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Abstract: Rhodolith beds represent a key habitat worldwide, from tropical to polar ecosystems.
Despite this habitat is considered a hotspot of biodiversity, providing a suite of ecosystem goods and
services, still scarce quantitative information is available thus far about rhodolith beds occurrence
and ecological role, especially in the Mediterranean Sea. This study reports the composition and
patterns of distribution of rhodolith assemblages found in four study areas along ca. 860 km of coast
in the Central Mediterranean Sea. These rhodolith beds were studied for the first time and significant
differences at all spatial scales have been highlighted, documenting the high variability of this habitat.
Rhodolith species composition, morphology and distribution have been discussed considering the
potential role of environmental factors in driving these patterns. The need for improving their
protection is discussed to complement present conservation and management initiatives, particularly
in the frame of the EU Marine Strategy Framework Directive.

Keywords: rhodolith bed; maërl; coralline algae; rhodophyta; habitat mapping; biogenic habitats;
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1. Introduction

Human activities largely affect natural systems, but their cumulative effects on ecological
communities remains largely unknown [1]. A low diversity of species can affect ecosystems sensitivity to
multiple stressors and enhance the impacts on ecosystem functioning [2]. For this reason, understanding
patterns of distribution of species, communities and habitats is a priority to tease apart natural patterns
from those driven by human disturbances [3]. Biodiversity in marine ecosystems is related to
habitat heterogeneity [4], which is enhanced by ecosystem engineers, i.e., organisms that modify,
maintain or destroy habitats [5–7]. Rhodolith-forming algae grow as unattached nodules, often
acting as ecosystem engineers and forming aggregations known as Rhodolith Beds (RBs) on flat or
gently-sloped seabed [5,6,8]. RBs provide habitat for several associated species from the tropics to
polar latitudes [6,9–12], as well as a suite of ecosystem goods and services whose economic importance
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encompasses biodiversity and fishery resources, soil conditioning and building industry, carbon
trapping and climate regulation [13–20].

Rhodoliths three-dimensional complexity has been classified in three major categories along a
continuum: compact and nodular pralines, large and vacuolar boxworks, and unattached branches [17].
RBs can be monospecific or they can be composed by a pool of species with different morphologies [21,22].
The current state of knowledge about Mediterranean RBs is overall fragmented and incomplete, with limited
information about distribution, habitat structure, algal species composition and vitality [15,17,23–26].

An increased attention towards the status of RBs has been recently developed within the EU
Marine Strategy Framework Directive (MSFD) [27] aiming to identify the Good Environmental Status
(GES) [28]. The need for protection of this particular habitat and its algal bioconstructors has been also
pointed out also in the EU Habitat Directive [29], the Bern Convention [30] and the Council Regulation
1967/2006 [31]. Moreover, Mediterranean RBs are subject of a special plan for protection within the
framework of the United Nations Programme’s Mediterranean Action Plan [32], although it is not
mandatory for the national governments. Italy is among the European Countries that adopted these
regulations and, in the last five years, a regional-scale systematic monitoring program is ongoing in
order to cope with the substantial lack of knowledge about RBs distribution, ecology and functional role.
In this framework, the possibility of adopting a specific experimental design for studying Mediterranean
RBs has been suggested [17], since other approaches have been developed and calibrated on less
heterogeneous Atlantic RBs, at shallower depth [33–35]. In fact, Mediterranean RBs are characterized
by a remarkable diversity of coralline algae species and morphologies, often with more heterogeneous
assemblages than the Atlantic ones [22,25,36,37], although an unexpected diversity in the northeast
Atlantic RBs has been recently revealed by DNA barcoding [38].

The aim of this study is to assess the composition and pattern of distribution of RBs identified and
monitored according to the MSFD in three out of four different areas of Apulia Region (Italy, Adriatic
and Ionian Seas). The existence of relevant scales of variation across benthic habitats, on both hard and
soft bottoms, has been documented in the last two decades [39–43]. Here, we use a hierarchical sampling
design to examine spatial patterns in rhodolith assemblages at different scales (i.e., from meters to
hundreds of kilometres) with a focus on rhodolith cover, taxonomic composition, morphologies and
proportion of living thalli. We discuss the critical importance of new areas to be protected for the
understanding of the status of this habitat in absence of evident sources of threats.

2. Materials and Methods

According to the definition of Steneck [44], we refer to rhodoliths as those free-living structures
composed mostly (>50%) of calcareous red algae. More specifically, rhodoliths include pralines,
boxwork and unattached branches morphotypes (this latter forming the so-called maërl) [6,17].
However, all the nodules showing a complete algal coating are considered as rhodolith for monitoring
purposes, with no need to cut them [17]. We consider as RBs those sedimentary bottoms characterized
by any morphology and species of unattached non-geniculate calcareous red algae (coated grains
excluded) with >10% cover of living rhodoliths and a minimum extent of 500 m2 [6,17]. On the basis
of this definition, RBs include also maërl and fully calcified peyssonneliacean algae [10,45].

