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Abstract: An integrated two-dimensional vertical (2DV) model was developed to investigate wave
interactions with permeable submerged breakwaters. The integrated model is capable of predicting
the flow field in both surface water and porous media on the basis of the extended volume-averaged
Reynolds-averaged Navier–Stokes equations (VARANS). The impact of porous medium was
considered by the inclusion of the additional terms of drag and inertia forces into conventional
Navier–Stokes equations. Finite volume method (FVM) in an arbitrary Lagrangian–Eulerian (ALE)
formulation was adopted for discretization of the governing equations. Projection method was
utilized to solve the unsteady incompressible extended Navier–Stokes equations. The time-dependent
volume and surface porosities were calculated at each time step using the fraction of a grid open
to water and the total porosity of porous medium. The numerical model was first verified against
analytical solutions of small amplitude progressive Stokes wave and solitary wave propagation in
the absence of a bottom-mounted barrier. Comparisons showed pleasing agreements between the
numerical predictions and analytical solutions. The model was then further validated by comparing
the numerical model results with the experimental measurements of wave propagation over a
permeable submerged breakwater reported in the literature. Good agreements were obtained for the
free surface elevations at various spatial and temporal scales, velocity fields around and inside the
obstacle, as well as the velocity profiles.

Keywords: wave-porous structure interaction; permeable submerged breakwater;
extended Navier–Stokes equations; two-dimensional vertical (2DV); finite volume method (FVM)

1. Introduction

Porous structures are constructed along coasts for shoreline protection and beach erosion
prevention against wave attack. Permeable submerged breakwater is one of the artificial structures
that reduce the impact of waves and currents to beaches without affecting aesthetic aspects of coastal
zones. Permeable submerged breakwaters have several advantages over impermeable obstacles or
emerging structures. They provide lower construction costs and, unlike impermeable barriers, the wave
interaction with porous structure takes place both inside and outside of the obstacle. This results in
additional energy dissipation due to the friction created by porous medium. Although the emerged
structures act as complete barriers, these low-crested breakwaters do not obstruct the overtopping water
circulation, fish passage, or ship navigation. Therefore, understanding the wave behavior passing over
permeable submerged structures is essential for many coastal engineering applications. The interactions
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between the waves and porous structures have been studied by many researchers. First, research in the
scope of flow motion through porous medium were conducted by Sollitt and Cross [1]. They proposed
the momentum equations by including additional terms of inertia and nonlinear resistance forces for
the pore flow motion. They used their model to investigate wave transmission and reflection due to a
permeable breakwater. Since then, a number of improved numerical models have been developed
to investigate the interactions between wave and coastal constructions. These models are based on
the mild-slope equations [2–5], shallow-water equations [6–9], and Boussinesq equations [10–14].
Because these simplified models are unable to predict some basic flow features such as nonlinearity,
frequency dispersion, and wave breaking, recent studies have therefore concentrated on the modelling
of flow motion using volume-averaged Reynolds-averaged Navier–Stokes (VARANS) equations.
Sakakiyama and Kajima suggested extended Navier–Stokes equations, which include the impacts of
porous medium by drag and inertia force components, and studied the wave transformation interacting
with a permeable breakwater [15]. Van Gent utilized a model using Navier–Stokes equations to predict
the wave motion both inside and outside the porous structures [16]. Liu et al. presented a model that
simulates the interactions between waves and permeable structures [17]. The model calculates the flow
field around the structure on the basis of the Reynolds-averaged Navier–Stokes (RANS) equations using
an improved k-ε turbulence model. They utilized the spatially averaged Navier–Stokes equations for
modeling pore flow motion. In their model, they assumed the turbulence within the porous medium
negligible and resistance to flow through a porous medium was taken into account by considering
linear and nonlinear frictional forces as suggested by Van Gent [16]. Hsu et al. improved the model by
adding a k-ε turbulence model for the permeable structure, which makes the model applicable for
modeling turbulent pore flow motion [18]. The newly developed model was employed for describing
the wave motions around a coastal structure, which could be either a rigid obstacle, a permeable
structure, or a composite breakwater. Huang et al. developed a numerical model in order to study the
solitary wave interaction with a submerged structure [19]. They solved the unsteady Navier–Stokes
equations for the flow outside the breakwater and another Navier–Stokes-based equation for solving
the flow motion inside the structure. They added the convective inertia force and the viscous force
into the suggested equations by Sollitt and Cross [1]. Then, they studied the effects of parameters
such as the aspect ratio of the breakwater, porosity, and the wave height on the wave-submerged
breakwater interactions. Unlike the earlier models, the numerical solution proposed by Karunarathna
and Lin represents the fact that the flow resistance depends on the Reynolds number, which results in
covering a wide range of flows [20]. They applied their model to investigate wave behavior passing
over a permeable bed. Del Jesus et al. developed the multiphase VARANS equations that consider
the spatial variation of porosity to simulate wave-structure interaction problems [21]. Wu and Hsiao
studied the non-breaking solitary wave propagation over a permeable submerged structure using
experimental and numerical models [22]. They employed the particle image velocimetry (PIV) method
for measuring free surface elevation and velocity fields around a permeable structure instantaneously.
They used VARANS equations including a nonlinear k-ε turbulence closure model as expressed by Hsu
et al. [18]. Ma et al. presented a non-hydrostatic numerical model that simulates wave interactions with
permeable structures [23], using the VARANS equations suggested by Del Jesus et al. [21]. To consider
the temporally varying porosity at the computational cells which is due to surface displacements,
they considered the porosity inside the derivatives and calculated the porosity values at each time step.
Furthermore, the boundary element method (BEM) can be used for modeling wave interaction with
solid obstacles, as described in [24,25]. In the present paper, a non-hydrostatic model presented by
Hejazi et al. [26] was deployed, and the model was further developed to study the problems involving
wave interactions with a permeable submerged breakwater. The extended Navier–Stokes equations
derived by Sakakiyama and Kajima [15] were used to calculate the flow field in and outside the
porous structure. Testing of the model’s accuracy was performed by comparing the model results with
experimental measurements for the surface displacement, velocity fields, as well as velocity profiles
around the structure.
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2. Governing Equations

