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Abstract: This study aims to develop a simple but effective approach to investigate the stability of an
unsaturated and multilayered coastal-embankment slope during the rainfall, in which a Random
Search Algorithm (RSA) based on the random sampling idea of the Monte Carlo method was employed
to obtain the most dangerous circular sliding surface, whereas the safety factor of the unsaturated
slope was calculated by the modified Morgenstern–Price method. Firstly, two typical distributions of
matric suction were illustrated and the associated methods for determining the strength parameters of
unsaturated soil were developed. Based on this, the Morgenstern–Price method was further modified
to calculate the safety factor, and RSA was adopted to locate the most dangerous sliding surface
of the unsaturated multilayered coastal-embankment slope. Finally, the slope breaking process
under rainfall infiltration was simulated through continuously searching the critical slip surfaces
under different groundwater levels by RSA. The results indicated that the stability of the unsaturated
embankment slope was gradually deteriorated with the increase of rainfall infiltration. It was also
found that both of the distributions of the matrix suction (ua-uw) and the suction angle (ϕb) had
significant effects on the safety factor of the embankment slope. Basically, linear distribution of (ua-uw)
along the depth and linear relationship between ϕb and (ua-uw) should be adopted in assessing the
stability of the unsaturated multilayered coastal-embankment slope.

Keywords: coastal-embankment slope; stability; unsaturated soil; multilayered; matric suction;
random searching algorithm; rainfall infiltration

1. Introduction

As one of the effective defensing coastal structures, embankment slope or breakwater is widely
used to protect ashore human life and property from severe environment (storm, rainfall, long-term
wave loading, etc.). Therefore, the instability of the embankment slope has attracted more and
more attention in coastal engineering with the failure modes of scour [1–4] and shear failure [5–8].
Moreover, most of the above literature has mainly focused on wave-induced seabed instability, in which
the soil was considered as saturated material [4,6,9–13]. However, in practical coastal engineering,
the coastal-embankment slope is always unsaturated and multilayered. Its stability suffers from huge
challenges, especially during rainfall, which has proven to be the key factor linked to landslides [14–18].

As shown in Figure 1, rainfall usually results in a rising of the water table, and a decreasing in matric
suction [19–22]. In addition, as the moisture content increases, the unit weight increases. The combined
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factors mentioned above may reduce the stability of an unsaturated-soil slope. The occurrence of
instabilities of unsaturated slopes during wet periods is quite common all over the world [23,24] and
has an expectable increasing trend in intensity and frequency due to the warming climate [22,24].
Therefore, it becomes more and more urgent to develop a simple but effective method to assess the
stability of the unsaturated-soil slope during rainfall infiltration.

To comprehensively investigate the stability of an unsaturated-soil slope, three key issues should
be addressed, as follows: (1) an appropriate method to determine the matric suction and its associated
strength parameters; (2) a reasonable approach to evaluate the stability of a trial unsaturated-soil
slope; (3) an effective algorithm to search for the critical slip surface. Fredlund and Rahardjo [25]
pointed out that the presence and the magnitude of matric suction (ua-uw), which were critical to
the stability of unsaturated-soil slopes, were dependent on the practical environmental conditions.
For the sake of simplicity, the distribution of matric suction in general is considered to be uniformed
or linearly decreased along the buried depth [26,27]. Recently, Zhang et al. [28] investigated the
effect of the different distributions of matric suction on the overturning stability of the retaining wall
with homogeneous, continuous and non-layered surrounding soils. It was found that the influence
of uniformed suction was more remarkable than that of linear suction. Xu and Yang [21] found
that there is a little difference between the effect of the distribution pattern of matric suction on
stability of three-dimensional unsaturated, homogeneous, continuous and non-layered soil slope.
However, in practice, the ground conditions in the unsaturated region are generally multilayered,
which results in the uncertainty of influence of the matric suction distribution patterns on the stability
of unsaturated-soil slope. Moreover, the existence of the multilayered behavior will significantly
increase the difficulty in the determination of strength parameters when the rigorous limit equilibrium
method was adopted to investigate the safety of the unsaturated-soil slope, which will be analyzed in
detail in a later section.

