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Abstract: In this paper, we propose a novel underwater image enhancement method. Typical deep
learning models for underwater image enhancement are trained by paired synthetic dataset. Therefore,
these models are mostly effective for synthetic image enhancement but less so for real-world images.
In contrast, cycle-consistent generative adversarial networks (CycleGAN) can be trained with unpaired
dataset. However, performance of the CycleGAN is highly dependent upon the dataset, thus it may
generate unrealistic images with less content information than original images. A novel solution we
propose here is by starting with a CycleGAN, we add a pair of discriminators to preserve contents of
input image while enhancing the image. As a part of the solution, we introduce an adaptive weighting
method for limiting losses of the two types of discriminators to balance their influence and stabilize
the training procedure. Extensive experiments demonstrate that the proposed method significantly
outperforms the state-of-the-art methods on real-world underwater images.

Keywords: underwater; image enhancement; generative adversarial networks

1. Introduction

Technological advancement enables people to capture underwater images and videos in a wide
variety of environments. As a result, underwater imaging has been an important issue of scientific
research [1]. However, unlike in-air-captured images, visibility of underwater images is excessively
compromised due to the attenuation of the propagated light, which results from the absorption and
scattering effects. The absorption reduces the energy of light, whereas the scattering changes the direction
of light propagation. They cause foggy appearance and contrast degradation, resulting in misty images at
a distance. Furthermore, the colors of underwater images are faded as light absorption in the medium
varies based on the wavelength. As a consequence, underwater images often show greenish or bluish
tinge while red components are suppressed. It results in significant degradation of the underwater image
quality and adversely affects performance of computer vision algorithms. To alleviate these problems,
various underwater image enhancement methods have been presented.

Typical enhancement method is based on the optical process of underwater imaging, called
underwater image formation model, which is formulated as:

Ic(x) = Jc(x)tc(x) + Bc(1− tc(x)), c ∈ {r, g, b} , (1)

where Ic(x) is the observed intensity in color channel c, Jc(x) represents the true scene radiance, Bc means
the global background light, tc(x) is the medium transmission, and x indexes the pixel location in the
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image. The medium transmission can be expressed as tc(x) = e(−βcd(x)), where βc is attenuation coefficient
for channel c and d(x) means the scene depth. If the medium transmission and the global background
light are properly estimated from the given turbid image I, the true scene radiance (clean image) can be
recovered. Accurate estimations of global background light and medium transmission would result an
effective underwater image enhancement. Meanwhile, approaches for the underwater image enhancement
can be divided into two parts: handcrafted and learning-based methods. The former establishes prior
knowledge to define the global background light and the medium transmission while the latter leverages
dataset of image pairs to estimate these variables.

Handcrafted method: Bazeille et al. [2] proposed a filtering based underwater image enhancement
method which includes a series of filters such as homomorphic filter and anisotropic filter. Ancuti et al. [3]
proposed a method for enhancing underwater images using fusion technique. They derive the two
images, which are color corrected image and contrast enhanced image, from original turbid image.
Then, these two images are combined by four weight maps which are Laplacian contrast, local contrast,
saliency, and exposedness. Lu et al. [4] proposed a method for enhancing underwater image using guided
trigonometric bilateral filter and fast automatic color correction. They estimated the medium transmission
using red color channel after applying α ACE-based color correction. Then, medium transmission is
refined by guided trigonometric bilateral filters [5]. Li [6] suggested different enhancement methods
depending on color channel. Blue-green channels of turbid images are recovered via a dehazing algorithm
based on modified dark channel prior (DCP) [7]. Then, red channel is corrected following the Gray-World
(GW) assumption theory [8]. Chen et al. [9] proposed a region-specialized background light estimation
method to deal with an inhomogeneous ambient light condition. Park et al. [10] leveraged the underwater
image formation model then applied non-local means denoising method to the enhanced image to alleviate
increased noise issue. To improve the underwater image formation model, Peng and Cosman [11] proposed
a novel depth estimation method based on image blurriness and light absorption. Although the underwater
image formation model is effective for many underwater scenes, there are claims that this model excludes
some sources that affect the estimating of the variables. To accurately estimate the global background light
and the medium transmission, some revised underwater image formation models are proposed [12,13],
which supplement new variables in the model such as irradiance, sensor spectral response, and reflectance.
However, as the model complexity is increased, it would overfit to the training data and may lead to poor
generalization on new test data.