2.1. Study Areas

Four different areas of 25 km2 each were surveyed along 865 km of coasts in the Apulia Region
(Italy, Adriatic and Ionian Seas), from 10 to 62 m depth (Figure 1a–d). The Apulian continental shelf
is characterized by coralligenous bioconstructions, such as a typical Mediterranean habitat built up
by a suite of calcifying organisms (e.g., calcareous algae, corals, serpulids, bryozoans, molluscs) that
grow one on the other, generation after generation, building a secondary hard substratum in dim
light conditions [7,46–48]. The area is also characterized by a discontinuous belt of coastal detritic
habitat (sensu [49]) that can coexist with, or bathymetrically follow, the coralligenous formations.
Coastal detritic habitat can be dominated by rhodolith-forming algae that constitute RBs under proper
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oceanographic and edaphic conditions [49]. However, records of RBs along the Apulian coast are old
and uncertain [50–53], and no information about rhodoliths species composition, cover percentage,
structure and main features is available.J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 4 of 20 
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Figure 1. Map of Apulia Region. The four study areas are in blue: (a) Tremiti Islands Marine Protected
Area (MPA); (b) northwest Otranto; (c) Armeleia shoal; (d) off Gallipoli. For each study area, three
study sites (red dots) were selected for visual surveys and sampling.

The four study areas have been chosen according to the above-mentioned old records, considering
the poor predictability of RB occurrence [54], and investigated from 2015 to 2017. These areas are
located at Tremiti Islands Marine Protected Area (MPA; 42◦07′ N, 15◦30′ E; surveyed during October
2017; Figure 1a), northwest Otranto (40.14◦ N, 18.28◦ E; surveyed during November 2015; Figure 1b), off

Gallipoli (40.07◦ N, 17.53◦ E; surveyed during June 2015; Figure 1c) and at Armeleia shoal (Taranto Gulf;
40.20◦ N, 17.06◦ E; surveyed during November 2016; Figure 1d). In particular, Tremiti Archipelago
is located 12 nautical miles north of the Gargano promontory (Adriatic Sea) and is characterized
by cold, oxygenated and trophic-carrying water masses, coming from the north and proceeding
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southwards, that support rich marine communities including extensive coral forests on coralligenous
bioconstructions [55–57]. The MPA shows a gradient of restrictions and is divided into three main zones:
Zone A (no take, no entry zone), Zone B (highly protected zone; anchoring and recreational fishing are
forbidden, while professional fishing is regulated), and Zone C (partially protected zone; all human
activities are allowed and professional fishing is regulated). The area northwest Otranto is located in
proximity of the Otranto Strait (Adriatic Sea), where the scarp that bounds the Salento Peninsula slopes
eastward down to the sea and dips at relatively high angle down to about 50 m depth [53]. Patchy
marine bioconstructions, mostly coralligenous, are present down to 100 m depth [58]. Off Gallipoli
(Ionian Sea) the shelf break begins at ca. 120 m depth and is anticipated by three terraced surfaces
located at 25–30, 50–60 and 110–120 m depth [59]. The seabed is characterized by coralligenous outcrops
interspersed with coastal detritic and muddy bottoms [50,53]. Proceeding westwards in the Gulf of
Taranto, the Armeleia shoal is characterized by a slope of rocks and coralligenous bioconstructions
from 10 to 40 m depth. At the base of the shoal, large coralligenous outcrops are patchy present on a
detritic bottom.

The mean surface circulation in the study areas is induced by north-coming cold winds in the
Adriatic Sea, by fresh water input from the Po River in the northern sector, and by differences in
water density between the Ionian and the Adriatic seas in the southern sector [53,60]. These surficial
currents are active down to about 150 m depth [57,61] and consist of an elongated basin-wide cyclonic
gyre, with southward currents near the Italian coasts [62,63], and sub-basin cyclonic-gyre cells [60].
In particular, they run along-shore north of the Gargano Promontory [64], leave the coast south of the
same promontory and re-approach the coast parallel to the Murge Plateau near Bari [65], contour the
Salento Peninsula and enter the Ionian Sea inducing an along-shore cyclonic gyre in the Taranto Gulf
of a broadly lower intensity [66].

2.2. Habitat Mapping

Mapping of the four study areas was carried out using Side-Scan Sonar (SSS; Klein 3000 and
K3900) and MultiBeam EchoSounder (MBES; R2Sonic 2022 and RESON Seabat 8125) [8,17,32,67], for a
total of 100 km2 mapped.