The basic equations in this paper are the extended continuity and Navier–Stokes equations
presented by Sakakiyama and Kajima [15], which solve the flow motion in both porous medium
and fluid region, simultaneously. The extended continuity and Navier–Stokes equations in their
conservative form are expressed as follows, which consider the effects of porous medium by including
the additional terms of drag and inertia forces:

∂(γxu)
∂x

+
∂(γzw)

∂z
= 0, (1)

λv
∂u
∂t +

∂(λxu2)
∂x +

∂(λzuw)
∂z −wg

∂(γxu)
∂z =

−γv
∂p∗

∂x + ∂
∂x (γxυT

∂u
∂x ) +

∂
∂z (γzυT

∂u
∂z ) − (

ρ
ρr
)Rx

, (2)

λv
∂w
∂t +

∂(λxwu)
∂x +

∂(λzw2)
∂z −wg

∂(γzw)
∂z =

−γv
∂p∗

∂z + ∂
∂x (γxυT

∂w
∂x ) +

∂
∂z (γzυT

∂w
∂z ) − γv(

ρ−ρr
ρr

)g− ( ρρr
)Rz

, (3)

where u and w are the flow velocity components in the x and z directions, respectively; t is the time; g is
the gravitational acceleration; wg is the vertical grid velocity; vT is the dynamic viscosity; ρ is the local
density; ρr is the reference density; P∗ = ∆P/ρr, where ∆P is the dynamic pressure that is obtained
by reduction of hydrostatic pressure from the total instantaneous pressure (∆P = Pt − Pg); γv is the
volume porosity; γx and γz are the surface porosity components in the x and z directions, respectively.
The parameters λv, λx, and λz in the above equations are defined as follows:

λv = γv + (1− γv)CM

λx = γx + (1− γv)CM,
λz = γz + (1− γv)CM

(4)

where CM is the inertia coefficient. Furthermore, the drag force components in the above-mentioned
equations are described by Rx and Rz as follows:

Rx =
1
2

CD

∆x
(1− γx)u

√
u2 + w2, (5)

Rz =
1
2

CD

∆z
(1− γz)w

√
u2 + w2, (6)

where CD represents the drag coefficient.