In practical slope engineering design, the limit equilibrium method (LEM) has proven to be an
efficient tool to investigate the stability of a saturated soil slope under two-dimensional (2-D) plane
strain conditions by computing the safety factor of a given slip surface with some calculation models
(Simplified Bishop method [29], Spencer method [30], Morgenstern–Price method [31], etc.). As the
most rigorous theoretical approach in LEM under 2-D conditions, Morgenstern–Price (represented by
M–P for short) method was firstly developed by Morgenstern and Price in 1965 with the integral form,
which resulted in difficulty in programming. Then, M–P method was improved for the convenience of
programming by Chen et al. [32], Chen et al. [33] and Zhu and Chen [34] with the discrete pattern.
However, both of the improved M–P methods were applicable to compute the safety factor of the
saturated soil slope, which should be modified to investigate the stability of the unsaturated-soil slope
by combined with the failure criterion of unsaturated soil as suggested by Fredlund and Rahardjo [25].

After determining the safety factor of a given slip surface, another work to investigate the stability
of an unsaturated multilayered coastal-embankment slope is to adopt an effect global optimization
algorithm to locate the most dangerous slip surface. In the last few decades, nonlinear programming
approaches were usually adopted to address the failure surface of saturated slope both in practice and
in academic research [35,36]. However, their efficiencies in locating the most dangerous sliding surface
have proven to be poor in the case of multilayered slopes with discontinuous soil properties [37].
The Random Search Algorithm (RSA), developed based on the Monte Carlo principle, behaves
much better in solving complicated optimization problems in comparison to nonlinear programming
approaches [38]. Within the framework of RSA, the global optimal solution can be addressed without
iteration by generating a series of trial solutions randomly and comparing them with current optimum
solution one by one until reaching the maximum number of locating. The main shortcoming of RSA
is the generation of the large number of trial solutions which reduces the calculation efficiency in
the past and has become of secondary importance due to the rapid development of computational
technology. Currently, it has been widely used in determining the most dangerous sliding surface by
search adequate times [39,40].
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Figure 2. Framework of the present study.

It should be noted that the stability of coastal-embankment slope with the unsaturated and
multilayered feature during rainfall were greatly different from those of dry or saturated soils and
should be investigated by a simple and effective approach in consideration of effect of matric suction
distributions and underground water levels. As a consequence, in the framework of this research
(shown in Figure 2), the influence of rainfall infiltration on unsaturated-soil slope was simulated by
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the gradual rise of the groundwater level and strength parameters under different distributions of
matric suction were determined. Then, the M–P method was modified to investigate the safety of the
unsaturated multilayered coastal-embankment slope by combined the rigorous limit equilibrium theory
with failure criterion of unsaturated soil. Furthermore, the RSA developed by Malkawi’s method [40]
was adopted to locate the critical slip surface of the unsaturated multilayered coastal-embankment
slope. Finally, the failure process under the rainfall infiltration was reproduced by searching for the
critical slip surface and the associated safety factor, on which the effect of distribution of the matric
suction was also investigated. In addition, the influence of the determined method of suction angle on
the safety factor is discussed in detail.

2. A Simple Approach to Simulate Rainfall Infiltration

When the rainfall is heavy enough to overcome the hydraulic conductivity of the sub-layer,
the groundwater table will move upward gradually; however, assuming capillarity rising to the
ground surface, the distribution depth of matric suction will decrease until the soil becomes fully
saturated, as depicted in Figure 1. Moreover, the density of Layers 2–3 will lose the effective density
from its natural pattern and the pore-water pressure will decrease with the associated reduction in
the effective stress. Then, the shear strength of soil will drop and the stability of the soil slope will in
turn deteriorate. Actually, the effect of rainfall on stability of unsaturated-soil slope is dependent on
many of factors (rainfall amount, average intensity, duration, pattern, vegetation) [16,19,41]. For more
detailed investigations, it is necessary to address the soil-water profile with 1-D or 2-D infiltration
model to address the effect of infiltration on unsaturated-soil slope’s stability [42], which will make
the problem become more complicated, laborious and computationally expensive [43]. Since the
groundwater level will gradual rise during long-term rainfall infiltration, the effect of rainfall on the
unsaturated coastal-embankment slope can be alternatively reproduced by the progressive elevation
of the groundwater level without considering the interaction between soil and water. For the sake of
simplicity, the phreatic line is assumed to be horizontal in this study as shown in Figure 1.

