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Abstract: Capon beamforming is often applied in passive sonar to improve the detectability of weak
underwater targets. However, we often have no accurate prior information of the direction-of-arrival
(DOA) of the target in the practical applications of passive sonar. In this case, Capon beamformer
will suffer from performance degradation due to the steering vector error dominated by large DOA
mismatch. To solve this, a new robust Capon beamforming approach is proposed. The essence of
the proposed method is to decompose the actual steering vector into two components by oblique
projection onto a subspace and then estimate the actual steering vector in two steps. First, we estimate
the oblique projection steering vector within the subspace by maximizing the output power while
controlling the power from the sidelobe region. Subsequently, we search for the actual steering
vector within the neighborhood of the estimated oblique projection steering vector by maximizing the
output signal-to-interference-plus-noise ratio (SINR). Semidefinite relaxation and Charnes-Cooper
transformation are utilized to derive convex formulations of the estimation problems, and the
optimal solutions are obtained by the rank-one decomposition theorem. Numerical simulations
demonstrate that the proposed method can provide superior performance, as compared with several
previously proposed robust Capon beamformers in the presence of large DOA mismatch and other
array imperfections.

Keywords: passive sonar; weak target detection; robust Capon beamforming; large DOA mismatch;
two-step steering vector estimation

1. Introduction

Underwater target detection is a primordial task for passive sonar systems. In practical
underwater environments, the presence of the strong underwater targets will severely affect the
detection performance of the weak targets. Therefore, the strong targets are considered as interferences
for the weak targets. Capon beamforming [1,2], as an important pre-processing technique in array
signal processing, is often applied in passive sonar arrays for improving the detectability of weak
underwater targets [3–5]. By extracting the signal of weak targets and suppressing the strong
interferences and noise at the beamformer output simultaneously, Capon beamformer can obtain
the optimal output signal-to-interference-plus-noise ratio (SINR) and prevent the weak sources
from submerging in strong interferences. However, due to some imperfections in practice, such
as direction-of-arrival (DOA) mismatch, imperfect array element calibration, and distorted array
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shape [6–8], the knowledge of the actual steering vector can be inaccurate, which will cause a substantial
degradation in the performance of Capon beamforming.

In recent years, various approaches have been developed to improve the robustness of Capon
beamformer against the steering vector error. Generally, these approaches can be classified into two
categories: The robust constrained approach and the steering vector estimation approach. In the
robust constrained approach, such as the worst-case performance optimization-based approach [9]
and the doubly constrained approach [10,11], the uncertainty constraints on the array magnitude
response or the steering vector error are usually imposed without estimating the actual steering vector.
However, in the case of large steering vector error, a large size of uncertainty set is required in the
robust constrained approach which will weaken the abilities of interference-plus-noise suppression.
On the other hand, the main-lobe of robust constrained beamformer usually points to the presumed
DOA of the signal rather than the actual DOA. Unlike the robust constrained approach, the steering
vector estimation approach searches for the actual steering vector directly based on some prior
information. The most typical beamformer based on steering vector estimation is the so-called
eigenspace-based beamformer (ESB) [12], where the actual steering vector can be well estimated
by utilizing the signal-plus-interference subspace. The ESB is considered to be one of the most
powerful techniques robust to arbitrary steering vector mismatch case [9]. Nevertheless, it will suffer
from severe performance degradation if the dimension of the signal-plus-interference subspace is
misestimated. To solve this problem, some improved steering vector estimation approaches were
proposed. In Reference [13], the actual steering vector is estimated iteratively where a quadratic
convex optimization problem is solved at each iteration. The main drawback of this method is the
high computational complexity due to the iterations. In Reference [14], a nonconvex quadratically
constrained quadratic programming (QCQP) problem and the corresponding relaxation procedure
were developed to estimate the actual steering vector. As compared with the beamformer in
Reference [13], this method has more degrees of freedom and achieves superior performance.

This paper mainly focuses on improving the robustness of Capon beamformer against the steering
vector error dominated by large DOA mismatch. This type of steering vector error is very common
in the practical applications of passive sonar, where the accurate prior information of the DOA of
the signal is usually unavailable [15]. In this case, large DOA mismatch is naturally dominant in the
steering vector error, but other array imperfections can also occur. Besides the beamformers discussed
above, some robust Capon beamformers specially developed to improve the robustness against the
steering vector error dominated by large DOA mismatch have been proposed. Generally, these
beamformers belong to the steering vector estimation approach. In Reference [16], the actual steering
vector is considered to lie in the intersection of two constructed subspaces and can be estimated by the
alternating projection algorithm. However, similar to the ESB, an incorrect estimation of the dimension
of signal-plus-interference subspace will cause performance degradation. In Reference [17], a robust
Capon beamforming method against large DOA mismatch was proposed. This method expresses the
actual steering vector as a linear combination of the columns of a subspace and estimate the coefficients
by maximizing the output power. However, this beamformer lacks robustness against other array
imperfections. To solve this, an improved beamformer was proposed in Reference [18]. By employing
the general-rank signal model-based robust beamforming technique [19], this beamformer provides
further robustness against other array imperfections.