SSS data were acquired with a double frequency of 100 and 500 kHz, simultaneously, using a
swath width of 100 m, with 50% of overlap between adjacent lines. SSS data were processed using
the CARIS HIPS and SIPS software, according to the following steps: data conversion; navigation
processing; slant range correction; time varying gain application; attitude data editing; data mosaicing;
data output. Geo-referenced, grey-tone acoustic images of the seafloor with a 0.2 m cell resolution
were produced.

MBES data were acquired with the echo sounder mounted on a side pole solidly installed on
vessel side. A SV probe was installed close to MBES transducer and connected to the system in
order to measure sound speed in salt water to a real time correction of every acquired sounding.
MBES data were acquired with a maximum swath angle of 120◦ and a frequency from 450 kHz to
210 kHz depending on water depth. Data were processed using the Teledyne PDS2000 and CARIS
HIPS and SIPS software to produce a digital terrain model (DTM) and a backscatter mosaic of the
seafloor that was mapped and described based on morphometric characterization. The DTM was
characterized by: 0.2 m cell resolution up to 10 m depth; 0.5 m cell resolution at 10–20 m depth; 1.0 m
cell resolution for depth >20 m. The acoustic data were calibrated, interpreted and properly validated
based on 20 stations of ground-truthing for each study area, using a drop camera system (steel slide
with high-definition camera and led light of 6000 lumen). Videos were analyzed using Adobe Premiere
Pro software. The combination of SSS and MBES data was used to identify and map the RBs, as well as
to evaluate their possible extent.
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2.3. Data Collection

Three sites, distant about 500–1000 m one from the others, were randomly selected within the
RBs identified and mapped at each study area with the acoustic surveys (Figure 1a–d). Three linear
transects of 200 m each, distant about 50–100 m one from the others, were carried out at each site by
using Remotely Operated Vehicle (ROV) (Table S1). Surveys were carried out on board the vessel
Issel (property of CoNISMa—Consorzio Nazionale Interuniversitario per le Scienze del Mare), using
the ROV Prometeo. The ROV was equipped with a low-definition camera for navigation and a 4 K
video camera for the detailed observation of the rhodoliths, as well as a depth sensor, a compass for
navigation, led lights with a maximum scene illumination of 13,000 lumen, a geographic positioning
system and two laser beams for size and area measurements [68].

ROV videos were analysed using Adobe Premiere Pro software. Sequences with bad visibility,
due to water turbidity or distance from the seabed, were discarded. A total of 20 frames were randomly
extracted from each video transect. Each frame defined an area of 2.5 ± 0.2 m2, according to the
minimal area proposed by Weinberg [69] for the study of Mediterranean benthic communities and
recently used for ROV imaging [57,68,70]. The rhodolith cover percentage and the proportion of living
thalli were estimated for each frame by visual inspection as an approximate measure of the algal
growth rate and vitality [37]. We considered as dead thalli those rhodoliths that where white or whitish
in colour, based on expert judgement.

Visual inspections were validated through one quantitative sample per transect (3 samples per
site), collected using a Van Veen grab (0.1 m2 of surface and 0.02 m3 of volume), according to the
monitoring protocol for Mediterranean RBs developed within the MFSD [27]. Samples were sieved
through a 0.5 mm mesh size. Living rhodolith thalli were sorted, dried with absorbent paper and
preserved on-board in silica gel [38]. The taxa composing the algal nodules were identified at the
lowest possible taxonomic level (i.e., species or genus).

Qualitative sub-samples of few rhodoliths were collected along each transect using Van Venn grab
in order to perform algae taxonomic identification. Based on this data and on the general morphology
of the rhodoliths samples, the overall contribution of each algal taxon to the total rhodolith cover
percentage was estimated analysing the frames extracted from each video (20 frames per transect,
60 frames per site, 180 frames per area).

2.4. Taxonomic Identification

Calcareous algae were analysed by scanning electron microscopy (SEM) for detailed anatomical
observation. Fragments of samples were sonicated using a Vitec sonicator (Carlsbad, CA, USA) to
remove sediments, mounted on aluminium stubs with acrylic adhesive and coated with gold/palladium
with a S150 Sputter Coater (Edwards, Crawley, UK) [71]. Then, observation was carried out using
a LEICA Steroscan 430i scanning electron microscope (Leica, Cambridge, UK). The identification of
non-geniculate red algae follows the most updated scientific literature, and algal taxonomy follows
Algaebase [72].

2.5. Statistical Analysis

Statistical analyses were carried out using PRIMER v.6 software [73].
Permutational multivariate analysis of variance (PERMANOVA) [74] was used to test differences

among algal assemblages at different spatial scales, based on the cover percentage of the species
observed and identified, using the following hierarchical sampling design: Area (Ar, as random factor
with 3 levels), Site (Si, as random factor with 3 levels) and Transect (Tr, as random factor with 3 levels),
with n = 20 frames by each ROV video transect.

