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Abstract: Pile foundation is one of the common foundation forms in marine geotechnical engineering,
especially in wind power engineering. Its operation safety is seriously affected by many uncertainties,
such as the randomness of ground motion in intensity and frequency. The stochastic reliability
analysis method can better characterize these uncertainties in the evaluation of the safety performance
of pile foundation. The probability density functions (PDFs) of stochastic systems are important
prerequisites for reliability analysis. However, for geotechnical problems, the coupling between
parametric and excitation randomness and the nonlinear mechanical properties of rock and soil make
it very difficult to obtain the associated PDFs. Instead, the probability density evolution method
(PDEM) is introduced and is used to investigate the static and dynamic reliability of laterally loaded
piles as an example of a geotechnical problem. Compared with Monte Carlo stochastic simulations,
PDEM-based computing is shown to be highly efficient when applied to the seismic design of pile
in geotechnical engineering, and its calculation efficiency is 20 times of the former for the seismic
dynamic reliability of pile foundation. This study provides a new reference for the efficient design
and safety evaluation of offshore pile foundation engineering based on static and dynamic reliability
of multiple random factors.
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1. Introduction

In foundation engineering involving large piles, pile foundation is one of the common structural
forms of offshore wind power. It is generally the case that the axial force is the main control load and
buckling is the main failure mode [1,2]. However, because of lateral action from seismic excitation, wind,
waves, and various other water and soil pressures, a single pile or a pile group is usually also subjected
to huge lateral loading; examples of this are offshore platforms, transmission-line towers, high-piled
wharfs, and the piers of long bridges. Therefore, there have been many studies of the static and
dynamic responses of piles. These range from closed-form exact solutions of simplified problems [3,4]
to numerical solutions of complicated nonlinear problems [5,6]. Meanwhile, many researchers have
gradually come to realize the importance of uncertainty and randomness when analyzing the static and
dynamic responses of a laterally loaded pile system. In pioneering work, Zhang et al. [7] systematically
analyzed and summarized four main sources of analytical uncertainty and randomness for laterally
loaded piles and proceeded to study the static reliability of piles considering the variability of the soil
modulus. Aimed at soil–structure interaction, Barakat et al. [8] proposed a reliability and optimum
analysis and design method for laterally loaded piles.
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Recently, thanks to rapid computational developments, various analyses have been conducted of
the linear and nonlinear stochastic responses of laterally loaded piles using finite-element (FE) and
finite-difference approaches [9–13]. These studies considered multiple correlated sources of randomness
in the static reliability analysis of a laterally loaded pile using the first-order and second-order reliability
methods, the response-surface method, and Monte Carlo simulation, among others. However, for
Monte Carlo simulation, the anomaly of stochastic convergence means that extensive computation
is required [14,15]. Obviously, due to the limitation of the basic principle of Monte Carlo stochastic
simulation, the static and dynamic reliability analysis of piles based on Monte Carlo method will
inevitably face a huge amount of calculation. Furthermore, most other approaches to calculating
reliability depend on the Gaussian distribution, which inevitably reduces the accuracy because the
correlation coefficient is changed in the nonlinear transformation from others to Normality of probability
distributions [16]. In essence, the stochastic analysis of static and dynamic response of geotechnical
engineering is far less than that of other distribution types, whether the physical quantities are assumed
to be random variables or random processes with normal distribution. This is because probability
density function of normal distribution is determined by its mean and variance. Compared with other
probability information, especially the probability density function, it is much less difficult to obtain
the mean and variance, and the probability density function is also the most essential description of
the objective physical world. Meanwhile, all the aforementioned studies involving reliability analyses
of laterally loaded piles were aimed only at static or quasi-static analysis of piles subjected to seismic
loading. Less attention has been paid to the nonlinear time-history analysis of the dynamic reliability
of laterally loaded piles.