3. Discretization of the Computational Domain

Finite volume method (FVM) in an arbitrary Lagrangian–Eulerian (ALE) system was applied to
discretize the governing equations. The arbitrary Lagrangian–Eulerian formulation was developed to
combine the advantages of the Lagrangian-based and Eulerian-based formulations, while minimizing
their corresponding drawbacks as far as possible. When using the ALE formulation, the nodes
on the boundaries and interfaces of the computational mesh can move along with fluid particles
in normal Lagrangian fashion to precisely track the boundaries and interfaces, while the nodes of
the computational mesh inside the domain can move arbitrarily in a normal Eulerian manner to
optimize the shapes of volumes. Because of this freedom in nodes movement was allowed in the
ALE formulation, significant distortions of the computational mesh can be reduced in comparison
with a purely Lagrangian approach and more resolution can be provided than that allowed by a
purely-Eulerian method. Figure 1 illustrates the grid generation system, points of action of scalar
and vector quantities, as well as their corresponding control volumes. As shown in Figure 1,
scalar variables such as density, pressure, and dynamic viscosity are defined at the center of an
individual computational grid, and velocity components are considered at the center of the faces of
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each control volume. Furthermore, the bed level and free surface elevation in a water column are
defined at the center of the lower and the upper side of the control volumes in the base layer and top
layer, respectively.
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Figure 1. Discretization of the computational domain using arbitrary Lagrangian–Eulerian
(ALE) formulation.

The volume (γv) and surface porosity components (γx, γz) are defined at the center and the faces of
each computational grid. A schematic diagram of a partially filled control volume and the definitions
of the associated parameters are demonstrated in Figure 2. By considering the temporally varying
free surface, the porosity components are updated at each time step by calculating the fraction of each
computational grid open to water and the total porosity of porous medium, as follows:

(γv)i,k =
VW

V
+ n

Vp

V
, (7)

(γx)i−1,k =
DW

D
+ n

Dp

D
, (8)
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It should be noted that for a control volume full of water, the volume and surface porosities
are equal to 1 (γv = γx = γz = 1), whereas for a control volume full of porous medium, the porosity
components are obtained as total porosity (γv = γx = γz = n).

4. Numerical Implementation

In this study, projection approach suggested by Chorin [27] and Temam [28] was used to solve the
extended Navier–Stokes equations in two main steps. In the first fractional step, the pressure fields
were excluded from the Navier–Stokes equations and the momentum equations in the absence of
pressure gradients were solved to compute an intermediate velocity field (u*, w*) that did not satisfy
the continuity constraint. The momentum equations in the absence of pressure terms are as follows:

λv
u∗−un

∆t +
∂(λxu2)
∂x +

∂(λzuw)
∂z −wg

∂(γxu)
∂z =

∂
∂x (γxυT

∂u
∂x ) +

∂
∂z (γzυT

∂u
∂z ) − (

ρ
ρr
)Rx

, (9)

λv
w∗−wn

∆t +
∂(λxwu)
∂x +

∂(λzw2)
∂z −wg

∂(γzw)
∂z =

∂
∂x (γxυT

∂w
∂x ) +

∂
∂z (γzυT

∂w
∂z ) − (

ρ
ρr
)Rz

, (10)

where u* and w* are intermediate velocity components, and the superscript n denotes the time level,
where tn = n.∆t. The terms on the left-hand side of Equations (9) and (10) are advective terms, the first
and second terms on the right-hand side of the above equations are diffusive terms, and the third is
the drag force component. Therefore, the first step was split into three sub-fractional steps. The first
sub-fractional step consists of solving the advective terms and computing the corresponding velocity
fields (uA, wA) as follows:

λv
uA
− un

∆t
+

[
∂(λxu2)