Data were analysed using the Bray-Curtis dissimilarity measure on untransformed data through
9999 permutations of residuals under a reduced model [75], while univariate analyses based on
Euclidean distances [74] were performed on the rhodolith cover percentage and the proportion
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of living thalli. Mean squares calculated by PERMANOVA were used to estimate multivariate
variance components associated at each spatial scale [76]. Non-metric multidimensional scaling (MDS)
ordination plot was produced in order to visualize multivariate patterns in assemblages across scales.
Furthermore, permutational analyses of multivariate dispersion (PERMDISP) were also performed to
test the heterogeneity of multivariate dispersions among sites and among transects [77,78]. In order to
detect which algal species contributed most to dissimilarity among the areas, a similarity percentage
(SIMPER) routine was performed [79]. The assemblage structure of the different sites was then compared
by plotting the cumulative dominance vs species rank in order to obtain k-dominance curves based on
cover percentage [80].

3. Results

3.1. Mapping and Description of Rhodolith Beds

Habitat mapping activities allowed to identify areas characterized by rhodolith-forming algae,
providing a reliable indication for the allocation of ROV transects and grab samplings. RBs showed a
typical backscatter response characterized by a texture of bands of high and low signal, mostly due to
the general patchiness of the habitat (Figure 2a). Areas characterized by higher cover of rhodoliths
where identifiable by a higher backscatter, while low-cover RBs were not always distinguishable from
detritic seabed without rhodoliths, such as the coastal detritic biocoenosis [49]. Based on acoustic
data validated by visual surveys, we identified high-density RBs as those with a higher backscatter,
corresponding to a cover broadly higher than 20–30%. On the contrary, areas with a lower backscatter
and mostly characterized by a cover of 10% or less, often interspersed with high-density RBs, were
considered low-density RBs. Coralligenous bioconstructions and muddy bottoms were also easily
distinguishable based on the backscatter (Figure 2a).
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Figure 2. Mapping of rhodolith beds (RBs): (a) Example of backscatter at Armeleia shoal and habitat
interpretation, with: high-cover RB (1) in an area characterized by mega-ripples, low-cover RB and
coastal detritic (2), muddy-detritic bottom (3), and coralligenous bioconstructions (4) (scale bar 10 m);
(b) RB at Tremiti Islands, with indication of the Marine Protected Area (MPA) zonation; (c) RB off

Gallipoli; (d) RB at Armeleia Shoal.
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Consistently with both SSS and MBES backscatter, rhodoliths were observed in all the ROV
transects and grab samples, within the four study areas. RBs (sensu [6,17]) were observed at Tremiti
Islands MPA, off Gallipoli and at Armeleia shoal. On the contrary, only occasional and densely-branched
nodules of Lithophyllum racemus, characterized by short ramifications, were found northwest Otranto
from 38 to 44 m depth (Table 1). For this reason, this latter area was not included in the analysis.

Table 1. Mean cover percentage and standard deviation of each rhodolith-forming species observed in
the four study areas, with indication of total cover percentage and the proportion of living thalli for
each area.

Taxa Northwest
Otranto Tremiti Islands Off

Gallipoli Armeleia Shoal

Lithophyllum racemus (Lamarck) Foslie <2 18.59 ± 16.09 22.25 ± 13.31

Lithothamnion corallioides (P. Crouan & H.
Crouan) P. Crouan & H. Crouan 0.73 ± 0.45 59.19 ± 20.68

Lithothamnion crispatum Hauck 2.55 ± 2.71 0.73 ± 0.45 1.78 ± 1.72

Lithothamnion minervae Basso 0.22 ± 0.47 2.64 ± 2.43

Lithothamnion valens Foslie 0.11 ± 0.33

Mesophyllum sp. 1.30 ± 1.16 1.75 ± 1.34

Neogoniolithon brassica-florida (Harvey)
Setchell & Mason 12.36 ± 14.06

Spongites fruticulosus Kützing 4.91 ± 5.54

Titanoderma pustulatum (J.V. Lamourou)
Nägeli 3.23 ± 3.59 0.74 ± 0.44 0.11 ± 0.48

