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Abstract: Coral reef ecosystems are under the direct threat of increasing atmospheric greenhouse gases,
which increase seawater temperatures in the oceans and lead to bleaching events. Global bleaching
events are becoming more frequent and stronger, and understanding how corals can tolerate and
survive high-temperature stress should be accorded paramount priority. Here, we review evidence of
the different mechanisms that corals employ to mitigate thermal stress, which include association
with thermally tolerant endosymbionts, acclimatisation, and adaptation processes. These differences
highlight the physiological diversity and complexity of symbiotic organisms, such as scleractinian
corals, where each species (coral host and microbial endosymbionts) responds differently to thermal
stress. We conclude by offering some insights into the future of coral reefs and examining the strategies
scientists are leveraging to ensure the survival of this valuable ecosystem. Without a reduction in
greenhouse gas emissions and a divergence from our societal dependence on fossil fuels, natural
mechanisms possessed by corals might be insufficient towards ensuring the ecological functioning of
coral reef ecosystems.

Keywords: thermal stress; coral resilience; bleaching events; thermally-tolerant symbionts; acclimatisation;
adaptation; heterotrophy; climate change

1. Introduction

Since the last century, scleractinian coral reef ecosystems have undergone a decrease in biodiversity
and ecological functioning [1–5], formerly attributed to the direct and indirect effects of overfishing [6,7],
pollution from agriculture, sewage runoff, and land development [8–10]. Currently, along with the
exponential increase of the human population [11] and our societal dependence on carbon fossil
fuels, these local threats have been compounded by the impacts of global climate change in the
oceans [12–14]. The impact of increasing greenhouse gases in the atmosphere is leading to a global
increase in seawater temperatures that has caused mass bleaching events [12,14–17]. These global
bleaching events are becoming more frequent (1998, 2010 and 2014–17) and severe [14,16,18–22],
leaving coral reefs vulnerable and unable to recover. The 2014–2017 mass bleaching event, which lasted
36 months and spanned four calendar years, was the longest-lasting, most widespread, and probably
most damaging event on record [21–29], and stands out as unique by spanning all phases of the El
Niño-Southern Oscillation cycle of 2017, being the warmest non-El Niño year ever recorded [21,30].

Coral bleaching is defined as the loss of colour, due to the partial or total loss of Symbiodiniaceae
dinoflagellates and/or the reduction of their photosynthetic pigments, that exposes the white calcium
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carbonate of the coral skeleton (Figure 1A) [31,32]. Bleaching is a generalized stress response to
environmental perturbations such as aerial exposure, sedimentation, eutrophication, exposure to
heavy metals, high UV radiation, and extreme changes in salinity and temperature [17,31,33,34],
however, at large scales is triggered by high seawater temperatures (exceeding normal summer
maxima) in combination with high solar radiation [12,15,17,31–33,35]. Scleractinian corals possess
molecular protective mechanisms, such as heat shock proteins and antioxidant enzymes to resist
thermal stress [17,33,36], or mycosporine amino acids (MAA) and fluorescent pigments to resist light
stress (Figure 1B) [17,33,37,38]. The cellular mechanism of bleaching starts with the photoinhibition
process within the photosynthetic apparatus of the endosymbionts, which results in the build-up of
free electrons that react to form reactive oxygen species (ROS) [39,40]. The proliferation of harmful
ROS leads to the degradation, exocytosis, or apoptosis of symbiont cells by the coral host [39], in order
to avoid cellular damage [36]. If the duration of the thermal stress extends beyond their physiological
ability to recover, corals cannot survive without their main symbiotic partners [15,31,35]. Even though
the molecular process of bleaching is similar across coral species, variations in the mechanism to resist
and survive thermal stress exist (Figure 1B,C) [17,32,35].

Resilience is the capacity of a coral colony or an entire coral reef ecosystem to absorb, resist,
and recover from perturbations [41–43]. The resilience of corals to thermal stress is contingent on
the mean long-term annual maximum temperature of the region they live in [17]. Much research
has been done in the past decades to understand if the resilience of corals to thermal stress might
be an adaptation and/or acclimatisation process (reviewed in [17,44,45]). Here, we review current
research that focuses on the capabilities of coral species to adapt and/or acclimatise to thermal events,
in order to understand what the future of this irreplaceable ecosystem will be. We have included only
scientific studies which have clearly identified the different general strategies to survive thermal stress,
as presented in this review.