When a pile is subjected to either a wind or wave load or seismic excitation, analyzing the
response of that pile is a dynamic problem; if the loads being considered are in any way uncertainty
or stochastic, it becomes a stochastic dynamic problem. A previous study used time-history analysis
and first-passage theory to investigate the linear dynamic response and reliability of a large offshore
structure considering the variability of wave loading and earthquake excitation [17]. Many studies
have also used the pseudo-static method to assess the dynamic reliability of piles considering the
uncertainty of earthquake ground motion [18]. Unfortunately, none of those attempts succeeded in
capturing the coupling between randomness and nonlinearity. Furthermore, for stochastic dynamic
analysis, Monte Carlo simulation seems to be the most universal method for a stochastic system of
arbitrary dimension. However, the already huge amount of computation will grow explosively as
the dimensions of the random system are increased [15,19–21], data dimensionality reduction is a
common challenge for all stochastic uncertainty problems, and it is also a problem that this study
needs to face. That is, by introducing a new sampling method of high-dimensional probability space,
the computational complexity of stochastic static and dynamic analysis can be reduced.

Given the discussion above, the probability density evolution method is introduced herein [22]. It is
used to assess the nonlinear static and dynamic responses of laterally loaded piles from the perspective
of the probability density functions (PDF), which also provides a foundation for reliability analysis.

2. Generalized Probability Density Evolution Equation

A general static or dynamic system of laterally loaded piles subjected to static and earthquake
loading can be expressed as

U = Γ(Θ, ξ, u, t), (1)

where Θ is a vector of random parameters (e.g., the uncertainty of the soil properties or the randomness
of the earthquake ground motion) whose role is to describe all the possible sources of randomness
in the aforementioned static or dynamic system, ξ is a generalized time parameter representing the
evolution direction of the system state, and u and t are the spatial location vector of the system and its
situated time parameter, respectively.
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The components of Equation (1) can be expressed as

Ur = Γr(Θ, ξ, u, t)(r = 1, 2, · · · , n), (2)

where n is the dimension of the system and combines with the physical quantity Ur which attracts us.
The switching rate of the system is the derivative of Ur with respect to ξ:

.
Ur(ξ) =

∂Ur

∂ξ
(r = 1, 2, · · · , n). (3)

Here, it is assumed that the stochastic static or dynamic system of the laterally loaded pile is
probability conserving and that the stochastic factors of the system are given entirely by Θ. The joint
probability density of (U(ξ), Θ) is denoted as pUΘ(u,θ, ξ). It should be emphasized that if no new
stochastic factors are added or removed in the process of system evolution, the probability of the
stochastic system is conservative [23], namely,

d
dξ

∫
Ωξ×ΩΘ

pUΘ(u,θ, ξ)dudθ = 0, (4)

where Ωξ is the value domain of U at time ξ and Ωθ is the value range of Θ. ξ0 is treated as the initial
time of system evolution. Equation (4) can be rewritten as

d
dξ

∫
Ωξ×ΩΘ

pUΘ(u,θ, ξ)dudθ = d
dξ

∫
Ωξ0×ΩΘ

pUΘ(u,θ, ξ)|J|dudθ

=
∫

Ωξ0×ΩΘ
pUΘ

(
∂pUΘ
∂ξ +

∑n
r=1

.
Ur

∂pUΘ
∂ur

)
|J|dudθ.

=
∫

Ωξ×ΩΘ
pUΘ

(
∂pUΘ
∂ξ +

∑n
r=1

.
Ur

∂pUΘ

∂ur

)
dudθ

(5)

Because of the arbitrariness of Ωξ ×ΩΘ, the generalized probability density evolution equation
(PDEE) can be obtained from Equations (3) and (4):

∂pUΘ(u,θ, ξ)
∂ξ

+
∑n

r=1

∂pUΘ(u,θ, ξ)
∂ur

= 0 (6)

in which all the variables are the same as those in Equations (2)–(4).
Equation (6) portrays the transmission regularity of the stochastic in general physical system;

obviously, even the static or dynamic system of laterally loaded piles. Therefore, the PDF pU(u, ξ) of
U(ξ) can be calculated by

pU(u, ξ) =
∫

ΩΘ

pUΘ(u,θ, ξ)dθ. (7)

The aforementioned process of solving for the PDF of a physical quality is known as the probability
density evolution method (PDEM) [23,24]. Generally speaking, for a laterally loaded pile whose
engineering design is investigated from the perspective of reliability, there is only one response (e.g.,
displacement or internal force), whereupon Equation (6) can be reduced to a one-dimensional (1D)
partial differential equation, namely,

∂pUrΘ(ur,θ, ξ)
∂ξ

+
.