Cover % 43.27 ± 30.53 24.44 ± 14.09 65.59 ± 19.57

Live/Dead rhodolith ratio 78.25 ± 11.45 73.18 ± 9.54 50.95 ± 24.89

The RB at Tremiti Islands MPA was patchy distributed around the archipelago as a mosaic of
rhodoliths and coralligenous, and as RB sensu stricto from 15 to 48 m depth. The RB covered a total
surface of 2.47 km2 (1.70 km2 of high-density RB) and was present in both the B and C zones of
the MPA, such as the highly protected and the partially protected zone, respectively (Figure 2b).
The most common morphotypes were pralines and boxworks, mainly of L. racemus and Neogoniolithon
brassica-florida (Figure 3; Figure 4a–d), respectively. Spongites fruticulosus, Titanoderma pustulatum,
Lithothamnion crispatum, Mesophyllum sp., Lithothamnion minervae and L. valens were also present (Table 1;
Figure 4e–h).
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Figure 3. The three rhodolith beds identified, with detail of the morphotypes of four main species
collected (pralines and boxwork at Tremiti Islands, unattached branches off Gallipoli and at Armeleia
Shoal). Scale bars: 1 cm.
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Figure 4. Examples of morphology and inner structure of the four main rhodolith species collected: (a)
Boxwork of Neogoniolithon brassica-florida from Tremiti Islands (scale bar 1 cm) with: (b) protruding
conical uniporate conceptacles (arrows) (scale bar 2 mm); (c) section of the thallus with monomerous
construction (scale bar 500 µm); (d) terminal trichocyte cell (arrowheads) (scale bar 50 µm). (e) Fruticose
praline of Lithothamnion minervae from Tremiti Islands (scale bar 1 cm) with: (f) multiporate conceptacle
in surface view (arrowhead) (scale bar 400 µm); (g) section of the thallus with monomerous construction
and non-coaxial growth (arrow) (scale bar 200 µm); (h) multiporate conceptacle (arrowhead) overgrown
by new cortical filaments (arrow) (scale bar 300 µm). (i) Unattached branch of Lithophyllum racemus
from Gallipoli (scale bar 1 cm), with: (j) Epithallus in surface view with pores of uniporate sporangial
conceptacles (arrows) (scale bar 400 µm) and (k) a central columella raising from the floor (arrows) (scale
bar 300 µm); (l) section with cortical cells joined laterally by secondary pit-connections (arrow) (scale
bar 50 µm). (m) Unattached branch of Lithothamnion corallioides from Armeleia Shoal (scale bar 1 cm)
with: (n) section of a branch (scale bar 1 mm); (o) section showing a flared epithallial cell (arrowhead)
and elongated subepithallial cell (arrow) (scale bar 10 µm); (p) cells of neighboring filaments linked by
lateral cell fusions (arrowheads), with cells containing starch grains (arrows) (scale bar 50 µm).
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The RB off Gallipoli was found between 36–45 m depth, mainly as a mosaic of rhodoliths and
coralligenous habitat (i.e., RB and patchy coralligenous outcrops). The RB covered an area of 4.04 km2

(2.90 km2 of high-density RB) (Figure 2c) and was dominated by unattached branches morphotype
(Figure 3). Rhodoliths were characterized by short and numerous branches (mostly L. racemus), or by
few, long and thin ramifications (e.g., Lithothamnion corallioides). The dominant species was L. racemus
(Figure 4i–l), while L. corallioides, L. crispatum and T. pustulatum were less abundant in terms of cover
percentage (Table 1).

At Armeleia shoal, RB bathymetrically followed some coralligenous formations, between 35 and
41 m depth, covering an area of 2.61 km2 (2.11 km2 of high-density RB) (Figure 2d). Rhodoliths were
mainly unattached branches (Figure 3), with the dominance of L. corallioides (Figure 4m–p) and the
occasional occurrence of L. minervae, L. crispatum, Mesophyllum sp., and T. pustulatum (Table 1).

The rhodolith cover percentage in Armeleia was larger than the coverages found in Tremiti and
in Gallipoli (Table 1), while the proportion of living thalli was higher in Tremiti than Gallipoli and
Armeleia (Table 2). Both the rhodolith cover percentage and the proportion of living thalli showed
significant differences at the scales of transects and sites (Table 2). PERMDISP analyses revealed
significant differences in multivariate dispersion across scales, both across transects (rhodolith cover
percentage: F = 6.765 (p = 0.0001); proportion of living thalli: F: 6.650 (p = 0.0001)) and sites (rhodolith
cover percentage F = 6.891 (p = 0.0001); proportion of living thalli: F = 14.842 (p = 0.0001)).

Table 2. Results of PERMANOVAs testing for spatial differences in the proportion of living thalli and
the rhodolith cover percentage at scales of area, site and transect. Estimates of multivariate variation
are given for each spatial scale. df = degrees of freedom; MS = mean sum of squares; Pseudo-F = F
value by permutation; p (perm) = p-values based on 9999 random permutations of appropriate units.