3. Limit Equilibrium Method of Unsaturated-Multilayered-Soil Slope

3.1. Failure Criterion of Unsaturated-Soil

Fredlund and Rahardjo [25] developed the Mohr–Coulomb criterion to evaluate the failure of the
unsaturated soil through introducing matric suction:

τu = c′+ (σn − uw) tanϕ′+ (ua − uw) tanϕb (1)

where τu = the shear strength; c’ = the effective cohesion; σn = the total normal stress; uw = the
pore-water pressure; ϕ’ = the effective internal friction angle associated with (σn-uw); (ua-uw) = the
matric suction; ϕb = the suction angle. (ua-uw) and ϕb are the key parameters of unsaturated-soil
failure criterion. Furthermore, the value of ϕb is always dependent on (ua-uw) [44], the (ua-uw) has
become a crucial issue unsaturated soil theory [25–28].

3.2. Distributions of Matric Suction

As shown in Equation (1), (ua-uw) and ϕb are the key parameters of unsaturated-soil failure
criterion. Furthermore, the value of ϕb is always dependent on (ua-uw) [44], the accurate determination
of (ua-uw), therefore, is of great important to the failure criterion of unsaturated soil, which has become
a crucial issue in unsaturated-soil theory.
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Although the matric suctions at the ground surface (ua-uw)g can be easily tested by tensiometer,
the underground matric suctions are difficult to test in practical engineering. For the sake of
simplicity, the matric suction is assumed to be distributed along the buried depth by following two
patterns [21,25–28]:

(1) Distribution I
As shown in Figure 3a, the matric suction is uniform along the depth and its value can be half of

the matric suction at the ground surface in a general stratified unsaturated-soil slope.
(2) Distribution II
As shown in Figure 3b, the matric suctions decrease linearly along the depth and attained their

minimum value at the groundwater level.

3.3. Determination of the Strength Parameters under Different Distributions of Matric Suction

For the sake of simplicity, the total cohesion C of unsaturated soil is always considered to be
composed of the effective cohesion and the contribution of suction to strength. Then, Equation (1) can
be reduced to

τu = C + (σn − uw) tanϕ′. (2)

where C is the total cohesion and C = c’+(ua-uw)tanϕb.
The associated soil strength parameters at different depths can be calculated as follows:
(1) For Distribution I
As shown in Figure 3a, assume that the soil slope is composed of three layers (Layer I, Layer II,

Layer III) and for each layer the strength parameters are c’i, ϕ’i (i = 1,2,3). Because of the existence of
(ua-uw) in the soil layers above the groundwater level, the correspondent strength parameters can be
determined as follows:

Ci = c′ j + 0.5(ua − uw)g tanϕb;ϕ′i = ϕ′ j, (i = 1, 2; j = I, II); (3)

Ci = c′ j;ϕ′i = ϕ′ j, (i = 3, 4; j = II, III). (4)

(2) For Distribution II
As shown in Figure 3b, the soil layer above the groundwater level can be divided into (m+n)

small soil layers. In each small layer, the strength parameters are supposed to be uniform and to be
determined as follows,

Ci = c′I + (ua − uw)g tanϕb
× (H − hi)/H;ϕ′i = ϕ′I, (i = 1, 2, · · · , m); (5)

Ci = c′II + 0.5(ua − uw)g tanϕb
× (H − hi)/H;ϕ′i = ϕ′II, (i = m + 1, m + 2, · · · , m + n); (6)

Ci = c′II;ϕ′i = ϕ′II, (i = m + n + 1); (7)

Ci = c′III;ϕ′i = ϕ′III, (i = m + n + 2); (8)

where c’i, ϕ’i(j = I, II, III) = the strength parameters of the original soil layers; (ua-uw)g = the matric
suction at the ground surface; Ci, ϕ’i (i = 1,2, . . . ,m+n+2) = the strength parameters of the divided
small layers; H = the distance between the groundwater level and the top of the slope, hi (i = 1,2,
. . . ,m+n+2) = the distance between the ith small soil layers and the top of the slope.
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(a) Distribution I: uniform distribution of (ua-uw); (b) Distribution II: linear distribution of (ua-uw).