2. Mechanisms of Resilience to Thermal Stress

2.1. Thermally Tolerant Endosymbionts

By associating with stress-resistant symbionts, some coral species are able to acquire increased
thermal tolerance. Within the Symbiodiniaceae, species like Durusdinium spp. (previously clade
D) [46–48], Cladocopium C15 [49], and C. thermophilum C3 [50,51] are resistant to thermal stress.
Dinoflagellates in the genus Durusdinium are extremophiles inhabiting environments of thermal
stress, high temperature fluctuations, sedimentation and high-latitudinal marginal reefs [52–62].
In recent decades, Durusdinium spp. have generated interest because they proliferate in bleached
corals [53,60,63–65], protecting against thermal stress by providing 1–1.5 ◦C of thermal tolerance [46].
Durusdinium spp. maintain high photochemical efficiency when exposed to high temperatures
compared to symbionts from other genera (Breviolum or Cladocopium) [48,66,67] and are able to fix more
carbon and assimilate more nitrogen [68]. Furthermore, D. trenchii has been found to provide tolerance
to cold stress too [69,70].

When exposed to thermal stress, some species of coral are capable of shifting the relative
abundance of their dominant symbionts. Background symbionts, which can represent <10% of the
overall Symbiodiniaceae community [60,71], become dominant, conferring thermal tolerance to the
holobiont. Even though many coral species are able to associate with a heterogeneous community of
Symbiodiniaceae [72,73], others do not change their dominant symbiont even when bleaching [74],
showing a long-term symbiotic adaptation between coral host and dominant symbiont [75–78].
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Figure 1. (A) Onset of a bleaching process in a colony of Acropora spp., in Kenting, Taiwan 2015 (Photo:
J. Wei); (B) Bleaching event showing colonies with fluorescent pigments as a protective mechanism
(a) and already bleached colonies (b), in Okinawa, Japan 2016 (Photo: S.-Y. Yang); (C) Intra-specific:
between Montipora spp. colonies (a) and between Isopora palifera colonies (b), inter-specific: between
Montipora spp. and I. palifera colonies (c) and intra-colony: within Leptoria phrygia colony (d) responses
to thermal stress in Kenting, Taiwan 2016 (Photo: R. Carballo-Bolaños).

2.2. Acclimatisation (Phenotypic Plasticity)

Phenotypic plasticity refers to dissimilar phenotypes that can be generated from a single genotype
in response to different environmental conditions [79]. These phenotypic changes are reversible and
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dependent on the boundaries of each organism’s genotype [17]. In this context, acclimatisation refers
to the phenotypic changes of corals in their natural environment, while acclimation denotes short-term
phenotypic changes under manipulative experimental conditions in the laboratory. Reciprocal
transplantation experiments (RTE) are a well-known method to quantify acclimatisation mechanisms
by measuring differences in physiological parameters in specimens transplanted across environmentally
distinct sites, locations or regions. For example, a RTE of Porites lobata between a fore reef (impacted by
high wave action, oceanic swells and storms) and back reef (sheltered) in American Samoa, showed
phenotypic plasticity in mean annual skeletal extension rates, bulk densities, and calcification rates after
only six months, with all variables in transplanted corals approximating values of corals originally from
the site [80]. In another study, Sawall et al. [81] found optimal calcification rates at 28–29 ◦C throughout
all populations of Pocillopora verrucosa with evident differences in temperature fluctuations between
the northern (21–27 ◦C) and southern (28–33 ◦C) parts of the Red Sea, supporting high phenotypic
plasticity due to low genetic divergence between north and south coral host populations.

