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Abstract

:

Modern geoscience research pays significant attention to Quaternary coastal boulder deposits, although the evidence from the earlier geologic periods can be of great importance. The undertaken compilation of the literature permits to indicate 21 articles devoted to such deposits of Neogene age. These are chiefly case studies. Such an insufficiency of investigations may be linked to poor preservation potential of coastal boulder deposits and methodological difficulties. Equal attention has been paid by geoscientists to Miocene and Pliocene deposits. Taking into account the much shorter duration of the Pliocene, an overemphasis of boulders of this age becomes evident. Hypothetically, this can be explained by more favorable conditions for boulder formation, including a larger number of hurricanes due to the Pliocene warming. Geographically, the studies of the Neogene coastal boulder deposits have been undertaken in different parts of the world, but generally in those locations where rocky shores occur nowadays. The relevance of these deposits to storms and tsunamis, rocky shores and deltas, gravity processes, and volcanism has been discussed; however, some other mechanisms of boulder production, transportation, and accumulation (e.g., linked to seismicity and weathering) have been missed.
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1. Introduction


Modern marine sedimentology grows rapidly, and new research directions have strengthened in the past two decades. One of such directions embraces studies of coastal boulders. On the one hand, these studies aim at development of nomenclature of large clasts. Concerning nomenclature, some advances have been made in the works by Blair and McPherson [1], Blott and Pye [2], Bruno and Ruban [3], and Terry and Goff [4]. On the other hand, boulders are regarded as precious evidence of present and ancient rocky shore facies and extreme events (such as storms, tsunamis, hurricanes, typhoons, and cyclones). This evidence has been examined by Autret et al. [5], Bhatt et al. [6], Biolchi et al. [7], Cox et al. [8,9,10], Dawson [11], Engel et al. [12], Erdmann et al. [13], Hearty and Tormey [14], Herterich et al. [15], Hongo et al. [16], Johnson et al. [17,18], Kennedy et al. [19], Kortekaas and Dawson [20], Lau et al. [21], Olsen et al. [22], Paris et al. [23], Pepe et al. [24], Scheffers et al. [25], Schneider et al. [26], Shah-Hosseini et al. [27], Suanez et al. [28], Terry and Goff [29], Terry et al. [30], Trenhaile [31], Watanabe et al. [32], and Weiss and Sheremet [33]. Most probably, the devastating catastrophes like the 2004 Indian Ocean tsunami [34] and the 2011 Tohoku tsunami [35] have fueled the interest of researchers in coastal sedimentology and, particularly, large clasts [36]. Evidently, investigations of the two noted issues often interconnect.



A significant amount of information about coastal boulders has accumulated, and it appears to be highly important to systematize it for further critical analysis and conceptualization. Such an approach is very common in social sciences [37,38,39], although geoscientists, unfortunately, often underestimate its potential. Marine sedimentologists need a simple guide permitting orientation in the growing research direction. The objective of the present paper is to offer an overview of the literature on Neogene coastal boulder deposits with some inferences on the current state of research. The importance of such a bibliographical analysis in megaclast research was demonstrated earlier [40]. The peculiarities of this paper are triplicate. First, it presents a synopsis summarizing the already-published data. Second, it focuses on the principal literature sources on the noted subjects, which means articles in international journals accessible via major bibliographical databases and considering large clasts in their title, abstract, and/or keywords. Third, this paper deals with the only Neogene Period, the sedimentary record of which is significantly more representative than that of the earlier periods, but differs from the Quaternary coastal deposits.




2. Conceptual Basis


2.1. Terminology


The focus of the present paper requires clear definition of several terms, from which two principal terms are “boulder” and “coastal boulder deposit”. Evidently, the former indicates a sedimentary particle (clast, grain), and the latter indicates a specific sediment type consisting of (dominated by) such particles.