In this paper, we develop a new approach to robust Capon beamforming in the presence of large
DOA mismatch and other array imperfections. Our approach is based on the two-step estimation
of the actual steering vector. By projecting the actual steering vector obliquely onto a subspace, we
can decompose the actual steering vector into two components and then search for them within the
subspace and the neighborhood of the oblique projection steering vector, respectively. It turns out
the natural formulations of the two estimation problems all involve nonconvex objective function or
nonconvex constraint, and therefore are NP-hard to solve. To mitigate this problem, we utilize the
semidefinite relaxation technique [20] and Charnes-Cooper transformation technique [21] to derive
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convex formulations of two estimation problems, and obtain the optimal solutions by applying the
rank-one decomposition theorem [22]. Numerical simulations show that the performance of the
proposed beamformer is always close to the optimal value in the presence of large DOA mismatch and
other array imperfections.

This paper is organized as follows. In Section 2, the array signal model and some backgrounds
on Capon beamforming are introduced. In Section 3, the new robust Capon beamforming method
is proposed. In Section 4, simulation results are presented to demonstrate the effectiveness of the
proposed method. Finally, the paper is concluded in Section 5.

2. Backgrounds

2.1. Array Signal Model

Consider a linear sonar array with M omnidirectional elements receiving narrowband signals
from D(D < M) far-field underwater targets (one desired signal and D − 1 interferences). The
depiction on the array signal model is shown in Figure 1. The kth array snapshot vector x(k) ∈ CM

can be modeled as:
x(k) = xs(k) + xint(k) + n(k) (1)

where xs(k), xint(k), and n(k) denote the signal of interest (SOI), interference and noise components,
respectively. The SOI can be written as xs(k) = as0(k), where a is the steering vector associated with

the SOI and s0(k) is the waveform of the SOI. The interferences can be written as xint(k) =
D−1
∑

i=1
aisi(k),

where ai and si(k) denote the steering vector and the waveform of the ith interference, respectively.
The additive noise n(k) is modeled as a zero-mean spatially and temporally white Gaussian process
with the power σ2

n . Here, the SOI, interferences, and noise are statistically independent with each
other. As shown in Figure 1, we define an angular region of interest (ROI) Θ and its complementary
region Θ, that is, Θ ∪ Θ covers the whole spatial domain and Θ ∩ Θ is empty. The main required
prior information is that the SOI is located in Θ while the interferences are not, which implies that the
accurate DOA of the SOI is not required. Consequently, the DOA uncertainty set is Θ which leads to a
large DOA mismatch scenario.
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2.2. Capon Beamforming

The output of a beamformer is given by:

y(k) = wHx(k) (2)
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where w = [w1, w2, · · · , wM]T ∈ CM is the complex weight vector, (·)T and (·)H denote the transpose
and Hermitian transpose, respectively. The output SINR of a beamformer is defined as:

SINRout =
E
{∣∣wHxs(k)

∣∣2}
E
{
|wH(xint(k) + n(k))|2

} =
σ2

0

∣∣wHa
∣∣2

wHRi+nw
(3)

where σ2
0 = E

{
|s0(k)|2

}
is the power of the SOI, Ri+n = E

{
(xint(k) + n(k))(xint(k) + n(k))H

}
is the

interference-plus-noise covariance matrix and E{·} denotes the statistical expectation. The Capon
beamformer aims at maximizing the output SINR by maintaining a distortionless response towards the
SOI and minimizing the output power of interference-plus-noise. Therefore, the Capon beamformer is
equivalent to:

min
w

wHRi+nw subject to wHa = 1 (4)

Based on the statistical independence among the SOI, interferences, and noise, we can easily
obtain that:

Rx = E
{

x(k)xH(k)
}
= σ2

0 aaH + Ri+n (5)

wHRxw = wHRi+nw + σ2
0

∣∣∣wHa
∣∣∣2 (6)

Hence, Problem (4) is equivalent to:

min
w

wHRxw subject to wHa = 1 (7)

The optimal solution to Problem (7) yields to the weight of standard Capon beamformer (SCB) [2]:

w =
R−1

x a
aHR−1

x a
(8)

In practical applications, Rx is usually unavailable and replaced by the sample covariance matrix:

R̂x =
1
N

N

∑
k=1

x(k)xH(k) (9)

where N is the number of snapshots.