2.3. Thermal Stress Acclimatisation

Multiple studies have identified a direct link between thermal preconditioning and bleaching
susceptibility (Table 1) [82–91]. After exposing corals to short-term thermal preconditioning
experiments, only preconditioned corals did not bleach during a heat-stress experiment (Table 1) [82,83],
despite maintaining their Symbiodiniaceae and the bacterial community [82]. Moreover, other studies
have compared coral responses of the first major mass bleaching event in 1998 with subsequent
stronger bleaching events [89,91]. Maynard et al. [91] surveyed the same sites in 1998 and after a
more severe bleaching event in 2002, which featured exposure to twice as many degree heating weeks
(DHW) and 15% higher solar irradiance, corals acclimatised, and exhibited less bleaching than in 1998.
In a similar study, Guest et al. [89] demonstrated how coral bleaching was less severe after the 2010
large-scale bleaching event in Southeast Asia in locations that previously showed high bleaching in
1998 (Singapore and Malaysia), and had greater historical temperature variability and lower rates of
warming. Meanwhile, corals in Indonesia were unaffected by bleaching in 1998, but showed high
mortality in 2010. Consequently, corals acclimatised to previous thermal stress events, but also those
living in sites with highly variable temperatures presented higher tolerance [89].

Table 1. Studies performed to test acclimatisation to thermal stress and high temperature variability at
different locations around the world.

Study Temp/DHW Duration Location Species Main Results Ref.

Precondition
+ HSE

28 ◦C
(precond.) 10 d

GBR, Australia
Acropora
millepora

No bleaching in
pre-conditioned corals [82]

31 ◦C (HSE) 8 d

Precondition
+ HSE

31 ◦C
(precond.) 2 d

GBR, Australia Acropora aspera No bleaching in
pre-conditioned corals [83]

34 ◦C (HSE) 6 d

Comparison
1998/2002 BE

DHW = 2002
> 1998

Bleaching
survey GBR, Australia

Acropora spp.,
Pocillopora spp.,

Porites spp.
Less mortality in 2002 [91]

Comparison
1998/2010 BE

DHW =
Malaysia +
Singapore >
Indonesia

Bleaching
survey

Indonesia,
Malaysia,
Singapore

Acropora spp.,
Pocillopora spp.,

Low bleaching in
Malaysia and

Singapore
[89]

Survey 2010
BE - Bleaching

survey Thailand Coelastrea aspera

Less bleaching in high
irradiance colony

sides (decadal
environmental

‘memory’)

[90]
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Table 1. Cont.

Study Temp/DHW Duration Location Species Main Results Ref.

Comparison
1970/2017

HSE
31.4 ◦C 31 d Hawaii, USA

Montipora
capitata,

Pocillopora
damicornis,

Lobactis scutaria

Higher calcification,
delayed bleaching

and mortality in 2017
[87]

HSE (HV
and MV) 31.5 ◦C 5 d American

Samoa
Acropora

hyacinthus

Mortality and
photochemical

efficiency decline:
HV+Durusdinium <
MV+Durusdinium <

MV+Cladocopium

[67]

HSE from RT
(HV and

MV)
34 ◦C 3 h American

Samoa
Acropora

hyacinthus

Acclimatised: MV to
HV increased heat

resistance; HV to MV
reduced chl a

retention; Different
expression of 74 genes

[92]

HSE (HV
and LV) 30 ◦C 270 d Taiwan Pocillopora

damicornis,

Acclimatised: HV =
control in all
parameters

[93]

Comparison
1998/2005-06
BE (HV - LV)

- Bleaching
survey

Egypt,
Madagascar,
Seychelles,

Australia, Guam,
Kiribati, Cook

Islands

Multiple species Less bleaching in HV
sites [94]

Comparison
multiple BEs

(HV - LV)
- Bleaching

survey

Western Indian
Ocean, Pacific

Ocean,
Caribbean Sea,
GBR, Red Sea

Multiple species Less bleaching in HV
sites [95]

HSE = Heat Stress Experiment, HV = Highly Variable, MV = Moderately Variable, LV = Low Variable, RT =
Reciprocal Transplantation, BE = Bleaching Event, DHW = Degree Heating Weeks, d = days, h = hours, GBR =
Great Barrier Reef.