Ur
∂pUrΘ(ur,θ, ξ)

∂ur
= 0. (8)

To solve the generalized PDEE, its initial conditions must be established here. For the 1D case, the
initial conditions can be expressed as follows if the stochastic factor is without respect to the initial
conditions of the pile:

pUΘ(u,θ, ξ)ξ=0 = δ(u− u0)pΘ(θ), (9)
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where u0 is the deterministic initial value of U(ξ) at the time instant ξ0 and δ(·) is the Dirac delta
function. In general, although the nonlinearity of the soil properties makes it hugely challenging to
obtain a closed-form exact solution of Equation (6) or Equation (8), the PDEE can be solved numerically
as follows:

(1) Conduct the probability division of the vector space ΩΘ of the stochastic parameters and then
select representative sample point θq(q = 1, 2, · · · , Nsel) in each subdivision, where Nsel is the total
number of subdomain divisions of the probability space and pq is the corresponding assigned
probability measure of the subdivision region. By doing so, the stochastic response analysis of
the laterally loaded pile can be translated into a series of deterministic calculations. The specific
division technique (e.g., tangent sphere (TS) or number theory) can be chosen according to
different probability spaces which combine with special stochastic parameters. This aspect is
discussed in Sections 3.1 and 3.2 for static and dynamic problems, respectively;

(2) Introduce the deterministic response into Equation (8) as a generalized velocity
.

Ur, whereupon
the PDF can be obtained by solving the PDEE by the finite-difference method.

3. Numerical Cases

This section may be divided by subheadings. It should provide a concise and precise description
of the experimental results, their interpretation, as well as the experimental conclusions that can
be drawn.

3.1. Static Reliability

In this section, the static reliability of a laterally loaded pile is investigated here (Figure 1).
To compare the effectiveness and accuracy of the proposed method and solving techniques with
those of existing research and the Monte Carlo method, a pile problem that has an exact solution is
selected. Specifically, the lateral horizontal displacement of a pile under a force is introduced herein,
the solution of which is known as the Hetényi equation [25,26]. Here, the diameter and length of
the pile are d = 0.4 m and L = 5 m, respectively, and subject it to a horizontal force F and a moment
M. It is assumed that these external influences as random variables with a correlation coefficient of
ρ(F, M) = 0.5. The material properties of the pile are described by an elastic modulus of Ep = 200 GPa
and a section moment of inertia of Ip = 3 × 10−4 m4. The important parameter of the horizontal
subgrade modulus kh is also selected as a random variable because of its variability in a free laterally
loaded pile.
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All the probability information regarding the random variables is listed in Table 1. The horizontal
displacement of the pile subjected to force F and moment M is expressed by Equations (10) and (11):

y(z) = 2Fλ
khd

{
sinh(λL) cos(λL) cosh[λ(L−z)]−sin(λL) cosh(λz) cos[λ(L−z)]

sinh2(λL)−sin2(λL)

}
−

2Mλ2

khd

{
sinh(λL)[cos(λL)cos h(λ(L−z)) sin(λz)−sinh(λ(L−z)) cos(λz)]

sinh2(λL)−sin2(λL)

+
sin(λL)[sinh(λz)cos h(λ(L−z)) sin(λz)−cosh(λz) cos(λ(L−z))]

sinh2(λL)−sin2(λL)

} (10)

where λ is a parameter expressed as

λ =

(
khd

4EpIp

) 1
4

. (11)

Table 1. Probabilistic information on the random parameters for static reliability.

Parameter Distribution Mean COV Correlation
Coefficient

F(kN) Gumbel 240 0.1
0.5M(kN·m) Gumbel 80 0.1

kh
(
kN/m3

)
Log-normal 10,000 0.2 Independent

Therefore, the performance index of the pile is selected as y
∣∣∣z=0 = y(0) .