In the “classical” geological literature, the term “boulder” refers to particles larger than 256 mm (e.g., according to the widely used Udden–Wentworth classification scheme) [3]. However, intensification of studies of large clasts occurring in storm- and tsunami-related deposits raised the question of a more detailed nomenclature of such sedimentary particles. In 1999, Blair and McPherson [1] proposed a nomenclature of large clasts and limited the upper size of boulders to ~4 m (larger clasts are blocks). Different approaches were proposed later [2,3,4]. Of special interest is the distinction between boulders, mesoboulders, and macroboulders attributing to different categories [4]. Boulders are also opposed to megaclasts (Figure 1). Up to now, there is not broad, international agreement of how large clasts should be termed. As a result of this, it is not a mistake to use the very general term “boulder” for all sedimentary particles larger than 256 mm, except for only some specific studies focusing on the nomenclature development or devoted to a very particular size category of large clasts. In the present paper, this term is considered in such a broad way, and its partial substitutes (like megaclasts) are also taken into account.



The term “coastal boulder deposit” has been used in the works of several authors, although it still requires proper definition. Consideration of the context of its usage in the journal articles permits outlining some characteristics of such a sedimentary formation. These include, particularly, accumulation of boulders distinguished by their large size and/or huge weight [9,10,17,18,25,26,27], angularity with certain roundness [8], high-topography and inland occurrence [8,9,25,27], high-energy coastlines [5,8,15,17], and relevance to storm and tsunami activity [9,10,18,26,27]. It is notable that the previous works focused more on boulders individually rather than on entire deposits. Even the superficial analysis of the available literature implies that one should distinguish coastal boulder-dominated deposits, i.e., deposits consisting chiefly of boulders (say with their amount of >50%), from coastal boulder-bearing deposits, i.e., deposits dominated by sedimentary particles of lesser size (sand, gravel, cobble, etc.) and bearing a small number or individual boulders. Interestingly, such individual boulders, if too large in size, may look sediment-dominating. The problem seems to be even more complicated in the case of ancient deposits. Large clasts themselves are subject to erosion in the coastal zone with active hydrodynamics, and, thus, large clasts tend to disappear quickly from the geological record. As a result, an ancient coastal boulder-bearing deposit may be legacy of the really existed boulder-dominated deposit. Until these problems are resolved and the nomenclature of large-clast deposits is fixed, it is possible to apply the general term “coastal boulder deposit” broadly, but preferably in those cases when boulders tend to concentrate.



Dewey and Ryan [41] introduced the term “boulderite”. Evidently, this can be applied to boulder-dominated deposits. Importantly, the both modern and ancient deposits of this type are called as boulderites [41]. It is the right of the noted authors to use it so, although one may question whether the term “boulderite” can be used for only ancient boulder-dominated deposits, i.e., sedimentary rocks, not recent sediments.




2.2. Stratigraphical Framework


The Neogene Period lasted ~20.5 Ma, and it is subdivided into the Miocene and Pliocene Epochs. After strong disputes in the 2000s when the Neogene was extended to the Holocene, a “classical” (almost) scheme has been fixed by the International Commission on Stratigraphy (Table 1), although it is not excluded that the formal definition of the Anthropocene would result in reorganization of the Late Cenozoic stratigraphical nomenclature with subsequent changes in the extent of the Neogene.



What is necessary to note is the significant disproportion of the Neogene subdivision: the Miocene constitutes ~87% of the period length, and, thus, the Pliocene seems to be too short. This fact should be taken into account when the temporal distribution of any class of geological objects like coastal boulder deposits is analyzed by epochs.





3. Bibliographical Synopsis


3.1. Research Foci


Although coastal boulder deposits are mentioned in the modern geoscience literature not so rarely, the majority of works deal with the recent and Quaternary boulders. The knowledge of the Neogene sediments of this type remains very restricted. The number of the principal sources does not exceed two dozen. Most probably, this reflects the both low preservation potential of large clasts that themselves are subject of erosion and destruction starting immediately after their deposition and the absence of well-known and broadly accepted techniques for their investigations in the geological record. Nonetheless, the research in the Neogene coastal boulder deposits intensified in the 2010s when up to a half of these principal works were published (Table 2).



Interestingly, different researchers use different terminology (Table 3). The majority informs about boulders. In only one case megaclasts are mentioned. Coastal boulder deposits are indicated in five works, although in none of them the term “coastal boulder deposit” is used. These deposits are recognized as boulder beach, boulder conglomerate, or boulderite. Boulder-bearing conglomerate and breccia are also considered, but these should be distinguished from boulder-dominated deposits (see terminological notes above). Finally, a few works employ two or even three terms simultaneously.