2.3. Effects of Steering Vector Error

It is worth noting that the weight of SCB is based on the assumption that the steering vector of
the SOI is accurately known. In practice, factors such as DOA mismatch and array imperfections
(including array element calibration errors and position errors) can lead to an error between the
presumed steering vector and the actual steering vector, i.e.:

a =
¯
a+e (10)

where
¯
a is the presumed steering vector and e is an unknown error vector. The weight vector of SCB,

when using the sample covariance matrix R̂x and the presumed steering vector
¯
a, is then given by:

w =
R̂−1

x
¯
a

¯
a

H
R̂−1

x
¯
a

(11)
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With Problem (11), the array response at the direction of the SOI can be expressed as follows:

H(a) =
∣∣∣wHa

∣∣∣ =
∣∣∣∣ ¯
a

H
R̂−1

x a
∣∣∣∣∣∣∣∣ ¯

a
H

R̂−1
x

¯
a
∣∣∣∣ =

∣∣∣∣ ¯
a

H
VVHa

∣∣∣∣∣∣∣∣ ¯
a

H
VVH ¯

a
∣∣∣∣ (12)

where V , R̂−1/2
x . Applying the Cauchy-Schwarz inequality, we have that:∣∣∣∣ ¯

a
H

VVHa
∣∣∣∣ ≤ ‖aHV‖‖ ¯

a
H

V‖ (13)

where ‖·‖ denotes the 2-norm operation. By substituting Problem (13) into Problem (12), we can
write that:

H(a) ≤ ‖a
HV‖‖ ¯

a
H

V‖

‖ ¯
a

H
V‖

2 =
‖aHV‖

‖ ¯
a

H
V‖

=

√
1/

¯
a

H
R̂−1

x
¯
a√

1/aHR̂−1
x a

(14)

Based on the Capon spatial spectrum estimator [1], 1/aHR̂−1
x a and 1/

¯
a

H
R̂−1

x
¯
a can be considered

as the power collected from the directions of the SOI and the presumed steering vector, respectively.
Also, it is easy to know that 1/aHR̂−1

x a can be approximated as the power of SOI-plus-noise. Since the

Capon estimator has high resolution in spectrum estimation, 1/aHR̂−1
x a will deviate from 1/

¯
a

H
R̂−1

x
¯
a

as long as the steering vector error occurs between a and
¯
a, resulting in the distortion of the array

response. Particularly when large steering vector error occurs, 1/
¯
a

H
R̂−1

x
¯
a can be approximated as the

power of noise only. In this case, the value of H(a) will decrease as the signal-to-noise ratio (SNR)
increases, which means the enhancement of the distortion at the direction of the SOI. The enhanced
distortion can cause the signal self-nulling phenomenon [13].

As we discussed in Section 1, the steering vector error caused by large DOA mismatch is dominant
in the applications of passive sonar systems. Motivated by this fact, this paper mainly focuses on
estimating the actual steering vector to improve the robustness of Capon beamformer in the case of
large DOA mismatch, but unlike the beamformer in Reference [17], other array imperfections are also
taken into consideration.

3. Proposed Method

Our approach is based on the two-step steering vector estimation. We begin with the
decomposition of the actual steering vector and then formulate two optimization problems to estimate
the actual steering vector in two steps. The corrected beam can be formed by using the estimated
actual steering vector.

3.1. Actual Steering Vector Decomposition

Theoretically, we can build a positive definite matrix C̃ =
∫

Θ a(θ)aH(θ)dθ and obtain a subspace
Ũ spanned by the principal eigenvectors {ũm}L

m=1 of C̃ corresponding to the L largest eigenvalues:

Ũ = [ũ1, ũ2, · · · , ũL] (15)

Here, a(θ) denotes the actual steering vector whose DOA is Θ. Since the L largest eigenvalues
contain most of the energy of the eigenvalues, any actual steering vector {a(θ)|θ ∈ Θ} is believed to
lie within the subspace Ũ. Hence, the actual steering vector can be expressed as a linear combination
of the columns of Ũ:

a = Ũr (16)
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where r is the coefficient vector. In fact, Ũ is unavailable in practice due to the imperfect knowledge
of the actual steering vector. Instead, we build another subspace U spanned by the set of presumed

steering vectors
{ ¯

a(θ)
∣∣∣θ ∈ Θ

}
:

U = [u1, u2, · · · , uL] (17)

where {ũm}L
m=1 denotes the L principal eigenvectors of C =

∫
Θ a(θ)aH(θ)dθ. It can be easily seen that

the matrix C will deviate from the matrix C̃ when steering vector errors occur, leading to a mismatch
between the subspaces Ũ and U:

Ũ = U + ∆U (18)

where ∆U is the M× L mismatch matrix. By substituting Problem (18) into Problem (16), a can be
decomposed into two components, i.e.:

a = aU + e∆ (19)

Here, we define aU , Ur and e∆ , ∆Ur. It can be seen that aU is a vector lying within the
subspace U and e∆ is an error vector caused by ∆U. It is worth mentioning that in the case of only
DOA mismatch, we have U = Ũ, as long as Θ contains the actual DOA of the SOI and avoids all the
interferences. In other words, the existence of DOA mismatch will not result in the mismatch between
U and Ũ. Consequently, the error vector eU , aU −

¯
a, which also lies within U, is dominated by DOA

mismatch while the error vector e∆ is dominated by other array imperfections. Here, the presumed

steering vector
¯
a is an arbitrary element in the set of

{ ¯
a(θ)

∣∣∣θ ∈ Θ
}

.