According to the numerical solution process of the PDEM, the first step is to select representative
sample points by dividing the probability space which combined with the random variables F, M,
and kh. In general, there are many random-variable sampling methods in the field of stochastic analysis.
Considering sampling accuracy and efficiency, the TS point-selection technique is arguably the best
one to combine with PDEM for a probability space of two or three random variables. The essence
of this sampling technique is sphere packing: the probability space is represented as accurately as
possible by a certain number of sampling points. Existing research suggests that there are no more
than 12 equal-radius spheres tangent to a sphere in three-dimensional (3D) space. Therefore, the basic
idea of TS sample points selection is that it facilitates easy construction of a coordinate representation
of the centers of the TSs in 3D space. Suppose that the centers of the middle-layer spheres are located
on the z = 0 plane and that the sphere-center coordinates of the other layers in the z direction can be
expressed as follows according to the symmetry:

zk = k∆z(k = 0,±1, · · · ,±N), (12)

where Nz is the layer number of the TS sample technology in the zth layer. We assume that
θ j ∈ [ −η, η ]( j = 1, 2, 3) are standardized random variables and that η is the point-selection boundary
of the space of standard random variables. For instance, a reasonable range of η is 3.2–4.0 for a standard
normal distribution. Here, the value of Nz can be taken as int

( η
∆z

)
+ 1, where int(·) represents the

maximum integer that is no more than the value in the brackets and ∆z = 2
√

6
3 R, where R is the radius

of the TS and l is the number of TS layers around the sphere in the center in the z = 0 plane.
If the sphere-center coordinates of the zk-layer spheres are

(
xi,k, yi,k, zi,k

)
, then xi,k = xi,0 +

1
2

[
1− (−1)k

]
∆x

yi,k = yi,0 +
1
2

[
1− (−1)k

]
∆y

, (k = 0,±1,±2, · · · ,±Nz), (13)
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where ∆x =
2
√

3R sinψ
3 and ∆x =

2
√

3R cosψ
3 , with ψ = π

12 . Coordinates (xi,0, yi,0, zk) are those of the
z = 0 plane and can be determined by

xi,0 = ri cosϕ, yi,0 = ri sinϕ, (14)

where ri and ϕ are the radius and polar angle, respectively, in the polar coordinate system.
The joint PDF in the 3D probability space formed by the three standardized random variables(

θ j, j = 1, 2, 3
)

is almost spherically symmetric and radially attenuated. Based on this situation,
only those sampling points inside spheres of radius η are selected. In other words, the coordinates(
xi,k, yi,k, zi,k

)
should meet the following requirement:

x2
i,k + y2

i,k + z2
i,k ≤ η

2. (15)

Here, the coordinates are renumbered as
(
xq, yq, zq

)
, q = 1, 2, · · · , Nsel. Distribute these sampling

points around the z axis with fixed angle ψ = π
12 . to make the sampling more homogeneous, therefore:

θq1 = xq

θq2 = yq cosψ+ zq sinψ
θq3 = zq cosψ− yq sinψ

. (16)

Accordingly, the assigned probability of the representative sampling points can be calculated as

Pq =
Vq

Nsel

Nsel∑
j=1

p
(
θq1, j,θq2, j,θq3, j

)
, j = 1, 2, · · · , Nsel, (17)

where Vq is the volume enclosed by the 12 tangent planes and θqi, j = θqi +
(

r
η

)
θi, j(i = 1, 2, 3).

The representative sampling points selected above are standardized to obey a standard normal
distribution on the domain [−η, η]. However, the target probability distributions of the random variables
F, M, and kh are Gumbel and log-normal. Therefore, the sampling points should be transformed
from standard normal space into the corresponding target probability space. Because doing so will
change the correlation coefficient, it uses the Nataf transformation to calculate a modified correlation
coefficient in light of the following approximation [16]:

Rcoe =
ρYiY j

ρXiX j

= 1.064 + (−0.069)ρXiX j + 0.005ρ2
XiX j

. (18)

where Rcoe is the ratio of the correlation coefficients before and after transformation, ρYiY j is the
correlation coefficient of the target distribution, and ρXiX j is the original correlation coefficient between
F and M, namely, ρXiX j = ρ(F, M) = 0.5. Beyond that, however, the correlation coefficient can also be
calculated numerically as

ρXiX j =

∫ +∞

−∞

∫ +∞

−∞

xi − µXi

σXi

x j − µX j

σX j

ϕ2
(
yi, y jρYiY j

)
dyidy j, (19)

where µX and σX are the mean and standard deviation, respectively, of random variable X. Herein,
random variables Xi and X j correspond to F and M, respectively, with ϕ2