The majority of the works are case studies focusing on a given location and given stratigraphical intervals. Only two papers of general kind (conceptual) are found (Table 4). The first is the synthetic work of Johnson [52] who overviewed the knowledge of rocky shorelines where boulders often accumulate and the relevant palaeoecosystems. Particularly, he noted that the Neogene deposits of this facies are often linked to ramps, in contrast to the dominance of terrace deposits in the Pleistocene. The second paper of this kind can be judged conceptual only provisionally because this is dealing with the comparison of the examples of the modern and Neogene coastal boulder deposits with a discussion of their storm versus tsunami origin [41]. Importantly, this paper [41] employs the term “boulderite” as equivalent to “boulder-dominated deposit”. The other works explore some particular aspects of Neogene coastal boulder deposits, including their relevance to extreme events such as storms and tsunamis, as well as palaeoecological issues.



It is possible to classify all principal sources on the basis of their stratigraphical, geographical, and genetic foci (Table 4 and Table 5). The main observations are as follows. First, Miocene and Pliocene coastal boulder deposits have been generally considered with attention (Table 4). Second, the relevant studies tend to represent different parts of the world (Table 4). Third, the diversity of the discussed mechanisms leading to boulder production, transportation, and accumulation in coastal zone is moderate if not low (Table 5).




3.2. Further Inferences


The Miocene coastal boulder deposits are considered in 57% of the analyzed works, and those Pliocene are considered in 52% of the works (two articles deal with the both epochs). Apparently, this means equal attention to the both epochs. However, it is necessary to take into account that the Miocene is by ~6.5 times longer than the Pliocene (Table 1). In regard to this fact, it is possible to conclude about significant overemphasis on the Pliocene coastal boulders. Although it cannot be excluded that such a disproportion results from occasional bias in the international research, it can be also hypothesized that the Pliocene environment was more favorable for production and accumulation of boulders in coastal zones of seas and oceans. The evidence of a potentially greater number of hurricanes under the conditions of the Pliocene warming [63,64,65] makes this hypothesis meaningful. For coastal zone dynamics, sea-level fluctuations seem to be important control of boulder production. Rising sea level accelerates abrasion (especially of sea cliffs) and also leads to growth of shoreline length. For instance, boulders are reported from some areas that were embraced by the sea in the Neogene, but are located inland nowadays, as in the case of the Sorbas Basin in Spain [57]. The global sea level was rather high in the Miocene, but it experienced significant fluctuations that intensified in the Pliocene [66,67,68,69,70,71]. On the one hand, the relevant instability of the coastal zones could contribute to more boulder formation. On the other hand, the same instability could trigger boulder motion and destruction by waves.



The geographical distribution of the reported Neogene coastal boulder deposits is broad (Figure 2). Despite the rarity of the described locations, the latter occur in all parts of the world (except for Antarctica). It is notable that these deposits have been described chiefly in the same regions where the modern rocky coasts with boulders exist. This is not surprising because of the absence of too striking differences in the position of continents and oceans between the Neogene and the Recent. However, another, complex explanation can be proposed. Sedimentologists and geomorphologists specialized in the studies of coastal boulder deposits often deal with the modern objects. If so, it is evident that they are able to detect ancient deposits of this kind in the same geographical loci. Nonetheless, it is evident that the knowledge of Quaternary coastal boulders is much wider. For instance, these have been reported from many localities of the Mediterranean, including (but not limited to) Istria [7], Sicily [24], northern Egypt [27], Malta [72], Ibiza [73], Crete [74], Lesvos [75], southern France [76], and Apulia [77]. Better to say, boulders and their accumulations are found on the majority of coasts of the Mediterranean Sea. In contrast, Neogene large clasts are reported from very few localities of the same basin. Most probably, this reflects the both sedimentological research bias and low preservation potential of boulders.