Proportion of Living Thalli Rhodolith Cover

Source df MS Pseudo-F p
(perm)

Variation
Components MS Pseudo-F p

(perm)
Variation

Components

Ar 2 35,194.0 2.955 0.0943 185.52 43,479.0 1.919 0.1619 165.92
Si(Ar) 4 12,397.0 11.162 0.0002 * 188.14 23,582.0 11.426 0.0002 * 358.70
Tr(Si(Ar)) 14 1097.0 5.811 0.0001 * 45.99 2038.5 6.644 0.0001 * 87.68

Res 394 188.8 188.77 306.8 306.82
Total 414

* p < 0.001.

3.2. Heterogeneity of Rhodolith Beds

The PERMANOVA analysis highlighted significant differences in the algal cover percentage from
the three RBs studied, at all the considered scales (Table 3). In addition, estimates of multivariate
variation showed the largest variation at area scale, followed by residual variation, indicating
multivariate heterogeneity among sampling units, whereas the contributions of site and transect scales
resulted marginal (Table 3; Figure 5).

Table 3. Results of PERMANOVAs testing for spatial differences in structure of algal assemblages at area
(Ar), site (Si) and transect (Tr) scales, based on the algal cover percentage from ROV imaging. Analyses
based on Bray-Curtis dissimilarities from untransformed data. Estimates of multivariate variation
are given for each spatial scale. df = degrees of freedom; MS = mean sum of squares; Pseudo-F = F
value by permutation; p (perm) = p-values based on 9999 random permutations of appropriate units.
* p < 0.05; *** p < 0.001.

Source df MS Pseudo-F p (perm) Variation Components

Ar 2 382,000 16.25 * 2858.60
Si(Ar) 4 24,471.00 5.80 *** 337.68

Tr(Si(Ar)) 14 4166.70 5.64 *** 173.55
Res 394 739.04 739.04

Total 414
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Figure 5. Square root of multivariate variance components (VC) at each spatial scale for all the algal species.

MDS plot revealed important differences between the assemblage of Armeleia shoal and the other
two areas. Pearson correlations coefficients (>0.6) indicated that the observed differences were driven
by L. minervae and L. corallioides, which mainly characterized the assemblages from Armeleia shoal,
whereas RBs from Tremiti Islands and Gallipoli were mainly characterized by L. racemus (Figure 6).
Higher variability among replicates was also observed at Tremiti Islands MPA and Gallipoli, compared
to Armeleia shoal (Figure 6).J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 11 of 20 
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Figure 6. MDS plots on the basis of all the rhodoliths species found in the different study areas (ARM:
Armeleia shoal; ITR: Tremiti Islands; GAL: Gallipoli).

Results of PERMDISP showed significant differences in multivariate dispersion across scales.
More specifically, significant differences in the spatial heterogeneity of assemblages across transects
(F = 11.396 [p = 0.0001]) and sites (F = 26.588 [p = 0.0001]) were observed (Figure 7a,b).

The SIMPER analysis revealed a high dissimilarity in the algal assemblages among the study
areas, reaching the 97% between Gallipoli vs Armeleia (Table 4). RBs from Armeleia shoal and Tremiti
Islands MPA were also characterized by the patchy presence of green seaweeds belonging to the family
Caulerpaceae, settled on the rhodoliths and locally abundant. For this reason, Caulerpaceae have been
included in the SIMPER analysis. In particular, Caulerpa prolifera was found only at Tremiti Islands MPA
(0.4%), while C. cylindracea both at Armeleia shoal (4.58%) and Tremiti Islands MPA (8.12%) (Table 4).
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Figure 7. Multivariate dispersion (PERMDISP). Patterns of variability of algal assemblages: (a) across
transects and (b) within sites, split for the different areas (ARM: Armeleia shoal; ITR: Tremiti Islands;
GAL: Gallipoli, where a rhodolith bed was found only in one of the three study sites). Error bars
represent standard error.

Table 4. Results of SIMPER analysis. Average cover percentage of algal taxa contributing to most of
the Bray-Curtis dissimilarity among areas. ARM: Armeleia shoal; ITR: Tremiti Islands; GAL: Gallipoli).
Av = Average cover percentage; Av.Diss = Average dissimilarity; Contrib% = Contribution (%).