(
yi, y jρYiY j

)
being the

conditional cumulative distribution function (CDF).
According to Equations (18) and (19), the correlation coefficients of the target probability

distributions are 0.5154 and 0.5155, respectively. The results demonstrate that the above two categories
methods are equally effective. Thus far, it has selected Nsel = 527 sampling points in the 3D probability
space formed by the random variables F, M, and kh according to the TS sampling technique in this



J. Mar. Sci. Eng. 2020, 8, 994 7 of 16

study. By comparing the mean and variance of different sample points calculated by PDEM and Monte
Carlo stochastic method, it can be found that when 527 sample points are selected, the calculation
error accuracy of the random analysis can be controlled within 3%. Therefore, 527 sample points are
selected for stochastic reliability analysis. Next, a series of deterministic displacements of the laterally
loaded pile can be obtained using Equations (10) and (11). Introducing the displacements into the
PDEE (Equation (8)) as the generalized velocity

.
Ur, the PDF (Figure 2a) and CDF (Figure 2b) of the

displacement of the pile top can be obtained by solving the PDEE. In Monte Carlo stochastic simulation,
the reliability (CDF) is achieved by calculating the percentage of the number of samples in safe and
effective state to the total number of samples by different thresholds of performance (i.e., displacement)
index. The corresponding probability density function is obtained by the Kernel Density Estimation
of the total sample. Different from Monte Carlo stochastic simulation, PDEM is obtained by the
probability density function of performance index distribution, while the corresponding reliability
(CDF) is obtained by integrating the probability density function. The probability density function
obtained by PDEM is based on the objective physical differential equation, so it has higher calculation
accuracy and less calculation. The accuracy of Monte Carlo stochastic simulation is greatly affected
by the calculation samples, especially the Kernel Density Estimation method, which is also affected
by the selection of window function. The comparison of their accuracy can be characterized and
found in Figure 2. To verify and validate the effectiveness and practicability of the PDEM and TS
sampling technique, it also can calculate the PDF and CDF via kernel density estimation and Monte
Carlo simulation. Herein, to compare to the previous research work [26], the number of Monte Carlo
stochastic simulation also is 20,000. It should be emphasized that the accuracy and efficiency of the
static reliability herein come from combining the PDEM and TS sampling technique organically. Even
if with this sampling (TS) method, the Monte Carlo stochastic simulation is also impossible so effective.
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Figure 2. (a) Probability density function (PDF) of horizontal displacement of pile top. (b) Cumulative
distribution function (CDF; i.e., reliability) of horizontal displacement of pile top.

3.2. Seismic Dynamic Reliability

In general, a laterally loaded pile subjected to seismic excitation is a strongly nonlinear dynamic
system because of the nonlinear properties of concrete (i.e., the pile) and soil under earthquake dynamic
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loading. For instance, the stress–strain hysteresis curve (Figure 3) of soil under earthquake loading
demonstrates that its dynamic behavior is strongly nonlinear. The deformation characteristics differ
considerably under different stress states, and the nonlinearity of the limit-state equation is also a
crucial distinction. Obviously, the nonlinearity means that piles are extremely sensitive to seismic
excitation; the seismic dynamic responses of identical laterally loaded piles will not be exactly the
same because of the stochastic nature of the earthquake ground motion. This variation is tremendous
and has serious implications for seismic design and performance evaluation of laterally loaded piles.
Therefore, the stochastic nature of seismic ground motion and the nonlinearity of material properties
should be considered simultaneously in any system involving laterally loaded piles.J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 8 of 16 
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Figure 3. Stress–strain curve of soil under seismic loading.