Learning-based method: As deep learning outperformed the handcrafted methods in various
fields, generative adversarial networks (GAN) frameworks are also exploited to the underwater image
enhancement task. Li et al. [14] embedded the underwater image formation model in the GAN
structure to generate turbid underwater images from clean in-air images. This paired dataset is then
leveraged to train convolutional neural network based underwater image enhancement model. On the
contrary, Chen et al. [15] produced clean underwater images from turbid underwater images via the
underwater image formation model. Then, they use this paired dataset to train conditional GAN for image
enhancement. The main issue of the learning-based methods is that, including GAN, they require a paired
image dataset to train the models. Collecting a sufficient amount of paired turbid and clean underwater
images is practically impossible. To mitigate this problem, synthesized dataset can be exploited. However,
unlike the simulation settings, accurately estimating the variables in the optical model is difficult in real
environments. Therefore, learning-based models trained by synthetic datasets are effective on simulated
image enhancement but probably less so on real-world image. These algorithms, when applied to real
underwater environments, typically result in hazy images or unrealistic color shift. Zhu et al. [16] proposed
the CycleGAN for image-to-image translation. In this framework, a cycle-consistency loss enables the
network to be trained without paired dataset. Therefore, CycleGAN can be trained without turbid-clean
image pairs. By constructing unpaired dataset using turbid underwater images and clean in-air images,
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Li et al. [17] designed an underwater image enhancement network without leveraging the underwater
image formation model. Lu et al. [18] found direct mapping between turbid and clean underwater images
via CycleGAN while estimating the medium transmission via the DCP to improve underwater image
quality. Fabbri et al. [19] just exploited the CycleGAN to transfer clean underwater images to turbid
underwater images then these synthesized pair of images are used for supervised training of conditional
GAN. However, these models still have drawbacks such as artifacts, unrealistic color shift or blurred effect
in enhanced images.

In this paper, we propose a novel learning-based underwater image enhancement method by solving
the issues of GAN, which generate artifacts, shift color, and lose details. We exploit key advantages of
the CycleGAN that does not need a paired dataset for training. While CycleGAN is trained to find a
mapping function between unpaired images, content information in the original image, like shape and
color of each instance, are usually not well recovered. Furthermore, artifacts and unrealistic color shift
could appear. To mitigate this problem, we add a pair of discriminators in the CycleGAN to preserve
content information of the original image. In the training phase of CycleGAN framework, we introduce an
adaptive weighting method for loss of each discriminator to stabilize the training process and improve the
visual quality of generated image. Since the entire CycleGAN’s model is jointly trained, this framework
is an end-to-end learning method. In the proposed architecture, conventional discriminators remove
haze and correct colors while novel discriminators preserve content information in the image without
producing any artifacts and unrealistic color change. Our key contribution in this work is that, by adding
discriminators and an adaptive weighting method, influence of discriminators with different roles can be
balanced while suppressing their negative side effects. As a consequence, the drawbacks of CycleGAN
mentioned above are considerably alleviated. Figure 1 shows an example of enhanced result via the
proposed method wherein left image is a turbid input and right image is an output of our enhancing
method. An excessive greenish tinge of the input image is removed in the output image while faint colors
in the input are recovered in the output.

Figure 1. An example of underwater image enhancement result using the proposed method. (left): turbid
input. (right): enhanced result.
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2. Materials and Methods

2.1. Image Acquisition and Analysis

To train the proposed model, an unpaired underwater image dataset is established from Places
dataset [20]. In the Places dataset, ’underwater-ocean deep’ category includes 5000 different underwater
images. We sort these images as turbid or clean according to their subjective quality. Specifically, five
researchers classified these images as turbid or clean according to their perceived grades for clarity and
color balance. Then, these images were re-categorized by a majority vote. Finally, 937 and 1014 images
were sorted as clean and turbid in the training dataset respectively, while images that only receive 3 or
less votes or contain very similar content with other images are excluded. For the quantitative evaluation,
890 underwater images in the benchmark dataset [21] are exploited with the underwater color image
quality evaluation (UCIQE) [22] metric. UCIQE metric quantifies the nonuniform color cast, blurring,
and low-contrast that characterize underwater images. For the qualitative evaluation, samples in the
previous works [23] are used. Considering computational load, all the images are resized to 256× 256
pixels via bicubic downsampling. As images of 256× 256 size sufficiently represent detailed features of
any object in the real-world, this image size is widely used for the deep learning based image to image
translation task. Samples from our training dataset are illustrated in Figure 2.