∂x
+
∂(λzuw)

∂z
−wg

∂(γxu)
∂z

]n

= 0 (11)

λv
wA
−wn

∆t
+

[
∂(λxwu)
∂x

+
∂(λzw2)

∂z
−wg

∂(γzw)

∂z

]n

= 0, (12)

where the superscript A stands for advection and shows the time level after completing the advection
process. It should be noted that Equations (11) and (12) were further split into other three sub-fractional
steps. A locally one-dimensional method was applied for solving the above equations and a
fifth-order-accurate scheme was utilized to obtain more accurate results for flow characteristics.
The second sub-fractional step consists of solving the diffusive terms and calculating the associated
velocities (uD, wD) as follows:

λv
uD
− uA

∆t
=

∂
∂x

[
γxυT

∂
∂x

(
(1− θD)uA + θDuD

)]
+
∂
∂z

[
γzυT

∂
∂z

(
(1− θD)uA + θDuD

)]
, (13)

λv
wD
−wA

∆t
=

∂
∂x

[
γxυT

∂
∂x

(
(1− θD)wA + θDwD

)]
+
∂
∂z

[
γzυT

∂
∂z

(
(1− θD)wA + θDwD

)]
, (14)

where the superscript D stands for diffusion and shows the time level after completing the diffusion
process. θD is the implicit weighting factor, where θD = 1 denotes a fully implicit approach,
whereas θD = 0 implies a fully explicit approach. Equations (13) and (14) were split into other
two sub-fractional steps, and the Crank–Nicolson method (θD = 0.5) with a central discretization
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scheme was employed to solve them. The third sub-fractional step consists of solving the drag force
components and computing the intermediate velocity fields (u*, w*) as follows:

λv
u∗ − uD

∆t
= −

(
ρ

ρr

)D(1
2

CD

∆x
(1− γx)u

√
u2 + w2

)D
, (15)

λv
w∗ −wD

∆t
= −

(
ρ

ρr

)D(1
2

CD

∆z
(1− γz)w

√
u2 + w2

)D
, (16)

In the second fractional step, the extended continuity and momentum equations in the absence
of advective and diffusive terms and drag force components were solved for the computational cells
below the top layer as follows: [

∂(γxun+1)

∂x

]
i,k
+

[
∂(γzwn+1)

∂z

]
i,k

= 0, (17)

λv
un+1

− u∗

∆t
= −γv

∂p∗

∂x
, (18)

λv
wn+1

−w∗

∆t
= −γv

∂p∗

∂z
− γv

(
ρ− ρr

ρr

)
g, (19)

According to the Gauss divergence theorem, Equation (17) can be written as:

1
Ai,k


γx i+1,k .un+1

i+1,k.(zi+1,k+1 − zi+1,k−1)+
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
+ ∆x

Ai,k

[
γz i,k+1 .wn+1

i,k+1 − γz i,k−1 .wn+1
i,k−1

]
= 0

(20)

where Ai,k can be calculated as:

Ai,k =
1
4
(∆zi−1 + 2∆zi + ∆zi+1)∆x, (21)

By considering Equations (18) and (19), the parameters un+1
i±1,k+2, un+1

i±1,k, un+1
i±1,k−2, and wn+1

i,k±1 can be
expressed as follows:

un+1
i±1,k+2 = u∗i±1,k+2 − ∆t

γvi±1,k+2

λvi±1,k+2

ϕ(
∂p∗n+1
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)
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, (22)
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)
i±1,k−2

+ (1−ϕ)
(
∂p∗n

∂x

)
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wn+1
i,k±1 = w∗i,k±1 − ∆t

γvi,k±1

λvi,k±1

ϕ(
∂p∗n+1

∂z

)
i,k±1

+ (1−ϕ)
(
∂p∗n

∂z

)
i,k±1

− ∆t
γvi,k±1

λvi,k±1

( ρρr

)
i,k±1
− 1

g, (25)
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Substituting Equations (22)–(25) into Equation (20), the pressure Poisson equation (PPE) can be
derived as follows:

1
Ai,k



γx i+1,k .
[
u∗i+1,k − ∆t

γvi+1,k
λvi+1,k

(
ϕ
(
∂p∗n+1

∂x

)
i+1,k

+ (1−ϕ)
(
∂p∗n

∂x

)
i+1,k

)]
.(zi+1,k+1 − zi+1,k−1)+

0.25


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u∗i+1,k − ∆t
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(
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(
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+
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(
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)]
+

γx i−1,k .
[
u∗i−1,k − ∆t

γvi−1,k
λvi−1,k

(
ϕ
(
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∂x

)
i−1,k

+ (1−ϕ)
(
∂p∗n

∂x

)
i−1,k

)]


.(zi−1,k+1 − zi+1,k+1)+

γx i−1,k .
[
u∗i−1,k − ∆t

γvi−1,k
λvi−1,k

(
ϕ
(
∂p∗n+1

∂x

)
i−1,k

+ (1−ϕ)
(
∂p∗n

∂x

)
i−1,k

)]
.(zi−1,k−1 − zi−1,k+1)+

0.25



γx i−1,k .
[
u∗i−1,k − ∆t

γvi−1,k
λvi−1,k

(
ϕ
(
∂p∗n+1

∂x

)
i−1,k

+ (1−ϕ)
(
∂p∗n

∂x

)
i−1,k

)]
+

γx i−1,k−2 .
[
u∗i−1,k−2 − ∆t

γvi−1,k−2
λvi−1,k−2

(
ϕ
(
∂p∗n+1

∂x

)
i−1,k−2

+ (1−ϕ)
(
∂p∗n

∂x

)
i−1,k−2

)]
+

γx i+1,k−2 .
[
u∗i+1,k−2 − ∆t

γvi+1,k−2
λvi+1,k−2

(
ϕ
(
∂p∗n+1

∂x

)
i+1,k−2

+ (1−ϕ)
(
∂p∗n

∂x

)
i+1,k−2

)]
+

γx i+1,k .
[
u∗i+1,k − ∆t

γvi+1,k
λvi+1,k

(
ϕ
(
∂p∗n+1

∂x

)
i+1,k

+ (1−ϕ)
(
∂p∗n

∂x

)
i+1,k

)]


.(zi+1,k−1 − zi−1,k−1)



+

∆x
Ai,k


γz i,k+1 .

[
w∗i,k+1 − ∆t

γvi,k+1
λvi,k+1

(
ϕ
(
∂p∗n+1

∂z

)
i,k+1

+ (1−ϕ)
(
∂p∗n

∂z

)
i,k+1

)
− ∆t

γvi,k+1
λvi,k+1

(( ρ
ρr

)
i,k+1
− 1

)
g
]
−

γz i,k−1 .
[
w∗i,k−1 − ∆t

γvi,k−1
λvi,k−1

(
ϕ
(
∂p∗n+1

∂z

)
i,k−1

+ (1−ϕ)
(
∂p∗n

∂z

)
i,k−1

)
− ∆t

γvi,k−1
λvi,k−1

(( ρ
ρr

)
i,k−1
− 1

)
g
]

 = 0

(26)

Using the Gauss divergence theorem for pressure derivatives on the velocity locations, the pressure
Poisson equation can be written according to the pressure values in the 15 adjacent cells.

4.1. Pressure Equation at Free Surface Layer

The surface equation is calculated by integrating the extended continuity equation over the depth
and considering the kinematic boundary conditions at the impermeable bed level and free surface,
as follows:

∂ξ
∂t
−
∂zb
∂t

+
∂
∂x

∫ ξ

zb

γxudz = 0, (27)

where ξ is defined as the surface elevation above the mean water level and zb is the impermeable bed
level above the datum, which is equal to zero for a fixed bed. The mass continuity equation for the ith
water column can be obtained as:

ξn+1
i − ξn

i
∆t

+
1

∆x

kcmax∑
k=kcmin

 θ(γxi+1,k .un+1
i+1,k.∆zi+1) + (1− θ)(γxi+1,k .un

i+1,k.∆zi+1)