However, the coupling between nonlinearity and randomness makes it a daunting challenge
to solve for and extract the information regarding the stochastic seismic response (e.g., the PDF) of
a nonlinear stochastic dynamic system. Nevertheless, the PDF of the seismic dynamic response is
the foundation of any reliability calculation [27,28]. Generally speaking, only the PDF of a seismic
response that obeys a Gaussian distribution can be defined by two parameters (mean and variance).
Unfortunately, for most dynamic responses of a laterally loaded pile, the PDF is either not known a
priori or is not Gaussian. In particular, even if the random parameters of the material properties and
excitations are normally distributed, the response of the system might not have the same probability
distribution as that of the initial stochastic source because of the nonlinear evolution of the system.
Moreover, the PDF cannot be so easily available just only depend on the mean and variance. Hence,
when analyzing the reliability of a system involving laterally loaded piles either analytically or
numerically, it is essential to have access to the PDF. Here, this subsection investigates the stochastic
dynamic responses of pile subjected to seismic excitation with random peak ground acceleration (PGA)
and stochastic earthquake ground motion, respectively.

3.2.1. The Stochastic Dynamic Reliability of Pile under Seismic Excitation with Random PGA

In this section, we seek the PDF of a laterally loaded pile subjected to stochastic seismic excitation
with a peak ground acceleration (PGA) given by a normally distributed random variable.
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According to the theory of stochastic dynamics, the random seismic system of a laterally loaded
pile can be expressed by the following stochastic differential equation:

d
dt

X j(t) = f j[X(t), t] + g j[X(t), t]αϑ(t), (20)

where X(t) = [X1(t), X2(t), · · · , Xn(t)]
T is the seismic response vector of the pile, f j and g j are functions

representing the system properties (e.g., nonlinearity), the dynamic stress–strain curve of the soil
under the deterministic seismic-acceleration time history is shown in Figure 3, which indicates that the
soil goes into nonlinear state. Therefore, for nonlinear stochastic seismic dynamic response analysis,
the coupling of randomness and nonlinearity is inevitable, which is also one of the difficulties in
nonlinear dynamic reliability analysis. This also demonstrates that a system involving a laterally
loaded pile subjected to earthquake excitation is strongly nonlinear. α is a random variable describing
the variability of the PGA, and ϑ(t) is the time history of the deterministic seismic acceleration. Herein,
it selects the strong-motion record (Figure 4) from the 1940 El Centro earthquake as the input excitation
and modify its PGA by the standard normal random variable α. It is a well-known seismic record and
is often selected for nonlinear dynamic response analysis. It can be found from the response spectrum
(Figure 4) that the energy is mainly distributed in the low frequency part of short period. Based on the
Increment Dynamic Analysis (IDA) theory, the El Centro acceleration record is selected as the input
excitation for the nonlinear dynamic response analysis of pile foundation.
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Figure 4. Seismic record (upper) and spectrum (lower) of the 1940 El Centro earthquake (NS).

Suppose that Z(t) (e.g., displacement, acceleration, moment or shear force) is the important
response for the seismic design of a laterally loaded pile. The PDEE can be written as

∂pZ
(
z,αq, t

)
∂t

+
.
Z
∂pZ

(
z,αq, t

)
∂z

= 0, (21)

where αq(q = 1, 2, · · · , Nsel) are the discrete representative sampling points selected in the probability
space. In this section, α is treated as being related to a standard normal distribution and it selects
roughly one thousand points (i.e., Nsel = 1000). By doing so, the stochastic seismic dynamic response
analysis of the pile is translated into a series of deterministic dynamic time-history analyses that we
conduct by FE analysis in OpenSees. The FE model is shown in Figure 5, where the pile which made by
concrete and steel is modeled by dispBeamColumn elements with concrete01 and hardening constitutive,
and the soil is modeled by quad elements with nDMaterial constitutive. The corresponding parameters
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of each constitutive are listed in Table 2, where fc is the concrete compressive strength, εc is the concrete
strain at maximum strength, fc,u is the concrete crushing strength, εu is the concrete strain at crushing
strength, E is the elastic modulus, σs is the yield stress, Hi and Hk are the isotropic and kinematic
hardening moduli, respectively, ρ0 is the soil mass density, G is the low-strain shear modulus, and
K is the bulk modulus. The soil–pile interface is very important for the dynamic history analysis.
The interfacial shear slip between pile and soil, diameter of pile and non-tensile effect of soil should
be considered in principle. A simplified method is adopted in this paper, namely, the translational
movement of nodes of soil and pile at the same place is bonded together. The equal displacement
boundary conditions are used for the left and right two boundaries to keep them synchronized, which
can stimulate the simplified shear boundary, the belief that the dynamic behavior of soil is simple
shear movement.