ARM ITR GAL ARM vs. ITR 94.70% ARM vs. GAL 96.86% ITR vs. GAL 64.33%

Taxa Av. Av. Av. Av.Diss Contrib% Av.Diss Contrib% Av.Diss Contrib%

L. corallioides 59.19 0.00 0.73 51.78 54.68 61.42 63.41 1.17 1.82
L. racemus 0.00 18.59 22.25 14.26 15.05 23.33 24.08 26.09 40.55

C. cylindracea 4.58 8.12 0.0 7.50 7.92 4.70 4.85 7.50 11.66
N. brassica-florida 0.00 12.37 0.00 9.24 9.76 0.00 0.00 15.11 23.49

S. fruticulosus 0.00 4.91 0.00 3.61 3.81 0.00 0.00 5.77 8.97
L. minervae 2.64 0.00 0.00 2.59 2.74 3.18 3.28 0.00 0.00

T. pustulatum 0.00 3.23 0.73 2.50 2.64 0.78 0.81 3.17 4.93
L. crispatum 1.78 2.55 0.73 1.93 2.04 1.34 1.39 3.41 5.29

Mesophyllum sp. 1.75 1.30 0.00 1.10 1.16 2.12 2.19 1.86 2.88
C. prolifera 0.00 0.40 0.00 0.20 0.21 0.00 0.00 0.26 0.41

K-dominance curves showed that rhodolith taxa dominance at Gallipoli and Armeleia markedly
differs from curves of Tremiti Islands MPA, this latter being characterized by less dominant taxa
(Figure 8). At Armeleia shoal the most abundant species in terms of cover was L. corallioides, with
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a dominance of 90% approximately. On the contrary, L. racemus resulted the dominant species at
Gallipoli and Tremiti Islands MPA, with a dominance of 90% and 40–60%, respectively.
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4. Discussion

4.1. Rhodolith Beds Variability from Small to Large Scale

The combination of visual surveys and acoustic data represented the best approach for the
identification of RBs, and the high backscatter registered in association with this habitat was in
accordance with recent literature (e.g., [8,67,81]). However, backscatter can vary according to many
factors such as, among the others, incident angle, sediment type, grain size, seabed slope and
roughness [81,82], thus ground truth is essential for a proper interpretation.

The adoption of a hierarchical nested design for the analysis of spatial patterns based on ROV
imaging and samples over small (~10−1 m) to large (~106 m) spatial scales allowed to investigate
the composition of the newly-identified rhodolith assemblages across the coast of Apulia (Central
Mediterranean Sea). Multivariate analyses highlighted significant differences in the rhodolith
assemblages at all the considered scales, with the largest variation among areas. These differences are
driven by four main species, such as L. minervae, L. corallioides, L. racemus and N. brassica-florida (Figure 3;
Table 4). The analysis of multivariate variation showed that areas added a significant contribution of
variance above that of sampling units that are, however, also contributing to the overall variability.
This variability at area level is likely due to the distance and the environmental differences among each
area, underlining a strong heterogeneity and the presence of specific rhodolith communities in the
different areas. Rhodoliths were also characterized by significant differences at the smaller scales in
both rhodolith cover percentage and proportion of living thalli (Table 2). In addition, wave-induced
turbulence, light intensity and sedimentation together with depth range, can represent environmental
drivers determining the presence, structure and functioning of rhodolith beds [83]. Moreover, fishing
activities can also influence the size and the morphology of the rhodoliths.

Our result further reinforces the idea that small-scale processes are as important as large-scale
ones in generating patterns in rhodolith assemblages, as also observed in other marine habitats
such as intertidal and subtidal turfing algal assemblages, soft-sediment macrofauna and rocky shore
communities [42,43,84,85]. Moreover, our results confirm that Mediterranean RBs are featured by
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complex spatial patterns and a high diversity of shapes and morphologies, determining a substantial
heterogeneity.

The principal ecosystem engineers and the main contributor in dissimilarities were L. racemus and
L. corallioides, the latter included in the Annex V of the EU Habitat Directive [29]. In particular, L. racemus
was the dominant species in all the study areas except from Armeleia shoal, where L. corallioides was
dominant. The rhodolith assemblage was particularly heterogeneous at Tremiti Islands MPA where,
despite the large cover of L. racemus and N. brassica-florida, it was not observed the marked dominance
of one species. RBs shallower than 25 m depth, as Tremiti’s one, are also rather uncommon in the
Mediterranean basin, being mainly present in the northern Adriatic Sea and in the Gulf of Gabés
(Eastern Mediterranean, Tunisia) [25]. Indeed, most Mediterranean RBs known thus far occur between
30 and 75 m, although they have been broadly found from 9 to 150 m of depth [25].