Figure 2. Samples from the training dataset. (First row): images in the clean domain. (Second row): images
in the turbid domain.

For the turbid domain I and the clean domain J in the training dataset, intensity histograms for the
RGB channels are illustrated in Figure 3 where the intensity means pixel-wise average value for each
domain. Clean underwater images in the dataset have a wide range of red colors while the red color
histogram of turbid images is relatively narrow due to the severe attenuation of the propagated light.
Therefore, translating an image from the clean domain to the turbid domain is relatively easy compared to
translating an image from the turbid domain to the clean domain. In other words, estimating accurate
colors of clean domain from images in the turbid domain is difficult without any ground truth during
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the model training. Therefore, when CycleGANs are applied to the underwater image enhancement
task, these models are prone to generate clean images from turbid images with unrealistic color change.
Moreover, GAN’s inherent drawbacks, producing a blurred image with artifacts, make enhancing the
underwater image more difficult.

It can be assumed that an image is encoded as features in a content space and a style space according
to the previous works [24,25]. If we define the content as underling features, such as original color, shape,
and texture of each instance, and the style as rendering of the content, they can be disentangled from
images by different types of networks. Following this assumption, images in the turbid domain and the
clean domain would share the same content space as shown in Figure 4 because images in both domains
are captured in underwater. For example, their images may include some objects like marine life, diver,
or submarine. On the other hand, it is difficult for images in different domains to share the same style
space as there is a considerable difference between their underwater environments. For instance, some
underwater images show greenish tinge while some images have poor visibility due to the haze effect.
Based on this assumption, we add a pair of discriminators in the CycleGAN’s architecture as shown in
Figure 5. Unlike conventional discriminators in the CycleGAN, these discriminators do not distinguish
images as real or fake. They distinguish features in the content space as real or fake, instead. To fool these
discriminators, generators try to produce clean underwater images while preserving content in turbid
input images.
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Figure 3. Average color histograms for the training dataset. (left): clean domain. (right): turbid domain.

𝐽 𝐼 Content space 

Style space 
Clean image Turbid image 

Figure 4. Diagram for the relationship between the turbid domain and the clean domain in feature space.
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Figure 5. Framework of the proposed method. (a) Overall framework. (b) Unfolded framework for
I → G(I)→ F(G(I)) where dotted lines indicate losses.

2.2. Architecture of Multi-Discriminator CycleGAN

In this section, the architecture of our proposed CycleGAN is explained. As shown in Figure 5,
our model consists of two generators and four discriminators. Generator G translates images in the turbid
domain I into the clean domain J. Generator F transfers clean images J in the opposite direction. We refer
to the conventional discriminators as style discriminators Dstl_J and Dstl_I because the main role of this
pair is to distinguish real image from the generated images. The novel discriminators are termed content
discriminators Dcnt_J and Dcnt_I as they receive features in the content space as inputs to distinguish real
image’s features. To ensure that content features are preserved in the generated images, a pre-trained
VGG-16 [26] model is added in the content discriminator. Thus, the VGG-16 model is excluded from the
training of model parameters. The type of loss function, which is a least-squares loss, and the network
structures of generators and discriminators are the same as those of the basic CycleGAN [16].

2.2.1. Style Discriminator

We employ the style discriminators for turbid underwater images to remove haze and correct colors.
As these discriminators receive an image as input, they focus on how realistic the input image is. To fool
the style discriminators, generators are trained to mimic the style of the images in target domain while less
attention is given to retaining the contents in the input image. For this reason we refer to the conventional
discriminators in CycleGAN as the style discriminators. For the mapping function G : I(turbid)→ J(clean)
and its style discriminator Dstl_J , the style loss, Lstl , is defined as follows:

Lstl(G, Dstl_J , I, J) = Ej∼pdata(j)
[(Dstl_J(j)− 1)2] +Ei∼pdata(i)

[Dstl_J(G(i))2], (2)

where j ∼ pdata(j) and i ∼ pdata(i) indicate image sample j and i from the clean domain and the
turbid domain respectively and E means expectation. The adversarial loss for the mapping function
F : J(clean)→ I(turbid) and its style discriminator Dstl_I is defined in the same way.
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2.2.2. Content Discriminator