Figure 5. Finite-element (FE) model of laterally loaded pile.

Table 2. Parametric properties of the constitutive.

Concrete01 Harding nDMaterial

fc(kPa) −34485.6 E(kPa) 2.0 × 108 ρ
(
kg/m3

)
2.0 × 103

εc −0.004 σs(kPa) 248,200.0 G(kPa) 54,550
fc,u(kPa) −20691.4 Hi(kPa) 0.0 K(kPa) 1.6 × 105

εu −0.014 Hk(kPa) 1.6129 × 106 - -

For a series of deterministic nonlinear seismic dynamic time-history analyses by OpenSees (PDEM:
1000 times; Monte Carlo: 20,000 times), the nonlinear seismic dynamic response set of laterally loaded
pile is achieved and introduced into the PDEE as the generalized velocity and Monte Carlo stochastic
simulation to obtain the abundant probability information (e.g., PDF, mean and variance) of the
stochastic dynamic system. The specific solution flowchart of PDEE is shown in Figure 6 as follows.
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To verify the efficiency and accuracy of the PDEM for a stochastic dynamic system, it also
conducted 20,000 trials of Monte Carlo stochastic simulation. Figures 7 and 8 demonstrate the high
accuracy of PDEM from the perspectives of the second-order statistics and the PDF, respectively, of the
pile-top displacement.
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Figure 7. Mean and variance time histories of pile displacement.
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Figure 8. Comparing between probability density evolution method (PDEM) and Monte Carlo of PDFs
of displacement at different times.

The gap of several orders of magnitude between the mean and standard deviation of the
displacement indicates the huge variability of the seismic dynamic displacement. This characteristic is
also verified by the stochastic temporal fluctuations of the PDF of the pile-top displacement.

Meanwhile, the PDF evolution surface (Figure 9) of the displacement can also be obtained by the
PDEM. Figure 9 shows that the PDF evolves as the water stream and rolling hills. It also reflects the fact
that the seismic dynamic displacement of the pile fluctuates with time. This is because the statement is
controlled by the nonlinear properties of the system, and the evolution of probability information is
transmitted by a series of samples. More importantly, the evolution driven by the coupling between
nonlinearity and randomness causes the probability distribution of the displacement time history
to deviate from the original distribution of the excitation. In other words, because of nonlinearity,
the response to a normally distributed stochastic excitation may not be one with a Gaussian distribution.
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Finally, the dynamic reliability (Figure 10) of the laterally loaded pile subjected to seismic excitation
is obtained using both the PDEM and Monte Carlo stochastic simulations. It can be seen from the figure
that different performance indicators correspond to different safety assurance rates, that is, the so-called
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seismic dynamic reliability of pile foundation. The validity and high accuracy of PDEM method are
verified by Monte Carlo method from the aspect of seismic dynamic reliability. Furthermore, to verify
the efficiency of the PDEM, the computation times for static and dynamic reliability assessments are
compared in Table 3 for the PDEM and Monte Carlo simulation. Table 3 demonstrates that the PDEM
is significantly more computationally efficiency compared with the classic Monte Carlo stochastic
simulation. It should be noted that the Monte Carlo simulation method used in this paper is simple
and plain without any other sampling techniques such as Latin hypercube. Here, the effect of different
numbers (5000, 10,000, and 20,000) of simulations on results is compared with that of PDEM by which
it can find the good comparison is observed when the simulation number of Monte Carlo is 20,000.
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Figure 10. CDF of displacement of laterally loaded pile subjected to seismic excitation with random
peak ground acceleration (PGA).

Table 3. Comparison of computation amounts and times between PDEM and Monte Carlo simulation.