The relationship among Ũ, U, eU, e∆,
¯
a, aU, and a is depicted geometrically in Figure 2. As shown,

aU can be considered as the oblique projection vector of the actual steering vector a onto the subspace
U and the projection direction is opposite to the direction of the error vector e∆. The basic idea behind
our approach is to estimate the actual steering vector a in two steps. We first search for the oblique
projection steering vector aU within the subspace U and then search for the actual steering vector a
within the neighborhood of aU. In the following subsections, different optimization principles are
utilized to estimate the oblique projection steering vector and the actual steering vector, respectively.
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3.2. Oblique Projection Steering Vector Estimation

Since aU lies within the subspace U, it can be expressed as the linear combination of the columns
of U:

aU = α1u1 + α2u2 + · · ·+ αLuL (20)

By multiplying uH
k (k = 1, · · · , L) on both sides of (20), we can easily obtain the coefficients

αk = uH
k aU(k = 1, 2, · · · , L). Then, Problem (20) can be rewritten as:

aU = UUHaU (21)

By making use of Problem (21), the oblique projection aU can be forced to belong to the subspace
U. Additionally, an equality constraint ‖aU‖ =

√
M, which maintains the norm of the estimated aU, is
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imposed to avoid the scaling ambiguity. Now we can search for aU by maximizing the output power
1/aH

U R̂−1
x aU, which can be formulated as the following optimization problem:

min
aU

aH
U R̂−1

x aU

subject to aU = UUHaU

‖aU‖ =
√

M

(22)

By substituting the equality constraint aU = UUHaU into the objective function, Problem (22) can
be modified as:

min
aU

aH
U UUHR̂−1

x UUHaU

subject to ‖aU‖ =
√

M
(23)

It is worth noting that the solution to Problem (23) may result in the magnification of output

noise especially at low SNR, thus an extra constraint
∣∣∣aH

U
¯
a(θ)

∣∣∣ ≤ ∣∣∣∣ ¯
a

H ¯
a(θ)

∣∣∣∣ for any θ ∈ Θ is invoked

to control the power from the sidelobe region Θ. This constraint can be equivalently expressed as

aH
U

¯
CaU ≤

¯
a

H ¯
C

¯
a, where

¯
C =

∫
Θ a(θ)aH(θ)dθ [13]. Now, the estimation problem can be written as:

min
aU

aH
U UUHR̂−1

x UUHaU

subject to aH
U

¯
CaU ≤

¯
a

H ¯
C

¯
a

‖aU‖ =
√

M

(24)

It is interesting that the steering vector estimation problem in Reference [17] has some insightful
connections to Problem (24). Since the approach in Reference [17] only considers the factor of DOA
mismatch, the actual steering vector is represented as a = Ur directly, where r denotes the coefficient
vector. The origin estimation problem in Reference [17] can be expressed in terms of r as:

min
r

rHUHR̂−1
x Ur

subject to ‖r‖ =
√

M
(25)

Using Problem (21), we can easily obtain r = UHa and then Problem (25) can be equivalently
rewritten as (23). As we discussed above, an extra sidelobe control constraint is introduced in Problem
(24) as compared with Problem (23). Consequently, it is expected that the proposed method can
provide better performance than the beamformer in Reference [17] in the case of large DOA mismatch,
especially in the low SNR region.

Unfortunately, the QCQP Problem (24) is a nonconvex NP-hard problem because of the equality
constraint. Next, we focus on solving Problem (24) in polynomial time. Using the equalities

aH
U UUHR̂−1

x UUHaU = tr(UUHR̂−1
x UUHaUaH

U ), aH
U

¯
CaU = tr(

¯
CaUaH

U ), and aH
U aU = tr(aUaH

U ), where
tr(·) represents the trace of a matrix, Problem (24) can be equivalently written as:

min
aU

tr(UUHR̂−1
x UUHaUaH

U )

subject to tr(
¯
CaUaH

U ) ≤ ¯
a

H ¯
C

¯
a

tr(aUaH
U ) = M

(26)
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By introducing the positive semidefinite matrix variable Q , aUaH
U and using the semidefinite

relaxation technique [20], we obtain the following relaxed problem:

min
Q

tr(R0Q)

subject to tr(R1Q) ≤ β

tr(R2Q) = M

Q ≥ 0

(27)

where R0 , UUHR̂−1
x UUH , R1 ,

¯
C, R2 , IM,β ,

¯
a

H ¯
C

¯
a. Note that we drop the nonconvex rank-one

constraint on Q and just require Q ≥ 0. Problem (27) is a convex semidefinite program (SDP) problem
and can be easily solved. Generally, the solution to the SDP problem may not be exactly rank-one.
Thus, we first check the rank of the optimal solution Q∗. If rank(Q∗) = 1, then we can easily write
Q∗ = a∗Ua∗H

U by eigen-decomposition and a∗U will be the optimal solution to (24). If rank(Q∗) ≥ 2, then
we can adopt the rank-one decomposition theorem [22] to find a rank-one optimal solution a∗Ua∗H

U to
Problem (27), and a∗U is optimal for Problem (24). The rank-one decomposition theorem [22] is cited as
the following lemma.