To preserve the content information, low-level features are extracted from the input image and the
corresponding generated image via the pre-trained VGG-16. Specifically, the content feature is extracted
via the first convolution and activation function, which is rectified linear unit (ReLU). We call this feature
extraction stage ReLU1-1. The deeper the layer we choose, the more network concentrates on global
features and patterns. As a result, detailed local contents in the output image starts to degrade with deeper
layers, because the network begins to capture only broader patterns. Since the cycle-consistency loss and
the style loss are reasonably effective in preserving larger patterns, we focus on low-level features as
content information to be recovered by the content loss. The extracted features from original images are
considered as real and features from generated images are defined as fake. Therefore, generators G and
F try to fool the content discriminators Dcnt_J and Dcnt_I by producing fake images containing original
contents of the inputs. For the mapping function G : I(turbid)→ J(clean) and its content discriminator
Dcnt_J , the content loss, Lcnt, is formulated as follows:

Lcnt(G, Dcnt_J , I, J) = Eφ(j)∼pdata(φ(j))
[(Dcnt_J(φ(j))− 1)2] +Eφ(i)∼pdata(φ(i))

[Dcnt_J(φ(G(i)))2], (3)

where φ(·) means the VGG-16 feature extractor. φ(j) ∼ pdata(φ(j)) and φ(i) ∼ pdata(φ(i)) indicate content
feature sample φ(j) and φ(i) from the clean domain and the turbid domain respectively. The adversarial
loss for the mapping function F : J(clean)→ I(turbid) and its content discriminator Dcnt_I is defined in
the same way.

2.3. Overall Loss Function

The structures of the proposed CycleGAN is trained by the loss function as follows:

L = λcntLcnt + λstl Lstl + λcycLcyc, (4)

where Lcyc indicates the cycle-consistency loss, which guarantees the individual mapping between samples
of different domains. Without this loss, generators are prone to transfer a certain type of images in the
input domain into random images in the target domain. By forcing an image produced by generators to
recover an original image, this loss can reduce the space of possible mapping via generators. As networks
are trained to reduce the overall loss, if a certain loss forms a big part of the overall loss, the networks
are trained to satisfy a certain aspect emphasized by that loss while the others are ignored. Therefore,
to balance the effects of two types of discriminators during the training phase, adaptive weights λcnt and
λstl are leveraged. The weight for the cycle-consistency loss, λcyc, is fixed.

Adaptive Weighted Adversarial Loss

We assume that CycleGANs usually generate blurry images because they concentrate on transferring
the style between the different image domains. Thus, generated turbid or clean images lose original content
information and have fewer edges than real input images because the content information in images,
such as texture and shape of any object, can be represented by the edge features. If contents of the input
image are well preserved in the generated image, this tendency would be alleviated. This assumption
can be demonstrated by histograms for the amount of detected edges in an image. To detect edges, RGB
color images are converted to grayscale. Once the RGB color images in the test dataset are converted to
grayscale, we then make edge maps via Sobel edge detector. Specifically, this detector calculates gradient
of each pixel and assigns a value 0 or 1 to each pixel according to the pre-defined threshold where we
choose default threshold of the TensorFlow built-in function. As these edge maps are binary images, we
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can easily count the number of the detected edge pixels in the image by summing up total pixel intensities
in image. As illustrated in Figure 6, images in the test dataset have the largest number of edges on average
while outputs of the proposed CycleGAN are second and outputs of the CycleGAN are placed third. Based
on this experimental result, we apply an adaptive weighting method according to the amount of detected
edges in the image and balance the adversarial losses of style discriminators and content discriminators.
To calculate each weight of adversarial loss, edge maps of input images j, i and output images F(j), G(i)
are extracted via Sobel edge detector.

λcnt = α ∗ ∑X
x=1(π(j(x)) + π(i(x)))

∑X
x=1(π(j(x)) + π(i(x))) + ∑X

x=1(π(F(j(x))) + π(G(i(x))))
,

λstl = β ∗ ∑X
x=1(π(F(j(x))) + π(G(i(x))))

∑X
x=1(π(j(x)) + π(i(x))) + ∑X

x=1(π(F(j(x))) + π(G(i(x))))
, (5)

where π(·) is the Sobel edge detector that produces a binary edge map. α and β are constants for scaling
and X means the number of pixels in the image. As the fractions of λcnt and λstl are the complementary
events, when one weight increases at the same time the other decreases. By the effect of adaptive weighting,
if generated images F(j), G(i) severely lose information of the original contents including edges, weight
for the content discriminators, λcnt, is increased while weight for the style discriminators, λstl , is decreased.
On the other hand, if generated images retain sufficient content information and it is better to pay attention
to the style transfer, the adaptive weighting works in the opposite way.
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Figure 6. Histograms for the average proportion of detected edge pixels in grayscale image. (a) Edge
histogram for original images in the test dataset. (b) Edge histogram for enhanced images by the CycleGAN.
(c) Edge histogram for enhanced images by the proposed model.