−θ(γxi−1,k .un+1
i−1,k.∆zi−1) − (1− θ)(γxi−1,k .un

i−1,k.∆zi−1)

 = 0, (28)

where kcmin and kcmax are the reference numbers of the bottom and the top layers, respectively.
The hydrostatic pressure assumption at the top layer may result in inaccurate predictions of the wave
phase and water surface elevation. Therefore by applying the non-hydrostatic pressure distribution at
the top layer, more accurate results can be obtained for the flow features. In this study, the method
proposed by Yuan and Wu was utilized to calculate the pressure equation at free surface layer [29,30].
For the ith water column, the momentum equation in the vertical direction from the center of the top
layer to free surface level can be written as follows:

λvi,T

wn+1
i,T −w∗i,T

∆t + γvi,Tϕ

(
p∗n+1

i,S −p∗n+1
i,kcmax

1
8 (∆zi−1+2∆zi+∆zi+1)

)
+ γvi,T (1−ϕ)

( p∗ni,S−p∗ni,kcmax
1
8 (∆zi−1+2∆zi+∆zi+1)

)
=

−γvi,T

(( ρ
ρr

)
i,T
− 1

)
g

, (29)
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where the subscripts T and S represent the center of the top half-grid and the free surface level,
respectively. The parameters wn+1

i,T and w∗i,T are the vertical velocity components at the distance of
1/4∆zi from the free surface level and can be approximated by the following equations:

wn+1
i,T =

3wn+1
i,kcmax+1 + wn+1

i,kcmax−1

4
, (30)

w∗i,T =
3w∗i,kcmax+1 + w∗i,kcmax−1

4
, (31)

In Equation (29), p∗n+1
i,S and p∗ni,S are the pressure at free surface level (kcmax + 1) and are calculated

as follows:

p∗n+1
i,S =

(
ρ

ρr

)
i,kcmax

gξn+1
i , (32)

p∗ni,S =

(
ρ

ρr

)
i,kcmax

gξn
i , (33)

By substituting Equations (30)–(33) into Equation (29), the momentum equation in the vertical
direction and at the top half-grid can be written as follows:

λvi,T

 3wn+1
i,kcmax+1

+wn+1
i,kcmax−1

4

−( 3w∗i,kcmax+1+w∗i,kcmax−1
4

)
∆t + γvi,Tϕ


( ρ
ρr

)
i,kcmax

gξn+1
i −p∗n+1

i,kcmax
1
8 (∆zi−1+2∆zi+∆zi+1)

+
γvi,T (1−ϕ)


( ρ
ρr

)
i,kcmax

gξn
i −p∗ni,kcmax

1
8 (∆zi−1+2∆zi+∆zi+1)

 = −γvi,T

(( ρ
ρr

)
i,T
− 1

)
g

, (34)

The volume porosity and density are defined at the center of each grid. Hence, by considering
the assumption that (ρ/ρr)i,T = (ρ/ρr)i,kcmax

, γvi,T = γvi,kcmax
, and λvi,T = λvi,kcmax

, and by multiplying
Equation (34) by 4∆t, the following equation can be obtained:

λvi,kcmax

(
3wn+1

i,kcmax+1 + wn+1
i,kcmax−1 − 3w∗i,kcmax+1 −w∗i,kcmax−1

)
+ γvi,kcmax

32∆t
(∆zi−1+2∆zi+∆zi+1)[

ϕ
(( ρ
ρr

)
i,kcmax

gξn+1
i − p∗n+1

i,kcmax

)
+ (1−ϕ)

(( ρ
ρr

)
i,kcmax

gξn
i − p∗ni,kcmax

)]
=

−4∆t.γvi,kcmax

(( ρ
ρr

)
i,kcmax

− 1
)
g

(35)

According to Dean and Dalrymple, the kinematic free surface boundary condition is expressed
as [31]:

w =
∂ξ
∂t

+ γxu
∂ξ
∂x

, (36)