Lemma 1. Let Ai (i = 0, 1, 2) be M×M (M ≥ 3) complex Hermitian matrices, and X be a nonzero Hermitian
positive semidefinite matrix with rank r.

If r ≥ 3, then one can find a nonzero vector y ∈ Range(X) (synthetically denoted as y =

D1(X, A0, A1, A2)), such that:
tr(AiyyH) = tr(AiX), i = 0, 1, 2 (28)

If r = 2, then for any z /∈ Range(X), one can find a nonzero vector y ∈ CM in the linear subspace
spanned by z and Range(X) (synthetically denoted as y = D2(X, A0, A1, A2)), such that:

tr(AiyyH) = tr(AiX), i = 0, 1, 2 (29)

It follows from Lemma 1 that if rank(Q∗) ≥ 2, we can find a vector a∗U such that:

tr(Ria∗Ua∗H
U ) = tr(RiQ∗), i = 0, 1, 2 (30)

Hence, a∗Ua∗H
U satisfies all the constraints in Problem (27) and the objective function evaluated

at a∗U is equal to the optimal value of Problem (27); as a consequence, a∗Ua∗H
U is optimal for Problem

(27) and a∗U is an optimal solution to Problem (24). The procedure to find the optimal solution a∗U is
summarized in Algorithm 1.

Algorithm 1. Procedure leading to an optimal solution to (24)

Input: R̂x,
¯
a, U and

¯
C

Output: An optimal solution a∗U to (24)
1: solve the SDP problem (27) and find an optimal solution Q∗.
2: if rank(Q∗) = 1, then
3: find the optimal solution a∗U via eigen-decomposition, i.e., Q∗ = a∗Ua∗H

U
4: else if rank(Q∗) = 2, then
5: find a∗U = D2(Q∗, R0, R1, R2)

6: else, then
7: find a∗U = D1(Q∗, R0, R1, R2)

8: end if
9: return a∗U
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3.3. Actual Steering Vector Estimation

Besides the DOA mismatch, the Capon beamformer is also very sensitive to other array
imperfections, which contributes to the error vector e∆ as shown in Figure 2. Based on this fact,
we impose a bounded-norm constraint on the error vector e∆ and assume that the actual steering
vector a lies in a spherical uncertainty set Sa:

a ∈ Sa , {a|‖a− aU‖ ≤ γ} (31)

where γ > 0 is a given constant. In the following derivations, we design a novel objective function
to search for the actual steering vector in Sa. Essentially, the novel objective function is based on
maximizing the output SINR. Based on the introduced array signal model, the output SINR (3) can be
reformulated as follows:

SINRout = wHRsw
wHRintw+wHRnw

=
σ2

0 |wHa|2
D−1
∑

i=1
σ2

i |wH ai|2+σ2
nwHw

(32)

Utilizing the weight of the SCB (8), the array response of the SOI, i.e.,
∣∣wHa

∣∣, is 1, and the array
response of the interference can be obtained by:

H(ai) =
∣∣wHai

∣∣
=
|aHR−1

x ai|
|aHR−1

x a| =
|aHTTHai|
|aHTTHa|

(33)

where T , R−1/2
x . Applying the Cauchy-Schwarz inequality

∣∣aHTTHai
∣∣ ≤ ‖aHT‖‖aH

i T‖, we can
easily have that:

H(ai) ≤
‖aHT‖‖aH

i T‖
‖aHT‖2 =

√
1/aHR−1

x a√
1/aH

i R−1
x a

i

(34)

Moreover, the power of the SOI and the interferences can be given by:

σ2
0 =

1
aHR−1

x a
, σ2

i =
1

aH
i R−1

x ai
(35)

By substituting Problem (33)–(35) into Problem (32), we can write that:

SINRout ≥
1

aHR−1
x a

D−1
aHR−1

x a
+σ2

n
aHR−2

x a

(aHR−1
x a)

2

= 1

D−1+σ2
n

aHR−2
x a

aHR−1
x a

(36)

Hence, the maximization of the output SINR is equivalent to:

max
a

aHR−1
x a

aHR−2
x a

(37)