Brown et al. [90] demonstrated ‘long-term environmental memory’ during the bleaching event
in 2010. In 2000, coral colonies were rotated 180◦ in a manipulative experiment [96]. During the
bleaching event of 2010, the sides of colonies exposed to high solar radiation before rotation in the
2000 experiment, retained four times as many symbionts than the sides exposed to low solar radiation,
despite experiencing higher radiation for 10 years [90]. These experiments provide evidence that
long-term acclimatisation to local conditions enhances thermal tolerance during bleaching events
(Table 1). Coles et al. [87] showed evidence of acclimatisation to increasing seawater temperatures
by replicating a bleaching experiment from 1970 at the same location in 2010. Because sea-surface
temperature (SST) has steadily increased 1.13 ◦C over the last four decades, the authors experimentally
increased 2.2 ◦C of ambient temperatures. Corals in 2017 showed higher calcification rates, delayed
bleaching, and mortality compared to corals in 1970 (Table 1) [87]. Unfortunately, despite increased
temperature tolerance in local corals, Hawaii suffered high coral mortality (34%) during the 2014–2017
global bleaching event, showing that high-temperature acclimatisation processes may not be occurring
quickly enough to mitigate the projected length and intensity of future bleaching events [87].

2.4. Acclimatisation to High Temperature Variability

A series of backreef pools exhibiting tidal temperature variability on the island of Ofu, American
Samoa, present a unique environment to study physiological differences between conspecific corals at
small-spatial scales [97]. Using genetically identical coral fragments in a heat-stress experiment from
both pools, Oliver and Palumbi [67] provided evidence of increased thermal tolerance when corals
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have acclimatised to high temperature variability (Table 1). Corals from the highly variable (HV) pool
showed lower mortality and higher photochemical efficiency, while those from the moderately variable
(MV) pool suffered increased mortality and lower photochemical efficiency related to symbiont species.
Corals associated with Durusdinium spp. exhibited an intermediate decline in photochemical efficiency,
while those associated with Cladocopium spp. showed the highest decline [67]. Palumbi et al. [92]
performed reciprocal transplantations of corals between HV and MV pools and subjected those corals
to a heat stress experiment to test for acclimatisation responses to thermal stress (Table 1). Corals
acquired heat sensitivity based on the pool they were transplanted to: MV pool corals acquired heat
resistance when moved to HV pool, but not to the same extent of HV conspecifics, while HV to MV
transplantees experienced reduced chlorophyll a retention, similar to the levels of native corals [92].
Mayfield et al. [93] performed a thermal stress experiment with corals from a site in Taiwan exhibiting
high daily temperature fluctuations and found that, under HV conditions, physiological parameters
behaved similarly to those in control corals, suggesting that individuals living under HV temperatures
can acclimate to high temperatures that would cause bleaching and mortality in unacclimated corals
from other regions (Table 1) [93].

Some studies have compiled data of past bleaching events, in an effort to link patterns of
bleaching susceptibility within sites under high temperature variability, in a worldwide context [94,95].
Sites characterized by a high-frequency pattern of temperature variability experienced higher thermal
stress during both bleaching events, with extensive bleaching reported during 1998. However,
in 2005–2006, these sites experienced reduced bleaching compared to sites under low frequency
patterns, due to the acclimatisation of corals to thermal stress after the 1998 bleaching event and
selective adaptation of resilient corals that survived the bleaching event [94]. Safaie et al. [95] explored
this concept further by collecting in situ data with remotely sensed datasets from different reef locations
around the globe, along with spatiotemporally coincident quantitative coral bleaching observations.
Corals regularly exposed to temperature fluctuations on daily or tidal timescales became acclimatised
to thermal stress and resistant to bleaching events. More importantly, these patterns of high-frequency
temperature variability to bleaching occur in many reefs worldwide [95].

2.5. Molecular Mechanisms for Acclimatisation

Most studies involving transcriptomic analyses and thermal stress have shown differential
gene expression under high temperature stress compared to controls (Table 2) [98–103]. Corals
exposed to experimental thermal stress presented an upregulation of genes involved in oxidative
stress responses [98,99] and carbon metabolism [98]. A comparison of differences in gene expression
in corals preconditioned to thermal stress showed seventy differentially expressed genes between
non-preconditioned corals and controls, 42 between preconditioned corals and controls, and nine genes
between non-preconditioned and preconditioned corals (Table 2) [102].
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Table 2. Thermal stress studies looking at differences in gene expression.

Study Method Genes/Molecules Response Location Species Main Results Ref.