An interesting inference is linked to the origin of the Neogene coastal boulder deposits. Many previous studies focused on their relevance to storms and tsunamis as the leading boulder production, transportation, and accumulation forces, as well as on gravity processes linked to downslope movement with consequent cliff retreat (Figure 3). The main depositional environments analyzed in the course of the coastal boulder research are rocky shores, deltas, and areas of volcanism (Figure 3). On the one hand, it is clear that chiefly extreme events like storms, tsunamis, and volcanic eruptions are able to provide the energy necessary to produce and to move large clasts. On the other hand, it seems to be questionable if some other forces were responsible. For instance, seismicity would cause giant cliff collapse or heterogeneity of exposed substrate would lead to its differential erosion. Finally, what about the possible role of wind erosion in coastal zones? Undoubtedly, identification and correct interpretation of such phenomena even in geological records as young as that of the Neogene is highly challenging and requires very creative analysis. Examples of the latter can be found in the works deciphering the origin of boulders from the Miocene upper bathyal deposits of the Chita Peninsula (Japan) [58,59] ensures the possibility of such state-of-the-art investigations. Anyway, coastal boulders, especially those measured by meters are highly specific and uncommon geological objects, and their analysis should be undertaken in regard to individual peculiarities of each given locality.





4. Conclusions


The bibliographical synopsis of the knowledge of Neogene coastal boulder deposits implies that the relevant research has been weak. Nonetheless, this research has generated significant evidence of these deposits. The main findings of the present analysis are as follows.



(1) Case studies of the Neogene coastal boulder deposits prevail over conceptual works.



(2) Attention has been paid to the both epochs of the Neogene (although with overemphasis on the Pliocene), to many parts of the world, and to the really principal mechanisms of boulder production, transportation, and accumulation (first of all, to extreme events).



(3) The stratigraphical, geographical, and genetic foci of the research demonstrate certain biases that can be explained, particularly, by peculiarities of the geological record.



Generally, this means that although the Neogene coastal boulder deposits are highly specific and rather uncommon geological objects, the latter have been studied more or less adequately to make further interpretations of their relevance to the dynamics of the Neogene world.
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Figure 1. Different definition of boulders (see text for references). 
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Figure 2. Geographical focus of the studies of Neogene coastal boulder deposits (based on Table 4). See Table 2 for locality IDs. 
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Figure 3. Genetic focus of the studies of Neogene coastal boulder deposits (based on Table 5). 
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Table 1. Current version of the Neogene time scale (after International Commission on Stratigraphy [42]).
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Eon

	
Era

	
Period

	
Epoch

	
Stage

	
Numerical Age (Ma) of Stage Start






	
Phanerozoic

	
Cenozoic

	
Quaternary

	
2.580




	
Neogene

	
Pliocene

	
Piacenzian

	
3.600




	
Zanclean

	
5.333




	
Miocene

	
Messinian

	
7.246




	
Tortonian

	
11.63




	
Serravallian

	
13.82




	
Langhian

	
15.97




	
Burdigalian

	
20.44




	
Aquitanian

	
23.03




	
Paleogene

	
66.00
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Table 2. General information about the localities considered in the main articles on Neogene coastal boulder deposits (see also Table 3, Table 4 and Table 5 for terms, ages, and depositional environments).






Table 2. General information about the localities considered in the main articles on Neogene coastal boulder deposits (see also Table 3, Table 4 and Table 5 for terms, ages, and depositional environments).





	
Work

	
Locality ID

	
Location and/or Formation

	
Context of Study






	
Aguirre and Jimenez, 1997 [43]

	
1

	
Almeria-Nijar Basin

	
Palaeobiological: hard-bottom coastal communities




	
Allen et al., 2007 [44]

	
2

	
Manukau Subgroup

	
Sedimentological: submarine volcaniclastic deposition




	
Cantalamessa and Di Celma, 2005 [45]

	
3

	
Mejillones Peninsula

	
Sedimentological: tsunami backwash deposits




	
Dewey and Ryan, 2017 [41]

	
4

	
Matheson Formation

	
Sedimentological: deposition under extreme conditions




	
Edwards et al., 2004 [46]

	
5

	
Lady Julia Percy Island

	
Sedimentological and geomorphological: volcanic environment




	
Emhoff et al., 2012 [47]

	
6

	
Isla Cerralvo, Baja California Sur

	
Stratigraphical and sedimentological: massive crushed-rhodolith deposit




	
Gutierrez-Mas and Mas, 2013 [48]

	
7

	
Gulf of Cadiz

	
Sedimentological: deposition under extreme conditions




	
Hanken et al., 1996 [49]

	
8

	
Northeast Rhodes

	
Sedimentological: deposition in coastal graben




	
Hartley et al., 2001 [50]

	
9

	
Hornitos; La Portada Formation

	
Sedimentological: tsunamite




	
Hood and Nelson, 2012 [51]