Using the sample covariance matrix R̂−1
x , the following optimization problem is constructed to

search for the actual steering vector of the SOI in the uncertainty set:

max
a

aHR̂−1
x a

aHR̂−2
x a

subject to ‖a− aU‖ ≤ γ

(38)
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Problem (38) is a nonconvex fractional quadratic optimization problem. With an extra variable
t (t2 = 1), it can be transformed into a homogeneous form:

max
g

tr(P0ggH)

tr(P1ggH)

subject to tr(P2ggH) ≤ γ2

tr(P3ggH) = 1

(39)

where g ,

[
a
t

]
, P0 ,

[
R̂−1

x 0M×1

01×M 0

]
, P1 ,

[
R̂−2

x 0M×1

01×M 0

]
, P2 ,

[
IM −aU

−aH
U aH

U aU

]
, P3 ,[

0M×M 0M×1

01×M 1

]
. We highlight that Problem (38) and Problem (39) have equal optimal values and

their optimal solutions differ from one to another by t, i.e., a∗ = g∗/t. Next, we define the positive
semidefinite matrix variable G , ggH and drop the rank-one constraint on G by applying the
semidefinite relaxation technique [20]. Then, the following relaxed problem can be obtained:

max
G

tr(P0G)

tr(P1G)

subject to tr(P2G) ≤ γ2

tr(P3G) = 1

G ≥ 0

(40)

It is worth mentioning that problem (40) is a quasi-convex problem due to the linear fractional
structure of the objective function. Here, the Charnes-Cooper transformation technique [21] is exploited
in order to transform Problem (40) into a convex SDP problem. We define the transformed variable
W , ηG, where η ≥ 0 complies with tr(P1W) = 1, and consider the following convex SDP problem:

max
W,η

tr(P0W)

subject to tr(P1W) = 1

tr(P2W) ≤ ηγ2

tr(P3W) = η

W ≥ 0, η ≥ 0

(41)

Based on Lemma 3.3 in [21], problem (40) is equivalent to (41) in the sense that they have equal
optimal values and their optimal solutions differ from one to another by a constant η∗. In other words,
once an optimal solution (W∗, η∗) to (41) is obtained, the optimal solution to Problem (40) can be easily
obtained by G∗ = W∗/η∗. Next, we focus on finding an optimal solution to Problem (39) with G∗.
First, we check the rank of G∗. If G∗ = g∗g∗H is rank-one, then g∗ will be the optimal solution to
Problem (39). If rank(G∗) ≥ 2, then there exists a vector g∗ based on Lemma 1 such that:{

tr((P0 − v∗P1)g∗g∗H) = tr((P0 − v∗P1)G∗) = 0
tr(Pig∗g∗H) = tr(PiG∗), i = 2, 3

(42)

Here, v∗ = tr(P0G∗H)/tr(P1G∗H) denotes the optimal value of Problem (40). As shown in
Problem (42), g∗g∗H is feasible to Problem (40) and the objective function evaluated at g∗, i.e.,
tr(P0g∗g∗H)/tr(P1g∗g∗H), is equal to the optimal value v∗; thus, g∗g∗H is optimal for Problem (40)
and g∗ is the optimal solution to Problem (39). Then, the optimal solution to Problem (38) can be easily
obtained by a∗ = g∗/t. Algorithm 2 summarizes the procedure to find an optimal solution a∗.
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Algorithm 2. Procedure leading to an optimal solution to (38)

Input: R̂x, a∗U and γ

Output: An optimal solution a∗ to (38)
1: solve the SDP problem (41), find an optimal solution (W∗, η∗) and the optimal value v∗.
2: let G∗ = W∗/η∗

3: if rank(G∗) = 1, then
4: perform an eigen-decomposition, G∗ = g∗g∗H

5: else if rank(G∗) = 2, then
6: find g∗ = D2(G∗, P0 − v∗P1, P2, P3)

7: else, then
8: find g∗ = D1(G∗, P0 − v∗P1, P2, P3)

9: end if
10: return a∗ = g∗/t

Finally, in order to avoid the ambiguity, the norm of the estimated actual steering vector a∗ should
be scaled back to

√
M:

a∗ :=

√
M
‖a∗‖a∗ (43)

3.4. Proposed Robust Capon Beamformer

With the estimated actual steering vector a∗, the weight of the proposed robust Capon beamformer
can be formulated as:

w =
R̂−1

x a∗

a∗HR̂−1
x a∗

(44)

The proposed robust Capon beamforming algorithm is summarized in Table 1. In the proposed
method, the main computational complexity lies in the solution to the SDP Problem (27) and
Problem (41), which requires a complexity cost of O(M4.5 log(1/δ)) with δ representing a prescribed
accuracy [20], and both the specific rank-one decomposition and the matrix inversion operation require
a computational complexity of O(M3). Consequently, the algorithm complexity of the proposed
method is O(max(M4.5 log(1/δ), M3)).

Table 1. Proposed robust Capon beamforming algorithm.