HSE – gene expression qPCR HSP70, MnSOD, ferritin,
Zn2+-metalloprotease

Oxidative stress
response GBR, Australia Acropora millepora Up-regulation in heat-stressed [99]

HSE – gene expression qPCR HSP90, HSP70 Oxidative stress
response GBR, Australia Acropora aspera 10.5-fold up-regulation in

heat-stressed coral host genes [98]
Glyceraldehyde-3-phosphate

dehydrogenase,
α-ketoglutarate

dehydrogenase, glycogen
synthase, glycogen

phosphorylase

Carbon
metabolism

Short-term
precondition—gene

expression
cDNA micro-array

Lectins, heme-binding
proteins, transcription

factor AP-1, NF-kB inhibitor,
thymosin, phosphate carrier

protein, ferritin

Oxidative stress
response GBR, Australia Acropora aspera

Different expression: 70 genes
(non-preconditioned/control), 42
genes (preconditioned/control), 9

genes
(preconditioned/non-preconditioned)

[102]

HSE—transcriptome wide
gene expression (Thermally

resilient vs. sensitive)

RNA-Seq

HSP70, HSP23/HSPB1,
HSP16.2, CSMD1, Cu-Zn

SOD

Oxidative stress
response American Samoa Acropora hyacinthus

Up-regulation in thermal sensitive:
60 genes = “Frontloaded” in thermal

resistant

[103]

TNFRs, TRAFs,
NF-κB/Nfkb1, JNK/MAPK8

Apoptosis/immune
response

HSE—transcriptome wide
gene expression
(RT HV – MV)

RNA-Seq
HSPs, Chaperonin proteins,

CYPs
Oxidative stress

response American Samoa Acropora hyacinthus
Different expression: 71 contigs

based on pool of origin (HV/MV), 74
contigs based on pool transplanted

[93]

TNFRs, TRAFs, Apoptosis/immune
response

HSE = Heat Stress Experiment, HV = Highly Variable, MV = Moderately Variable, RT = Reciprocal Transplantation, qPCR = quantitative Polymerase Chain Reaction, HSP = Heat Stress
Protein, SOD = Superoxide Dismutase, TNFR = Tumor Necrosis Factor Receptor, TRAF = Tumor Receptor Associated Family, GBR = Great Barrier Reef.
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To understand the genomic basis of thermal resilience in corals, Barshis et al. [103] compared
transcriptome-wide gene expression among thermally resilient and thermally sensitive conspecifics
(Table 2). Sixty genes were up-regulated in thermally sensitive corals, while resilient corals already
presented up-regulated genes under ambient conditions. These “frontloaded” genes facilitate a faster
reaction to thermal stress at the protein level [103]. In a similar study, using reciprocally transplanted
corals from HV and MV pools, transcriptome-wide gene expression analyses showed differential
expression in 74 genes related to heat acclimation between genetically identical corals from both pools
(Table 2) [93]. In a related study performed at the same sites, Ruiz-Jones and Palumbi [104] monitored
the transcriptomic response of corals in the HV pool with a strong tidal cycle (high temperatures over
17 days). Their results bolstered the conclusions of Barshis et al. [103], showing that genes up-regulated
during the hottest days, were enriched for “unfolded protein response”, an ancient eukaryotic cellular
response to endoplasmic reticulum stress, which corals use as the first line of defence against thermal
stress [104].

2.6. Adaptation

Adaptation, strictly defined, refers to changes in the genetic composition of a population
that are passed onto the next generation through natural selection [17,44,105]. The major concern
regarding global climate change is that the current rate of environmental changes will outpace
the evolutionary capabilities of corals to adapt [12,14,16,19,106]. Recent evidence has shown that,
in addition to phenotypic plasticity and acclimatisation, other adaptive responses in corals, such as
trans-generational plasticity [107], epigenetics [108,109], and somatic mutations [110] might contribute
to resilience under thermal stress. Moreover, the fast rate of asexual reproduction within the
Symbiodiniaceae (days to weeks in hospite) [111] in combination with large population sizes within
corals (~1–5 × 106 cells cm−2) [112] provide the potential for mutations to develop that might enable
corals to resist thermal stress [110].

