoli et al. [8], McFall and Fritz [9]). In this context, the maximum relative scatter of a target
value, e.g., R, is derived from the scatter of its individual input parameters, e.g., ε, H and/or L
(Heller et al. [1]). While the scatter is not significantly altered by substituting H and L with ε for
predicting Müller’s [7] measurements (Figures 5 and 12), the prediction uncertainty for the entire
process chain may be reduced by including fewer parameters.

Fuchs and Hager [32] conducted scale family experiments of solitary wave runup and observed
no significant scale effects for h ≥ 0.08 m at β = 11.3◦. For their smallest investigated ε = 0.1,
this corresponds to a minimum runup height R = 25 mm. The dataset by Müller [7] contains six
experiments at β = 18.4◦ with R between 12 and 24 mm induced by ε from 0.007 to 0.014. As shown
in Figure 12, these experiments scatter around ±20% of the prediction. This range reflects the
measurement accuracy as well as the experimental accuracy from repeatability tests (Müller [7]). As no
distinct trend is observed in the data, scale effects are considered negligible. Also, the experiments by
Maxworthy [19] feature R < 25 mm. However, these experiments were conducted at a much steeper
slope with β = 90◦. In addition, the measured runup heights show no distinct deviation compared
to the experiments by Street and Camfield [21], which were conducted at a three to four times larger
scale (Figure 9).

The experimental setups considered in this study feature two-dimensional, plane, and smooth
runup slopes, which represent a simplification of shorelines at prototype scale. Additional prototype
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parameters include three-dimensional slope features, non-constant slopes, and rough surfaces.
Strong curvatures along the shoreline cause flow diversion and concentration, respectively,
which might lead to a significant over- or underestimation of the actual runup height. Therefore,
Equation (10) should only be applied to evenly formed slope bathymetries and topographies.
Non-constant slopes complicate the determination of a single slope angle β. A sensitivity analysis
allows for assessing the influence of β for the slope range derived from field data. The term of
Equation (10) including the slope angle β yields larger runup heights for decreasing β. A decrease
from 90◦ to 45◦ leads to an increase in runup height of 15%. A decrease from 20◦ to 10◦ also leads to an
increase of 15%. Therefore, the effect of β is stronger for lower slope angles. Teng et al. [33] conducted
experiments on solitary wave runup on both smooth and rough slopes. The roughness effect was found
to be negligible on relatively steep slopes (β ≥ 20◦), while it reduced the measured runup heights by
up to approximately 30% for β = 15◦ and by 50% for β = 10◦. However, runup height estimation based
on Equation (10), which is derived from experiments featuring smooth slopes, would err on the side of
caution. Finally, the scatter range of ±20% needs to be taken into account as a safety margin for runup
height predictions at prototype scale.

6. Conclusions

The runup height of impulse waves as well as solitary waves on slope angles between 10◦ and
90◦ was analyzed. While a solitary wave features a single wave crest without a following trough,
an impulse wave train consists of multiple wave crests and troughs. A dataset with n = 359 experiments
was compiled from literature including runup heights by both wave types. Regarding impulse wave
runup, the first wave within the wave train was analyzed based on the experiments by Müller [7].
The overall dataset was compared with both empirical and analytical equations from literature, and a
new semi-empirical prediction equation was presented. Additionally, n = 33 experiments were included
as a validation dataset. The main findings are:

• Solitary waves are a suitable proxy for modelling the runup height of the first wave within an
impulse wave train;

• Commonly applied prediction equations may significantly underestimate the measured runup
heights by small relative wave crest amplitudes ε < 0.1;

• A new equation for non-breaking impulse wave runup on slope angles from 10◦ to 90◦ predicts
the overall dataset within a ±20% scatter for ε between 0.007 and 0.69 as the single wave
input parameter.
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Nomenclature

Symbol Term Unit
a Wave crest amplitude [m]
c Wave crest celerity [m/s]
cSol Solitary wave crest celerity [m/s]
h Stillwater depth [m]
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H Wave height [m]
g Gravitational acceleration [m/s2]
L Wave length [m]
LSol Solitary wave length [m]
n Number of experiments [-]
R Runup height [m]
R2 Coefficient of determination [-]
So Slope parameter [-]
β Slope angle [◦]
ε Relative wave crest amplitude [-]
Fu Fuchs [20]
HW Hall and Watts [14]
Li Li and Raichlen [28]
Lo Losada et al. [29]
Ma Maxworthy [19]
Mü Müller [7]
Pe Pedersen et al. [27]
SC Street and Camfield [21]
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