1. Calculate the sample covariance matrix R̂x as (9)
2. Estimate the actual steering vector a∗ in two steps:
Step 1: Estimate the oblique projection steering vector a∗U via Algorithm 1
Step 2: Estimate the actual steering vector a∗ via Algorithm 2 and normalize it as (43)
3. Calculate the weight w based on R̂x and a∗ as (44)

4. Simulations

In the simulations, we assume a uniform linear sonar array (ULA) of 10 omnidirectional elements
spaced half a wavelength apart receiving three Gaussian sources: the SOI from a direction θ0 ∈ Θ
and two interferences from {θ1 = −40◦, θ2 = 50◦}. The interference-to-noise ratio (INR) is fixed at
40 dB. The presumed look direction is fixed at 0◦. In addition to DOA mismatch, the array element
calibration error and position error are also considered in all simulations. The element calibration error
is caused by gain and phase perturbations, which are assumed to be uniformly distributed in [0.8,1.2]
and [−π/100, π/100], respectively. The element position error is assumed to be drawn uniformly
from the interval [−0.05,0.05] measured in wavelength. Simulation results are averaged based on 1000
Monte-Carlo runs. The array element calibration error and position error change from run to run but
keep fixed from snapshot to snapshot.
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The proposed beamformer is compared with the SCB and robust approaches including the
ESB [12], the Worst-Case beamformer [9], Zhuang’s beamformer [16], Zhang’s beamformer [17], and
Wen’s beamformer [18]. In Zhuang’s, Zhang’s, Wen’s and the proposed beamformer, the ROI Θ
is set to be [−10◦, 10◦]. Six principal eigenvectors of C =

∫
Θ a(θ)aH(θ)dθ, whose corresponding

eigenvalues contain 99.99% of the sum of all eigenvalues, are used to form the subspace U. The values
of the uncertainty level for the Worst-Case beamformer and Wen’s beamformer are set to be ε = 3
and β = 2, respectively. Two cases with ξ = 3 and ξ = 4 are considered in the ESB and Zhuang’s
beamformer, where ξ is the estimated number of sources. The parameter γ = 1.5 is used for the
proposed beamformer. CVX MATLAB toolbox [23] is used for solving the optimization problems in
the Worst-Case beamformer and the proposed method.

4.1. Beampatterns

In the first simulation, we consider the resultant beampatterns of these beamformers. The actual
DOA of the SOI is assumed to be θ0 = 8◦, that is to say, the DOA mismatch is 8◦ in this example.
The number of snapshots N = 500 is taken. Figures 3 and 4 show the resultant beampatterns for
SNR = 0 dB and SNR = −15 dB, respectively. The black dashed lines in Figures 3 and 4 represent the
actual DOAs of the SOI and interferences. As shown, all these beamformers have deep nulls at the
directions of interferences but only the ESB of ξ = 3 and the proposed method point their mainlobes
towards the actual DOA of SOI in both SNR cases. The SCB, the Worst-Case beamformer and Zhuang’s
beamformer point their mainlobes towards the presumed look direction rather than the actual DOA of
the SOI, and the SCB suffers from the problem of signal self-nulling when SNR = 0 dB, because the SOI
is considered as an interference. The ESB of ξ = 4 also does not work well when SNR = 0 dB. Zhang’s
beamformer and Wen’s beamformer fail to maintain the distortionless response towards the actual
DOA of SOI when SNR = −15 dB.
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Figure 3. The resultant beampatterns for SNR = 0 dB. (a) The beampatterns of SCB, ESB, Worst-Case
and the proposed beamformer; (b) The beampatterns of Zhuang’s, Zhang’s, Wen’s and the
proposed beamformer.

4.2. Output SINR versus Number of Snapshots

The second simulation aims to investigate the effect of the number of snapshots on the output
SINR. We vary the number of snapshots from 20 to 1000 while the parameters of the SOI are kept
unchanged. The output SINR versus the number of snapshots for SNR = 0 dB and SNR = −15 dB are
shown in Figure 5a,b, respectively. In the figures, the black bold lines denote the optimal SINR. One
can observe that the output SINR of the SCB, the Worst-Case beamformer and Zhuang’s beamformer
degrade significantly with a DOA mismatch of 8◦. Zhang’s beamformer and Wen’s beamformer
can provide sufficient robustness when SNR = 0 dB; however, their performances suffer from severe



J. Mar. Sci. Eng. 2019, 7, 80 13 of 16

degradation when SNR = −15 dB. The ESB achieves high output SINR in both SNR cases, but it suffers
from the overestimated number of sources. The proposed method achieves the best performance
among all these beamformers.
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proposed beamformer.

J. Mar. Sci. Eng. 2019, 19, x FOR PEER REVIEW 14 of 17 

 

Figure 3. The resultant beampatterns for SNR = 0 dB. (a) The beampatterns of SCB, ESB, Worst-Case 
and the proposed beamformer; (b) The beampatterns of Zhuang’s, Zhang’s, Wen’s and the proposed 
beamformer. 

 
(a) 

 
(b) 

Figure 4. The resultant beampatterns for SNR = −15 dB. (a) The beampatterns of SCB, ESB, Worst-Case 
and the proposed beamformer; (b) The beampatterns of Zhuang’s, Zhang’s, Wen’s and the proposed 
beamformer. 