Few studies have examined adaptation to local thermal history in Symbiodiniaceae
dinoflagellates [113,114]. Howells et al. [113] demonstrated adaptive capacity in the symbiont
C. goreaui (formerly type C1) in corals from two sites in the GBR with dissimilar thermal histories.
Corals hosting C. goreaui from the cooler site presented photodamage and bleaching, while those from
the hotter site exhibited no signs of stress and greater growth [113]. Chakravarti et al. [114] tested
adaptation to thermal tolerance of C. goreaui through experimental evolution. Dinoflagellates were
cultured in vitro at elevated temperature of 31 ◦C for ~80 generations (2.5 y), while wild-types were
reared at 27 ◦C ambient temperature, then both cultures were tested at both temperatures. To measure
physiological responses in hospite, both types (thermally selected and wild types) were inoculated into
aposymbiotic recruits of three coral species and were exposed to both temperatures similar to in vitro
experiments [114]. Symbionts reared in vitro performed better in photophysiology and growth at both
temperatures, and showed lower levels of extracellular ROS. In contrast, wild-type symbionts were
unable to photosynthesise or grow at high temperatures, and produced 17 times more extracellular
ROS [114]. The differences were less obvious in hospite than in vitro. Cultures of corals inoculated with
the thermally tolerant symbionts showed no difference in growth between 27 and 31 ◦C, while those
inoculated with wild-types showed a negative growth trend at 31 ◦C, confirming an adaptation to
thermal stress in C. goreaui after many generations living under high temperature [114].

Dixon et al. [115] revealed genetic data from the coral host that forms the heritable basis of
temperature tolerance by performing a cross-fertilization experiment with coral colonies from two
thermally divergent locations in GBR. The authors measured heat tolerance using the survivorship rate
of larvae exposed to high temperatures and found that parents from the warmer location conferred
significantly higher thermo-tolerance to their offspring, up to 10 fold increase in odds of survival,
in comparison to parents from the cooler location. Dixon et al. [115] also identified “tolerance-associated
genes” (TAGs), whose expression before stress predicted high survivorship rates in larvae under
thermal stress, dissimilar from frontloaded genes [103]. When TAG expression was compared with
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parental colonies after three days of heat stress, they were negatively correlated with long-term heat
stress response similar to the larval response, indicating that the larval heat tolerance results from
the absence of pre-existing stress and not from prior up-regulation of heat stress genes through
frontloading [115].

Krueger et al. [116] presented evidence that Stylophora pistillata underwent selection for heat
tolerance in the Red Sea, after spending 47 days at 1–2 ◦C above their long-term summer maximum
and showed an increase in primary productivity. Fine et al. [117] demonstrated how different corals
species showed no signs of stress after exposure to 33 ◦C for four weeks and proposed that corals that
colonised the Gulf of Aqaba after the last ice age had to cross exceedingly warm waters (>32 ◦C in
the summer) at the entrance of the Red Sea, maintaining this adaptation to heat tolerance until the
present day.

2.7. Heterotrophy

Heterotrophic carbon can become a significant energy source for some coral species when
phototrophic carbon is unavailable, such as during a bleaching event (Table 1) [118]. Some studies have
shown how heterotrophy replenished energy reserves in corals exposed to high temperatures [119]
and during the recovery phase [120]. Similarly, Borell and Bischof [121] showed higher photochemical
efficiency in fed corals compared to unfed corals after a mild thermal stress experiment. Also, Borell
et al. [122] demonstrated how heterotrophy sustained photosynthetic activity and energy reserves in
thermally stressed corals.

In a study which developed an energy-budget model linking coral bleaching and mortality risk,
authors concluded that the time between the start of severe bleaching and the beginning of mortality is
influenced by the amount of lipid stores corals have before the bleaching event and their capacity to
acquire energy through heterotrophy [123]. With a stable isotope 13C pulse-chase labelling experiment,
Hughes et al. [124] demonstrated that, after exposure to high temperatures, coral hosts incorporated
heterotrophic labelled carbon for storage and to stimulate endosymbiont recovery. Even after recovery
from bleaching, 75% of carbon in newly acquired lipids was sourced heterotrophically [125], and corals
continued assimilating heterotrophic carbon for up to 11 months after the bleaching experiment [126].