3.4. Modified M-P Method

As shown in Figure 4a, a trial sliding mass was generally divided into several small slices based
on the principle of slice method. The inter-slice forces imposing on the typical slice was further
illustrated in Figure 4b. Within the framework of two-dimensional (2-D) limit equilibrium analysis,
M-P method [31] and its improved pattern [32–34] had proven to be the most rigorous theoretical
approach due to its excellent performance in satisfying both force and moment equilibrium conditions.
However, the aforementioned M–P method and its improved pattern were developed within the
framework of saturated soil and should be modified with reference to the unsaturated soil strength
criterion to exactly address the stability of a two-dimensional unsaturated-soil slope.
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Figure 4. Discrete model and inter-slice forces in the slip surface of an unsaturated-soil slope (a) discrete
model of a slip surface, (b) inter-slice forces.

Based on both of the forces and moment equilibrium of a typical slice (as shown in Figure 4b),
the safety factor with the iteration form can be addressed by the following equations [34]:

Fs =

∑n−1
j=1 R j

∏n−1
k= j Ψk + Rn∑n−1

j=1 P j
∏n−1

k= j Ψk + Pn
(9)

λ =

∑n
j=1

[
b j
(
E j + E j−1

)
tanα j − 2Q jsinω jh j

]
∑n

j=1 b j
(

f jE j + f j−1E j−1
) (10)

E jΦ j = Ψ j−1E j−1Φ j−1 − FsP j + R j (11)

P j = W jsinα j −Q jsin
(
ω j − α j

)
(12)

R j =
[
W jcosα j −Q jcos

(
ω j − α j

)
− u jl j

]
tanϕ′ j + C jl j (13)

Φ j−1 =
(
sinα j−1 − λ f j−1cosα j−1

)
tanϕ′ j−1 +

(
cosα j−1 + λ f j−1sinα j−1

)
Fs (14)

Ψ j−1 =

(
sinα j − λ f j−1cosα j

)
tanϕ′ j +

(
cosα j + λ f j−1sinα j

)
Fs

Φ j−1
(15)

N j =
(
Q jcosω j + W j − λ f j−1E j−1 + λ f jE j

)
cosα j +

(
Q jsinω j + E j−1 − E j

)
sinα j − u jl j (16)

where Fs = the safety factor of the trial sliding surface; λ = the scaling factor; Ej-1 and Ej = the inter-slice
force for slice j-1 and j; Wj = the weight of jth slice; Qj = the external loading; Sj = the shear force;
Nj = the normal pressure; uj = the pore-water pressure at slice-base; ϕ’j and Cj = the mobilized internal
friction angle and total cohesion along; fj-1 and fj = the inter-slice force function for slice j-1 and j which
can be determined by relating them with the horizontal coordinate. Other detailed information about
the model parameters can be found in Reference [34]. The safety factor of a trial sliding surface in the
unsaturated multilayered coastal-embankment slope can be performed as shown in Figure 5.
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4. A Global Algorithm to Search for the Critical Slip Surface of Unsaturated
Coastal-Embankment Slope

As a typical failure mechanism in practical geotechnical engineering, circular sliding surfaces
are widely employed in the stability analysis of saturated soil slopes with both single layer [45–47]
and multilayer [34,48,49]. Then, the aforementioned problem of determining a trial circular failure
surface can be represented by locating the two control intersections (L(xL, yL), R(xR, yR)) and a radius
(Rc) shown in Figure 6, in which the potential sliding surface should be addressed in order to satisfy
the boundary conditions represented by y = g(x) and y = r(x), the hydraulic conditions y = w(x) and
the discontinuity between the layers demonstrated by y = lj(x). Then, the potential sliding surface
represented by S can be expressed as functions of xL, yL, xR, yR and Rc in the following form:

S = [xL, yL, xR, yR, Rc] (17)

On the basis of LEM, the safety factor (Fs) with respect to the most dangerous sliding surface
should be minimized among all of the trial failure surfaces. The issue in terms of locating the most
dangerous slip surface can be mathematically represented by addressing the minimum of Fs with
regard to S as follows:

minFs(S) (18)

Theoretically speaking, the trial circular failure surface can be generated with any combination of
intersections (L(xL, yL), R(xR, yR)) and Rc. However, most of these are invalid due to their impossible
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occurrence in practical engineering. To improve the searching efficiency, the control parameters should
be empirically constrained as:

xLmin ≤ xL ≤ xLmax; xRmin ≤ xR ≤ xRmax; Rcmin ≤ Rc ≤ Rcmax (19)

where xLmax and xLmin = the upper and lower limits of horizontal ordinate of point L; xRmax and
xRmin = the upper and lower limits of horizontal ordinate of point R; Rcmax and Rcmin = the upper and
lower limits of radius. It should be noted that definitions of these parameters should be dependent on
the experience of the researcher.