	
10

	
eastern Taranaki Basin

	
Sedimentological: carbonate debrites and tectonic control




	
Johnson, 2006 [52]

	
global

	
Sedimentological and palaeobiological: rocky shores and their ecosystems




	
Johnson et al., 2011 [53]

	
11

	
Madeira Archipelago

	
Sedimentological and palaeobiological: rhodolith transport




	
Johnson et al., 2012 [54]

	
6

	
Isla Cerralvo, Baja California Sur

	
Sedimentological and palaeobiological: rhodolith stranding event




	
Le Roux et al., 2004 [55]

	
12

	
Coquimbo Formation

	
Sedimentological: scarp-controlled rocky shoreline




	
Roberts and Brink, 2002 [56]

	
13

	
Western Cape; Prospect Hill Formation

	
Stratigraphical: dating of coastal deposits




	
Rodriguez-Tovar et al., 2015 [57]

	
14

	
Sorbas basin

	
Palaeobiological: borings in gneiss boulders




	
Shiki and Yamazaki, 1996 [58]

	
15

	
Chita Peninsula; Morozaki Group

	
Sedimentological: upper bathyal tsunamites




	
Tachibana and Tsuji, 2011 [59]

	
15

	
Chita Peninsula; Morozaki Group

	
Sedimentological: upper bathyal tsunamites




	
Watkins, 1992 [60]

	
16

	
Salton Trough region; Imperial Formation

	
Sedimentological and palaeobiological: shallow marine conglomerates and the relevant communities




	
Wesselingh et al., 2013 [61]

	
17

	
Balgoy; Oosterhout Formation

	
Palaeobiological: brachiopod-dominated sea-floor assemblage from hardened sandstone boulders




	
Winn and Pousai, 2010 [62]

	
18

	
Papuan Peninsula; Orubadi and Era Formations

	
Sedimentological: alluvial-fan and fan-delta deposition











[image: Table] 





Table 3. Coastal boulder-related terminology in the main articles on Neogene coastal boulder deposits.
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Work

	
Basic Terms




	
Boulder

	
Coastal Boulder Deposit

	
Megaclast

	
Other






	
Aguirre and Jimenez, 1997 [43]

	
+

	

	

	




	
Allen et al., 2007 [44]

	
+

	

	

	




	
Cantalamessa and Di Celma, 2005 [45]

	
+

	

	

	
boulder-bearing breccia




	
Dewey and Ryan, 2017 [41]

	
+

	
boulderite

	
+

	




	
Edwards et al., 2004 [46]

	

	
boulder beach

	

	




	
Emhoff et al., 2012 [47]

	
+

	

	

	




	
Gutierrez-Mas and Mas, 2013 [48]

	
+

	

	

	




	
Hanken et al., 1996 [49]

	

	
boulder beach

	

	




	
Hartley et al., 2001 [50]

	
+

	

	

	




	
Hood and Nelson, 2012 [51]

	
+

	

	

	




	
Johnson, 2006 [52]

	
+

	

	

	




	
Johnson et al., 2011 [53]

	
+

	

	

	




	
Johnson et al., 2012 [54]

	
+

	

	

	




	
Le Roux et al., 2004 [55]

	
+

	

	

	




	
Roberts and Brink, 2002 [56]

	

	
boulder beach

	

	




	
Rodriguez-Tovar et al., 2015 [57]

	
+

	

	

	




	
Shiki and Yamazaki, 1996 [58]

	

	

	

	
boulder-bearing conglomerate




	
Tachibana and Tsuji, 2011 [59]

	
+

	

	

	




	
Watkins, 1992 [60]

	
+

	
boulder conglomerate

	

	




	
Wesselingh et al., 2013 [61]

	
+

	

	

	




	
Winn and Pousai, 2010 [62]

	
+
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Table 4. Stratigraphical and geographical foci of the main articles on Neogene coastal boulder deposits.
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	Work
	Conceptual
	Miocene
	Pliocene
	Location





	Aguirre and Jimenez, 1997 [43]
	
	
	+
	Spain



	Allen et al., 2007 [44]
	
	+
	
	New Zealand



	Cantalamessa and Di Celma, 2005 [45]
	