4.2. Output SINR versus Number of Snapshots 

The second simulation aims to investigate the effect of the number of snapshots on the output 
SINR. We vary the number of snapshots from 20 to 1000 while the parameters of the SOI are kept 
unchanged. The output SINR versus the number of snapshots for SNR = 0 dB and SNR = −15 dB are 
shown in Figure 5a,b, respectively. In the figures, the black bold lines denote the optimal SINR. One 
can observe that the output SINR of the SCB, the Worst-Case beamformer and Zhuang’s beamformer 
degrade significantly with a DOA mismatch of 8 . Zhang’s beamformer and Wen’s beamformer can 
provide sufficient robustness when SNR = 0 dB; however, their performances suffer from severe 
degradation when SNR = −15 dB. The ESB achieves high output SINR in both SNR cases, but it suffers 
from the overestimated number of sources. The proposed method achieves the best performance 
among all these beamformers. 

 
(a) 

 
(b) 

Figure 5. Output SINR versus the number of snapshots for: (a) SNR = 0 dB; and (b) SNR = −15 dB. 

4.3. Output SINR versus Input SNR 

Next, we vary the input SNR in order to investigate the effect of input SNR on the performance 
of these beamformers. Other parameters remain the same as the first example. Figure 6 compares the 
output SINR of the tested beamformers and the optimal SINR is denoted by the black bold line. The 

Figure 5. Output SINR versus the number of snapshots for: (a) SNR = 0 dB; and (b) SNR = −15 dB.

4.3. Output SINR versus Input SNR

Next, we vary the input SNR in order to investigate the effect of input SNR on the performance of
these beamformers. Other parameters remain the same as the first example. Figure 6 compares the
output SINR of the tested beamformers and the optimal SINR is denoted by the black bold line. The
results indicate that the ESB of ξ = 3 and the proposed beamformer achieve the best performance
among these beamformers. The SCB, the ESB of ξ = 4, the Worst-Case beamformer and Zhuang’s
beamformer do not work well with a large DOA mismatch. The performance of Zhang’s beamformer
degrades in the high SNR region. This is because it is sensitive to other array imperfections and the
effects caused by the sensitivity will be enhanced when SNR is larger. Moreover, it also suffers from
severe performance degradation in the low SNR region. Wen’s beamformer has good performance
in the high SNR region; however, its performance in the low SNR region is much worse than the
proposed method.
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4.4. Output SINR versus DOA Mismatch

In this simulation, we generally adopt the parameter setting in the first simulation and vary the
DOA of SOI from −10◦ to 10◦. That is, the DOA mismatch varies from −10◦ to 10◦. The results for
SNR = 0 dB are depicted in Figure 7a, and the results for SNR = −15 dB are depicted in Figure 7b. The
corresponding optimal SINRs at SNR = 0 dB and SNR = −15 dB are represented by the black bold
lines. It is clearly illustrated that the ESB of ξ = 3 and the proposed method outperform the other
beamformers. While Zhang’s beamformer and Wen’s beamformer have sufficient capacity to provide
robustness against large DOA mismatch when SNR = 0 dB, their performances degrade severely when
SNR = −15 dB. The SCB is very sensitive to the DOA mismatch and it is more sensitive when the SNR
is larger. The Worst-Case beamformer, the ESB of ξ = 4 and Zhuang’s beamformer cannot provide
robustness against a large DOA mismatch.
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4.5. Output SINR versus Parameter γ

Lastly, the effect of the parameter γ on the proposed robust Capon beamformer is considered. The
SNR is fixed at 0 dB and other parameters are kept unchanged as the first simulation. Figure 8 shows
the output SINR versus the parameter γ and the black bold line stands for the optimal SINR. One can
observe that the performance of the proposed method remains steady and close to the optimal value
in the range of 0.5 ≤ γ ≤ 3. This implies that the performance of the proposed method is insensitive to
the choice of the parameter γ, and thus we can set γ in a relaxed way.
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From the above simulation results, it is clear that ESB and the proposed method have superior
performance on SINR improvement. The computational complexity of the ESB is O(M3), which is
lower than that of the proposed beamformer. However, in comparison with the ESB which requires
an accurate number of sources, the proposed beamformer only requires a relaxed parameter setting.
Therefore, the proposed method is more suitable for practical applications of passive sonar systems.

5. Conclusions

A new robust Capon beamformer has been proposed in order to improve the robustness against
the steering vector error dominated by large DOA mismatch for passive sonar. The proposed technique
decomposes the actual steering vector into two components by projecting it obliquely onto a subspace.
Based on this, the oblique projection steering vector is estimated within the subspace and then the
actual steering vector is estimated within the neighborhood of the oblique projection steering vector.
Nonconvex formulations for the two estimation problems have been solved by semidefinite relaxation,
Charnes-Cooper transformation and rank-one decomposition theorem. The proposed beamformer
can provide superior performance as compared with existing robust beamformers and only requires a
relaxed parameter setting. Simulation results have been presented to demonstrate the effectiveness of
the proposed beamformer in different hypothetical scenarios.
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