Although the adaptive weighting method contributes to improving the performance of underwater
image enhancement and mitigating the problem caused by unstable learning, it may have negative effects
in the early stage of learning because adaptive weights could intensify fluctuations of the loss. Thus,
constants α and β should be carefully selected.
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3. Results

In this section, we demonstrate the effectiveness of the proposed method against the state-of-the-art
approaches for the real-world underwater image enhancement. Namely, we show the validity of VGG-16
features as a representative content information indicator. Additionally, effects of the content discriminators
and the adaptive weighting method in our CycleGAN framework are to be shown.

3.1. Experimental Settings

For the CycleGAN training, we select λcyc as 10 and exploit the Adam solver of the TensorFlow where
the initial learning rate and the momentum term for this solver are 0.0002 and 0.5, respectively. Batch size
is 1 and epoch is set to 200. Both the training procedure and the performance of image enhancement are
susceptible to the adaptive weights λcnt and λstl . In general, training procedure of GANs is very sensitive
even for small changes in some constants. Therefore, we changed α and β at 0.1 intervals respectively.
Then, α = 0.5 and β = 1.5 have shown to be the best for these weights. All the parameters are selected via
cross-validation.

3.2. Ablation Study

To verify the effectiveness of the content discriminators and the adaptive weighting method,
we compare the image enhancement results of the following models. (a) CycleGAN: basic CycleGAN
model which does not include the content discriminators. (b) CycleGAN+CD+W0.5: CycleGAN
model including the content discriminators where the weights for the content discriminators and the
style discriminators are fixed to 0.5 and 1, respectively. (c) CycleGAN+CD+W1: CycleGAN model
containing the content discriminators where the weights for the two types of discriminators are equal to 1.
(d) CycleGAN+CD+AW: the proposed model that includes the adaptive weighted adversarial losses for
the content discriminators and the style discriminators.

As shown in Figure 7a, the CycleGAN generates images with unrealistic colors and artifacts. This
tendency results from the loss function and the composition of training dataset. Specifically, as many
images in the clean domain contain transparent color like gray or white, the generator G tries to color the
instances in turbid images as these colors. By doing this, the generator may fool the discriminator that the
loss can be minimized regardless of the true colors of the instances in turbid images. The resultant images
typically shift their color spectrum while their content information such as edges may get lost as shown in
Figure 7a. To mitigate these problems, the content discriminators we added in the CycleGAN framework
preserve the fine details as shown in Figure 7b–d. As the influence of the content discriminators increases
from (b) to (c) in Figure 7, the generator excessively focuses on maintaining original contents of the input
images to reduce the loss for the content discriminators. As a result, influence of the style discriminators
is considerably weakened and haze effect and blueish or greenish tinges persist in the output images
as indicated by Figure 7c. As shown in Figure 7d, the proposed method produces relatively hazeless
and color corrected images without unrealistic color change by balancing the influences of the content
discriminator and of the style discriminator.
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To verify the validity of VGG-16’s low-level feature as a content feature extractor, we compare the
underwater image enhancement results of following models. Because our final goal is to design the
CycleGAN model in which the contents of the input image are well preserved. Therefore, we consider that
the comparison between the enhancement results of each model is more meaningful than the evaluation of
the extracted feature itself. (a) Conv1-1: layer after ReLU1-1, which is our choice. (b) Conv2-1: layer after
ReLU2-1. (c) Conv3-1: layer after ReLU3-1. (d) Conv4-1: layer after ReLU4-1. As the feature extraction
layer becomes deeper, the features lose a specific content information. As a consequence, it is difficult for
generated images to retain original color of each instance in the input images as shown in Figure 8. These
experimental results demonstrate that low-level features of the VGG-16, extracted from the layer after
ReLU1-1, are appropriate for mapping an image into the content space.