	+
	
	Chile



	Dewey and Ryan, 2017 [41]
	+
	+
	
	New Zealand



	Edwards et al., 2004 [46]
	
	+
	
	Australia (south)



	Emhoff et al., 2012 [47]
	
	
	+
	Mexico



	Gutierrez-Mas and Mas, 2013 [48]
	
	
	+
	Spain



	Hanken et al., 1996 [49]
	
	
	+
	Greece (Rhodes)



	Hartley et al., 2001 [50]
	
	
	+
	Chile



	Hood and Nelson, 2012 [51]
	
	+
	
	New Zealand



	Johnson, 2006 [52]
	+
	+
	+
	World



	Johnson et al., 2011 [53]
	
	+
	
	Portugal (Madeira)



	Johnson et al., 2012 [54]
	
	
	+
	Mexico



	Le Roux et al., 2004 [55]
	
	+
	+
	Chile



	Roberts and Brink, 2002 [56]
	
	+
	
	South Africa



	Rodriguez-Tovar et al., 2015 [57]
	
	+
	
	Spain



	Shiki and Yamazaki, 1996 [58]
	
	+
	
	Japan



	Tachibana and Tsuji, 2011 [59]
	
	+
	
	Japan



	Watkins, 1992 [60]
	
	
	+
	USA (California)



	Wesselingh et al., 2013 [61]
	
	
	+
	Netherlands



	Winn and Pousai, 2010 [62]
	
	
	+
	Papua New Guinea
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Table 5. Genetic focus of the main articles on Neogene coastal boulder deposits.
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Work

	
Rocky Shore

	
Storm (S), Tsunami (T)

	
Delta, Fan

	
Volcanism

	
Gravity Movement






	
Aguirre and Jimenez, 1997 [43]

	

	

	
+

	

	
+




	
Allen et al., 2007 [44]

	

	

	

	
+

	




	
Cantalamessa and Di Celma, 2005 [45]

	

	
T

	

	

	
+




	
Dewey and Ryan, 2017 [41]

	

	
S, T

	

	

	




	
Edwards et al., 2004 [46]

	

	

	

	
+

	




	
Emhoff et al., 2012 [47]

	

	

	
+

	

	




	
Gutierrez-Mas and Mas, 2013 [48]

	

	
S, T

	

	

	




	
Hanken et al., 1996 [49]

	
not specified




	
Hartley et al., 2001 [50]

	

	
T

	
+

	

	




	
Hood and Nelson, 2012 [51]

	

	
S

	

	

	
+




	
Johnson, 2006 [52]

	
+

	

	

	

	




	
Johnson et al., 2011 [53]

	
+

	
S

	

	
+

	




	
Johnson et al., 2012 [54]

	
+

	
S

	
+

	

	




	
Le Roux et al., 2004 [55]

	
+

	

	

	

	
+




	
Roberts and Brink, 2002 [56]

	
not specified




	
Rodriguez-Tovar et al., 2015 [57]

	
not specified




	
Shiki and Yamazaki, 1996 [58]

	

	
T

	

	

	




	
Tachibana and Tsuji, 2011 [59]

	

	
T

	

	

	




	
Watkins, 1992 [60]

	
+

	

	

	

	
+




	
Wesselingh et al., 2013 [61]

	

	
S

	

	

	




	
Winn and Pousai, 2010 [62]

	

	

	
+

	

	
+












© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).






media/file4.png





nav.xhtml


  jmse-07-00446


  
    		
      jmse-07-00446
    


  




  





media/file0.png





media/file2.png
clast size

-
s EsEEEsENEEEENES

boulder boulder

boulder

“Classical” Blair and Blott and Pye Terry and Goff Bruno and
Udden-Wentworth ~ McPherson (2012) (2014) Ruban (2017)
(pre-1999) (1999)





media/file5.jpg
50

WISIUBD|OA

uejejjag

aloys Ayooy

o
=

o
o~





media/file6.png
__

lwe

LWSIUEDJOA

uejejlag

unsjuols
S N s e

20 —

40—

30—






media/file3.jpg





media/file1.jpg
macro-
boulder

meso-
boulder

clast size

00
block
boulder bouider

“Classical’ Blarand  Blottand Pye Temyand Goff _Bruno and
Udden-Wentworth  McPherson (2012) (2014) Ruban (2017)
(pre-1999) (1999)