Nonetheless, the capacity for heterotrophic plasticity is compromised after two consecutive
bleaching events [127]. Researchers experimentally bleached corals for 2.5 weeks, transferred corals to
the field for recovery, and then repeated the bleaching experiment after one year. After the first thermal
stress experiment, zooplankton and dissolved organic carbon (DOC) allowed the metabolic demand of
bleached corals to be met; however, neither form of heterotrophic carbon was able to contribute to
the energy budget of both species after the second bleaching experiment, suggesting that the capacity
for heterotrophic plasticity is compromised under annual bleaching events [127] and corals need to
depend on their energy reserves and/or symbiont association to survive repeated bleaching [128].

3. Perspectives for the Future

Because the loss of corals around the world would be a devastating consequence of human
influence on earth, strategies to mitigate the damage and improve coral’s thermal tolerance are
currently being taken into consideration. For example, assisted colonization, migration and/or gene
flow contemplate the movement of colonies or larvae of the same species living at different latitudes.
‘Warm-adapted’ corals can be transplanted to high latitude areas, where conspecifics living in colder
environments, are vulnerable to thermal stress [129–131]. Assisted evolution has the potential to
increase thermal stress tolerance in corals through various approaches: preconditioning acclimatisation
(see Section: ‘Thermal stress acclimatisation’) and trans-generational acclimatisation, changes in
microbial communities [132], selective breeding [133], mutagenesis [134], and the use of “CRISPR/Cas9”
genome editing technology [135]. The use of ‘strong corals’ naturally adapted to high temperature
extremes, such as corals originating from the Persian Gulf or Red Sea, as possible seedlings to repopulate
areas where corals have disappeared [117,136–138] is also being considered. Unfortunately, none of
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these measures seem to be able to keep pace with the current rate of climate change, with the time
between recurrent bleaching events becoming increasingly too short to allow complete recovery of
coral reef ecosystems [139]. Despite recent advances in research methods and technology, such as
transcriptomics [140], financial and logistical limitations to implement these actions remain [141],
especially at large scales [130], and it takes many years to safely deploy new technology after social
and political scrutiny [142].

Other conservation measures under consideration include designing better marine protected areas
(MPAs) [143] or networks of MPAs [144–146], taking into consideration larval dispersal, connectivity
and distribution patterns in areas with thermally tolerant corals [147] and including ‘refugia’ in
areas where coral reefs have proven to be resilient to climate change [21,43,148,149]. This might
help avoid the “protection paradox” in MPAs, in which vulnerable species are protected from local
pressures, like fishing; yet while these species recover, they might be more sensitive to global pressures,
like bleaching events [144]. Nevertheless, well-protected reefs within MPAs are not shielded from
thermal stress [150,151]. After the last bleaching event, this was confirmed for MPAs [152], and for
remote and isolated reefs with almost no direct human pressures [23,24,27,153–155].

The integration of assisted evolution [131,134] into coral reef restoration programs [156,157] to
increase the resilience of already degraded ecosystems [41] is one strategy that has proven to be
successful. Morikawa and Palumbi [158] used naturally thermal-tolerant corals from American Samoa
to show that resilient corals can survive multiple bleaching events, providing the first proof that
ecosystem engineering for conservation might be a resilience restoration tool of great importance in
our climate changed future [158].

Evidence from reciprocally transplanted coral clones between sites with different thermal histories
shows how individual coral colonies can shift their thermal threshold and thermal tolerance [93,159,160].
It is clear that many coral species are acclimatising and adapting to rapid changes in climate and their
mechanisms differ among species and localities [67,82,83,89,90,113,115,161]. However, under current
greenhouse gas emission projections, coral reefs worldwide are likely to change into new configurations
with new assemblages of species [19,149,162–165]. These changes are happening fast, the GBR being the
best example. After the 2014–2017 mass bleaching event, even the most ‘pristine’ areas in the northern
GBR saw high mortality regardless of reefs’ individual management status, proving that current
management toolsets are insufficient to protect coral reef ecosystems from climate change [20,152].
The Paris Agreement was a first step to tackle the climate crisis, but no major industrialized country is
meeting its pledges to control and reduce their greenhouse gas emissions [166]. It is imperative that
societies completely change our dependence on fossil fuels, therefore addressing the root causes of
climate change.
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