4.2. Rhodolith Morphotypes and Main Hydrodynamic Regime

The clear separation of Armeleia shoal from the other two areas (Figure 6) suggested that a
combination of environmental drivers (e.g., currents and sedimentation) possibly shaped a different
rhodolith assemblage in this area in terms of species composition, rhodolith growth forms and cover.
Besides temperature, wind waves, nutrients and irradiance levels as a function of photosynthesis,
calcification and respiration process [86–88], bottom currents represent important variables governing
rhodolith occurrence and development. In fact, different hydrodynamic regimes can influence RB
composition and rhodolith morphotype [33,89]. In particular, spherical and densely-branched
rhodoliths seem to be typical of exposed sites (i.e., subject to strong bottom currents), while
open-branched rhodoliths are found in more stable environments (i.e., subject to moderate bottom
currents) [22,23,44]. The dominant presence of pralines and boxworks at Tremiti Islands MPA could
be due to the relevant exposure of the archipelago to strong water currents coming from the north
Adriatic [55–57]. Both densely-branched rhodoliths (L. racemus) and open-branched ones (L. corallioides)
were observed off Gallipoli. This variety may be driven by the different local conditions due to the
presence of large coralligenous outcrops scattered on the coastal detritic bottom with RBs (mosaic of
coralligenous and RBs) that may affect water masses movements on the seabed. Finally, RBs at Armeleia
shoal were mainly characterized by unattached branches with few, long and thin ramifications, likely
due to a more hydrodynamically stable environment [53,66]. These results seemed to support the
hypothesis that Mediterranean RBs are mainly present around islands and capes (as Tremiti Islands),
around banks and shoals (as Armeleia shoal), as well as on top of submarine plateau and on marine
terraces (as off Gallipoli) [25].

4.3. Threats and Conservation

Habitats featured by high variability of assemblages and complex patterns of distribution require
different protected sites for a representative conservation policy. Heterogeneity in rhodolith species
composition, morphologies and cover resulted locally very high in all the RBs, representing eligible
sites for conservation measures, such as the institution and/or the implementation of Natura2000 sites
according to the EU Habitat Directive [29]. To that regard, areas as Armeleia shoal are good candidates for
strategic protection initiatives due to the co-existence of priority habitats [27,29], such as coralligenous
bioconstructions and RBs.

The observed high patchiness of the rhodolith assemblage at Tremiti Islands could be enhanced by
a number of anthropic stressors including high touristic frequentation, anchoring activities and some
fishing practices that occur in the area [47,57], albeit no evident signs of destructive fishing practices
(e.g., trawl marks) have been observed on the RB. However, trawling is allowed only below 50 m
depth in the Mediterranean Sea and our survey was carried out mostly shallower than this depth, so it
is assumed that no trawling activities are carried out on the studied RBs. Beside the direct effect of
fishing activities, the indirect human pressures might negatively influence the habitats as reported
along the Tyrrhenian coasts where the great amount of marine litter was found to affect seabed [90]
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and litter abundance was negatively correlated to rhodolith cover [91]. However, the conservation
status of RBs in a 25-year-old no-take area of the north-western Mediterranean (Columbretes Islads
Marine Reserve) [92] underlined a beneficial protection from fishing activities on RBs cover and species
richness, although the proportion of living rhodoliths was similar in protected and in unprotected areas.

Further evidences of human pressures could be highlighted by the presence of the green algae
Caulerpa cylindracea. This alien and invasive species was frequently observed in many sites, and
resulted locally very common at Tremiti Islands MPA. Local heavy overgrowth of C. cylindracea on RBs
may be facilitated by anthropogenic impacts [93] and it could affect the rhodolith assemblage [94,95].
In particular, besides the shading due to the settling on the rhodoliths, C. cylindracea may significantly
influence the quantity and biochemical composition of sedimentary organic matter across the RBs [96,97].

The ongoing ocean acidification and rising of water temperature might hamper the formation of RBs
in the near future or result in the degradation of present assemblages [98–103]. As recently highlighted
for other calcifying habitat formers such as cold-water corals [3,104], knowledge about patterns of
distribution and main habitat features are fundamental to assess ongoing and future changes [105].
Understanding the status of RBs without consistent information about species compositions, dominant
morphologies, proportion of living thalli, habitat features and disturbances (both natural and
anthropogenic) shaping presence and distribution of RBs is very unlikely. This information, together
with the assessment of RBs sensitivity to human disturbance, is essential for the proper protection and
management of this productive marine habitat.

5. Conclusions

Our results showed the potential of applying coordinated monitoring at regional and national
level that, in the near future, could confirm the presence of complex spatial and diversity patterns
possibly driven by a combination of natural processes and anthropic pressures (e.g., organic inputs,
coastal human activities, fishing pressures). Visual techniques proved to be effective, but sampling is
still needed for taxonomic identification and for both calibration and validation of remotely-collected
data (both geophysical and visual). The identification of strategic areas which are as representative
as possible of the different Mediterranean RBs is essential, together with the application of ad hoc
conservation measures to protect this unique marine habitat.

Supplementary Materials: The following are available online at http://www.mdpi.com/2077-1312/8/10/813/s1,
Table S1. Coordinates and depth range of the ROV transects carried out in the four study areas, with three sites
per area and three transects per site.
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