As shown in Figure 6, the following constraints are considered:

yL = g(xL); yR = g(xR); xL < xR; Rc ≥ ‖LR‖; H + yc ≥ Rc (20)

where H = the distance between the bottom and the lower boundary; ‖LR‖ = the length of LR; yc = the
vertical ordinate of the center of the circular slip surface.

To resolve the problem mentioned above, a trial sliding surface should be firstly addressed by
locating two points and the radius (represented by L, R and Rc shown in Figure 6) within the range of
[xLmin, xLmax], [xRmin, xRmax] and [Rcmin, Rcmax], in which points L and R can be located stochastically
in the following forms:

xL = r1xLmin + (1− r1)xLmax; xR = r2xRmin + (1− r2)xRmax; Rc = r3Rcmin + (1− r3)Rcmax;
yL = g(xL); yR = g(xR)

(21)

where r1, r2 and r3 = stochastic numbers which can be obtained randomly from 0 to 1.
The horizontal and vertical ordinate of O’ can be addressed by the following equations:

(xc − xL)
2 + (yc − yL)

2 = R2
c ; (xc − xR)

2 + (yc − yR)
2 = R2

c (22)

where xc = the horizontal ordinate of O’. There are two groups of solution for Equation (22), and to
make sure the trial slip surface to be reliable, the smaller value of xc and the lager value of yc are used.

The Random Search Algorithm (RSA) is adopted to obtain the most dangerous sliding surface
and the associated minimum safety factor for the unsaturated-soil slope. The detailed procedure for
the RSA can be schematically illustrated in Figure 7.J. Mar. Sci. Eng. 2019, 7, x FOR PEER REVIEW 9 of 20 
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5. Application

5.1. Comparison with the Existing Model

The feasibility of the developed model is assessed by comparison with the numerical results
predicted by Zhang et al. [50], in which both the linear and nonlinear relationship between the
unsaturated shear strength and matric suction determined by the soil-water characteristic curve
(SWCC) were adopted to investigate the effect of matric suction on the slope stability, for a steep
unsaturated-soil slope with 30 m high and 50◦ inclination angle, as illustrated in Figure 8. The parameters
for both models are illustrated in Table 1. In addition, the inclined groundwater table in the research
of Zhang et al. [50] is assumed to be horizontal with an average 5 m below the toe of the slope
for simplicity.

As shown in Figure 8, the critical slip surfaces predicted by both models become gradually
deeper and their associated minimum safety factors progressively decrease with the increase of ϕb.
This is because of the amplification of ϕb which significantly increases the total cohesion (shown
in Equations (3)–(8), and enhances the shear strength (Equation (2)), which in turn improves the
safety factor. Moreover, both the critical slip surfaces (marked by the solid line) and the associated
safety factor always agree well with those (marked by other line type) predicted by Zhang et al. [50].
Therefore, the present method performs well in investigating the stability of the unsaturated-soil slope.
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Table 1. Parameters of soil.

Analysis Case γ′ kN/m3 c′/kPa ϕ′/◦ (ua-uw)g/kPa ϕb/◦

Case 1 18 10 34 200 0
Case 2 18 10 34 200 15
Case 3 18 10 34 200 34
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5.2. Case Study

As shown in Figure 9, an unsaturated coastal-embankment slope with the inclination of 1:1.5
and four layers is subject to long-term rainfall, the stability of which is facing a great challenge.
The physical-mechanical parameters of each layer are illustrated in Table 2.
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Table 2. Physic-mechanical properties of soil.