Analysis Type
PDEM Monte Carlo Simulation

Ratio
Samples/Time (h) Samples/Time (h)

Static 527 20,000 38
Dynamic 1000/5.6 h 20,000/166.67 h 20

3.2.2. The Stochastic Dynamic Reliability of Pile Subjected to Stochastic Seismic Ground Motion

In the previous section, we investigated and discussed the stochastic seismic dynamic response
and dynamic reliability of pile under the seismic action with random PGA. However, for practical
engineering application, the future earthquake in the engineering site of the pile cannot be accurately
predicted. Moreover, the input seismic excitation may not purely have the randomness in PGA.
It should have the stochastic characteristics in both intensity and frequency. Therefore, in this section,
we will continue to discuss the stochastic seismic dynamic reliability of pile subjected to stochastic
seismic ground motion. Here, the stochastic dynamic difference equation Equation (20) can be modified
as follows:

d
dt

X j(t) = f j[X(t), t] + g j[X(t), t]
..
Ug(Θ, t), (22)

where
..
Ug(Θ, t) is the stochastic seismic excitation and Θ is the random vector which describes the

randomness in intensity and frequency. The detailed generation methodology of seismic ground
motion time history samples can be found in the relevant references [29,30]. For the stochastic seismic
dynamic analysis, there are 254 deterministic dynamic time-history analyses in OpenSees with the
FE model in Figure 5, and the typical acceleration time history samples are shown in Figure 11.
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It should be noted that the time histories set of the ground motion acceleration sample is the intensity
frequency non-stationary random ground motion model of the same set system with corresponding
given probability. It is determined based on the spectral representation of the corresponding site
power spectral density function and random function. Its validity and rationality have been verified in
a series of seismic dynamic evaluation of geotechnical engineering [30]. Moreover, the acceleration
sample time histories in Figure 11 are only 3 out of 254 sample histories in the same set. Similarly,
it also can obtain the one-dimensional PDEE Equation (8) of the key response quantity which impacts
the seismic design. The CDF of displacement of laterally loaded pile subjected to stochastic seismic
ground motion is shown in Figure 12.
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Figure 11. Typical time history samples of the seismic excitation input.
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The results from the stochastic dynamic system of a laterally loaded pile subjected to seismic 
excitation show that the probability information is transported strongly by the nonlinear state 
evolution. They also indicate that the probability information of the seismic dynamic response of a 
pile cannot be easily determined from the excitation distribution. The assumption applied in 
traditional reliability analysis, namely, that the response and excitation have the same similar 
distribution, should be reconsidered. 

Different from the classical traditional reliability analysis, especially the random analysis based 
on Monte Carlo stochastic simulation, the main feature of this study is to obtain the probability 
density function of nonlinear static and dynamic pile foundation system. Combining with the new 
high-dimensional probability space dimension reduction sampling technology such as TS sampling, 
the calculation amount of stochastic analysis, especially the nonlinear seismic dynamic reliability 
analysis, can be effectively reduced. 
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4. Conclusions

In this paper, the static and dynamic (seismic) reliabilities of a laterally loaded pile are evaluated
in light of the stochastic dynamics and a series of deterministic analyses. The innovation of this
study is to introduce a new stochastic analysis method and high-dimensional spatial data reduction
technology for obtaining the probability density function of multivariable stochastic static and seismic
dynamic stochastic systems. The TS sampling technique is introduced to reduce the necessary sample
numbers and calculation quantity. By combining TS sampling with the PDEM, the static reliability is
obtained by integrating the PDF. The dynamic reliability is analyzed based on the PDEM and a series
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of deterministic time-history analyses using the FE technique. From comparisons with Monte Carlo
stochastic simulation, the efficiency and accuracy of PDEM is demonstrated. The PDEM is clearly
more efficient in assessing static and dynamic responses and reliability of a laterally loaded pile; when
analyzing the static and dynamic reliabilities of a pile, it is roughly 38 and 20 times more efficient,
respectively, than Monte Carlo stochastic simulation.

The results from the stochastic dynamic system of a laterally loaded pile subjected to seismic
excitation show that the probability information is transported strongly by the nonlinear state
evolution. They also indicate that the probability information of the seismic dynamic response of a pile
cannot be easily determined from the excitation distribution. The assumption applied in traditional
reliability analysis, namely, that the response and excitation have the same similar distribution, should
be reconsidered.

Different from the classical traditional reliability analysis, especially the random analysis based
on Monte Carlo stochastic simulation, the main feature of this study is to obtain the probability
density function of nonlinear static and dynamic pile foundation system. Combining with the new
high-dimensional probability space dimension reduction sampling technology such as TS sampling,
the calculation amount of stochastic analysis, especially the nonlinear seismic dynamic reliability
analysis, can be effectively reduced.
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