(a) (b) (c) (d) Input 

Figure 7. Underwater image enhancement results according to the content discriminators and the
adaptive weighting method. (a) CycleGAN. (b) CycleGAN+CD+W0.5. (c) CycleGAN+CD+W1.
(d) CycleGAN+CD+AW.

3.3. Quantitative Evaluation

For the UCIQE metric, we compare the proposed method with four state-of-the-art methods: GW [8],
DCP [7], CAP [27], and CycleGAN [16]. As shown in Table 1, GW shows the lowest performance while
the proposed method achieves the best performance for the test dataset compared to the other methods
considered here.

Table 1. Underwater image enhancement evaluation based on UCIQE [22] metric. Larger metric means
better result.

Input GW [8] DCP [7] CAP [27] CycleGAN [16] Ours

UCIQE 26.08 26.83 30.44 29.71 31.73 32.00
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(a) (b) (c) (d) Input 

Figure 8. Underwater image enhancement results according to the feature extraction layer in the VGG-16.
(a) Conv1-1. (b) Conv2-1. (c) Conv3-1. (d) Conv4-1.

3.4. Qualitative Evaluation

In this section, performance of the proposed method is qualitatively verified. We compare the
proposed method with five state-of-the-art methods: Ancuti and Ancuti [28], Galdran et al. [29],
Emberton et al. [30], Ancuti et al. [23], and Zhu et al. [16]. Eight samples and the corresponding enhanced
results are illustrated in Figure 9. For the results of Ancuti and Ancuti [28], artifacts or color shift are
rarely observed. However, haze effect and bluish or greenish tinges still remain. For the bluish images,
specifically the first image and the second image in Figure 9, results of Galdran et al. [29] seem better
than those of Ancuti and Ancuti [28] with respect to the color correction. However, their method is less
effective for the greenish images like the sixth, seventh, and eighth. In general, Emberton et al. [30]’s
results lose color balance as red components are over-emphasized both on objects and backgrounds.
Results of Ancuti et al. [23] seem effective in terms of dehazing and correcting colors. Nevertheless, their
method also produces reddish outputs. The method of Zhu et al. [16], which is the CycleGAN, generates
images with unnatural colors and this tendency is particularly serious when turbidity of an image is
strong. On the other hand, our method produces haze-free images with minimal observable artifacts and
unrealistic color change. In addition, it performs better in delivering contrast-enhanced images than the
other state-of-the-art methods while it better suppresses the tendency of over-emphasizing red colors.
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(a) (b) (c) (d) Input (e) (f) 

Figure 9. Underwater image enhancement results. (a) Ancuti and Ancuti [28]. (b) Galdran et al. [29].
(c) Emberton et al. [30]. (d) Ancuti et al. [23]. (e) Zhu et al. [16]. (f) Our results.
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4. Discussion

In our experiments, the baseline CycleGAN’s outputs look somewhat worse than samples presented
in the previous works [17,18]. This may be because of the small-quantity and biased training dataset. So far,
creating a dataset that includes richness and a variety of turbid and clean underwater images is difficult
and time consuming. Nevertheless, our proposed method overcomes the data limitation and significantly
improves the CycleGAN’s performance. Therefore, if a rich dataset is given, we expect that the proposed
method will achieve even better results. To stabilize the initial training phase, we heuristically chose
the scaling constants for each adaptive weight. However, as shown in Figure 7d, tiny black artifacts are
present in some enhanced images. Specifically, artifacts are observed at the bottom left of the first image,
at the bottom right of the second image, and at the top left of the third image. The training issue could
have produced these artifacts. Thus, there is still some room for improvement with regard to the training
method. Furthermore, our results in Figure 9f are slightly blurred compared to those of Ancuti et al. [23].
Although we address the blurring issue by introducing the content discriminators, there are still some
improvements to be made.

5. Conclusions

We propose a new underwater image enhancement method. Specifically, we improve architecture of
the CycleGAN to generate a style-transferred image while preserving content information in the original
image. The style discriminators force the generators to make color corrected and dehazed underwater
images. Novel discriminators, called content discriminators, contribute to maintaining content in turbid
input images like original color, shape, and texture of each instance. Additionally, our novelty resides with
the introduction of the adaptive weighted loss for balancing the influence of two types of discriminators.
The adaptive weighting exploits strengths of each discriminator while suppressing their negative effects.
Experimental results demonstrate that the proposed method significantly outperforms the state-of-the-art
methods on real-world underwater images, both quantitatively and qualitatively.
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