Layer γ′ kN/m3 c′/kPa ϕ′/◦ (ua-uw)g/kPa ϕb/◦

1 20 0.5 40.0

200 15
2 20 1 42.0

3 19.5 0.0 38.0

4 17 15.0 21.0

To investigate the stability of the unsaturated coastal-embankment slope under rainfall, the failure
surface under different groundwater levels and the associated minimum safety factor have been



J. Mar. Sci. Eng. 2019, 7, 165 12 of 20

searched 100,000 times by RSA. Two matric suction distributions along the depth: namely the linear
distribution (Distribution I); and uniformed distribution (Distribution II) are used in the analysis.
Meanwhile, the most dangerous sliding surface and its associated minimum safety factor determined by
the traditional saturated M–P method in which the matric suction along the depth is zero (Distribution
III) are also addressed by RSA. Based on the comparison results shown in Figure 10, it can be
summarized as follows:

(1) There is an apparent discrepancy among Distribution I, Distribution II and Distribution III
with respect to the critical slip surfaces. The critical slip surfaces associated with the above three
distributions do not coincide until the groundwater level reaches the top of slope in which the soil is
fully saturated.

(2) The most dangerous sliding surface of Distribution III is always located at the shallow depth of
the slope and it is independent on the fluctuation of the groundwater level. Unfortunately, these results
do not coincide with the practical results. The location of critical slip surface of Distribution I and
Distribution II are close and both of them change from deep slip to shallow slip with the rising of the
groundwater level and these predicted results coincide well with the practical results.
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Figure 10. Critical slip surfaces associated with each distribution pattern of matric suction under
rainfall infiltration.

5.3. Discussion on the Effect of Distribution of (ua-uw) on Fsmin

In this section, the minimum safety factor (Fsmin) under different groundwater level shown in
Figure 10 was adopted to investigate the effects of the different distributions of matric suction (ua-uw)
on the stability of unsaturated-soil slope. As shown in Figure 11, Fsmin is intensively related to the
distribution of (ua-uw) along the buried depth. Overall, all of the three values of Fsmin corresponding
to different distributions show gradual decrease with the rise of the groundwater level. However,
the reduced rate of Distribution III without suction, which keeps constant (approaches to 0) under
the condition that the groundwater level is below 6 m, is remarkable lower that of the other two
distributions. Moreover, both of the amplitude and reduced rate of Distribution I are greater than those
of Distribution II. When the groundwater level approaches to 15 m, Fsmin of the three distributions
coincides with each other, in which the soil is fully saturated. The effects of distributions of (ua-uw) on
Fsmin varies accordingly to the distributions. For Distribution I and II with consideration of (ua-uw),
the reduction in Fsmin is due to the decrease of distributed depth of (ua-uw) (shown in Figure 1) and
the increase of the pore-water pressure (Equations (13) and (16)) with the increase of groundwater
level. However, the decrease of Fsmin for Distribution III regardless of (ua-uw) is mainly attributed
to the increase of the pore-water pressure. Therefore, the reduced rate and amplitude of Fsmin for
Distribution I and II are much greater than that for Distribution III.

Above all, it can be concluded that the Distribution III in traditional saturated limit equilibrium
analysis is unexpected which may significantly increase the cost of solidified unsaturated-soil slope and
the other two distributions are more rational. Moreover, the safety factor for uniformed distribution
(Distribution I) of (ua-uw) is always greater than that for linear distribution (Distribution II), which may
result in an unsafe design of the unsaturated-soil slope. With the comprehensive consideration of safety
and economy, it is suggested that Distribution II can be used in addressing the stability of unsaturated
coastal-embankment slope in practical engineering.
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5.4. Discussion on the Relationship between ϕb and (ua-uw)

The suction angle ϕb was conventionally supposed to be constant and independent on (ua-uw) in
the previous literature [19,51–54]. However, the multistage direct shear test results [44] showed that the
relationship betweenϕb and (ua-uw) could be depicted by Curve 3, as shown in Figure 12. When (ua-uw)
is small, ϕb is supposed to be the maximum value ϕb

max. With the increase of (ua-uw), ϕb gradually
decreases and when (ua-uw) increases to a certain value ϕb reaches the minimum value ϕb

min. Some
researchers [25,55,56] used the Curve 1 and Curve 2 to simulate the relationship betweenϕb and (ua-uw)
as shown in Figure 12. Curve 1, Curve 2 and Curve 3 can be described by the following functions:

(1) For Curve 1
ϕb =

(
ϕb

min + ϕb
max

)
/2, (ua − uw) > 0 (23)

(2) For Curve 2

ϕb = ϕb
max, 0 ≤ (ua − uw) ≤ 50kPa

ϕb = ϕb
min +

(
ϕb

max −ϕ
b
min

)
× [(ua − uw) − 50]/450, 50kPa < (ua − uw) ≤ 500kPa

ϕb = ϕb
min, 500kPa < (ua − uw)

(24)

(3) For Curve 3

ϕb = ϕb
max, 0 ≤ (ua − uw) ≤ 50kPa

ϕb =
(
ϕb

max + ϕb
min

)
/2 +

(
ϕb

min −ϕ
b
max

)
× sin[2× (ua − uw) − 550]π/900,

50kPa < (ua − uw) ≤ 500kPa
(25)

ϕb = ϕb
min, 500kPa < (ua − uw) (26)

where ϕb
max and ϕb

min are the upper and lower limit respectively. Herein, ϕb
max is 30◦and ϕb

min is 5◦.
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Now, two conditions in which the groundwater level reaches up to 6 m and 12 m are considered
associated with the Distribution II of matric suction, respectively. Their correspondent critical slip
surface is Surface 2 in Figure 10. The influence of the distribution of ϕb on safety factor in different
(ua-uw)g is shown in Figure 13. It can be seen that when ϕb is supposed to be constant, the safety
factor(F1

s) associated with Curve 1 is almost linearly increased with the increasing of (ua-uw)g. When the
distribution of ϕb is linear (Curve 2) and nonlinear (Curve 3) both the safety factor (F2

s) associated
with Curve 2 and (F3

s) associated with Curve 3 show the same change trend with the increase of
(ua-uw)g. At first, F2

s and F3
s have a dramatic rise until reaching the maxima. This is because that

(ua-uw)g is smaller in this stage and the matric suction on the slip surface is smaller than 50 kPa.
Meanwhile, the correspondent value of ϕb always equals to ϕb

max and the total cohesion on the slip
surface increases with the increasing of (ua-uw)g. Therefore, F2

s and F3
s become larger and larger.

When (ua-uw)g increases to a certain value (about 450 kPa in the example) the matric suction on the slip
surface will exceed to 50kPa and the correspondent ϕb will decrease accordingly to Equation (24) and
Equation (25). The value of (ua-uw) will increase but the value of ϕb will decrease on the slip surface
and the total cohesion slightly decreases. Therefore, F2

s and F3
s decrease slightly at this stage. When

(ua-uw)g is kept increasing to a certain value (about 750 kPa in the example), (ua-uw) in the slip surface
always exceed to 500 kPa and the correspondent value of ϕb no longer change. Then, the total cohesion
keeps increasing with the increase of (ua-uw)g and F2

s and F3
s will increase at this stage.

Above all, it can be found that the safety factor is sensitive to the distribution of ϕb and Curve 2
and Curve 3 are more rational than Curve 1 shown in Figure 13. For the sake of simplicity, it is more
reasonable to adopt the linear relationship between ϕb and (ua-uw) in addressing the unsaturated-soil
slope’s safety factor.
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6. Conclusions

In this study, the modified Morgenstern–Price (M–P) method coupled with Random Search
Algorithm (RSA) was developed to investigate the stability of an unsaturated and multilayered
embankment slope considering the effects of matric suction distributions, determinations of suction
angle and rainfall infiltration. A convenient programmable M–P method was developed to address
the unsaturated-multilayered-soil slope’s safety factor. Based on RSA without iteration, the critical
slip surface of unsaturated-multilayered-soil slope could be located. Assuming that the effect of
rainfall infiltration could be simulated by the gradual increase in groundwater level, the stability of an
unsaturated-multilayered-soil slope under rainfall infiltration was evaluated by introducing different
matric suction distribution patterns. Finally, the effect of the determined method of suction angle (ϕb)
on the safety factor was investigated. It was found that the fluctuation of the groundwater level has a
significant influence on the location of the most dangerous sliding surface. The associated minimum
safety factor and the sliding modes of unsaturated-soil slope gradually change from deep sliding to
shallow sliding with the rise of groundwater level. Moreover, the traditional slope stability method
regardless of the matric suction is conservative to the predicted results. It is more reasonable to adopt
the linear distribution of matric suction in practical calculation of the safety factor (Fs). In addition, Fs is
sensitive to the distribution of ϕb and the linear relationship between ϕb and (ua-uw) is more beneficial
in addressing the stability of the unsaturated multilayered coastal slope. It should be noted that the
present approach is simple and a lot of factors such as the effect of soil layering on the matric suction
and non-circular failure surface are not covered, which will be addressed in detail in future work.
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