By substituting Equation (27) into Equation (36), the above equation at surface level can be
discretized as:

wn+1
i,kcmax+1 =

(
γxi−1,kcmax

un+1
i−1,kcmax

+γxi+1,kcmax
un+1

i+1,kcmax
2

)(
ξn

i+2−ξ
n
i−2

2∆x

)
−

1
∆x

kcmax∑
k=kcmin

 θ(γxi+1,k .un+1
i+1,k.∆zi+1) + (1− θ)(γxi+1,k .un

i+1,k.∆zi+1)

−θ(γxi−1,k .un+1
i−1,k.∆zi−1) − (1− θ)(γxi−1,k .un

i−1,k.∆zi−1)

 (37)
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The parameter wn+1
i,kcmax−1 can be obtained by writing the momentum equation in the vertical

direction, as follows:

wn+1
i,kcmax−1 = w∗i,kcmax−1 − ∆t

γvi,kcmax−1
λvi,kcmax−1(

ϕ

(
p∗n+1

i,kcmax
−p∗n+1

i,kcmax−2
1
4 (∆zi−1+2∆zi+∆zi+1)

)
+ (1−ϕ)

( p∗ni,kcmax
−p∗ni,kcmax−2

1
4 (∆zi−1+2∆zi+∆zi+1)

))
−

∆t
γvi,kcmax−1
λvi,kcmax−1

(( ρ
ρr

)
i,kcmax−1

− 1
)
g

, (38)

By substituting ξn+1
i , wn+1

i,kcmax+1, and wn+1
i,kcmax−1 from Equations (28), (37), and (38), respectively,

Equation (35) can be written as:

λvi,kcmax



3


(
γxi−1,kcmax

un+1
i−1,kcmax

+γxi+1,kcmax
un+1

i+1,kcmax
2

)(
ξn

i+2−ξ
n
i−2

2∆x

)
−

1
∆x

kcmax∑
k=kcmin

 θ′(γx i+1,k .un+1
i+1,k.∆zi+1) + (1− θ′)(γx i+1,k .un

i+1,k.∆zi+1)

−θ′(γx i−1,k .un+1
i−1,k.∆zi−1) − (1− θ′)(γx i−1,k .un

i−1,k.∆zi−1)


+

w∗i,kcmax−1−

∆t
γvi,kcmax−1
λvi,kcmax−1

(
ϕ

(
p∗n+1

i,kcmax
−p∗n+1

i,kcmax−2
1
4 (∆zi−1+2∆zi+∆zi+1)

)
+ (1−ϕ)

( p∗ni,kcmax
−p∗ni,kcmax−2

1
4 (∆zi−1+2∆zi+∆zi+1)

))
−

∆t
γvi,kcmax−1
λvi,kcmax−1

(( ρ
ρr

)
i,kcmax−1

− 1
)
g

− 3w∗i,kcmax+1 −w∗i,kcmax−1



+

γvi,kcmax
32∆t

(∆zi−1+2∆zi+∆zi+1)
ϕ

( ρρr

)
i,kcmax

g

ξn
i −

∆t
∆x

kcmax∑
k=kcmin

 θ(γx i+1,k .un+1
i+1,k.∆zi+1) + (1− θ)(γx i+1,k .un

i+1,k.∆zi+1)

−θ(γx i−1,k .un+1
i−1,k.∆zi−1) − (1− θ)(γx i−1,k .un

i−1,k.∆zi−1)


− p∗n+1

i,kcmax

+
(1−ϕ)

(( ρ
ρr

)
i,kcmax

gξn
i − p∗ni,kcmax

)
 =

−4∆t.γvi,kcmax

(( ρ
ρr

)
i,kcmax

− 1
)
g

(39)

By substituting horizontal velocity components from Equation (23) into Equation (39), the pressure
equation at surface layer is obtained as:

λvi,kcmax



3



1
2


γxi−1,kcmax

[
u∗i−1,kcmax

− ∆t
γvi−1,kcmax
λvi−1,kcmax

(
ϕ
(
∂p∗n+1

∂x

)
i−1,kcmax

+ (1−ϕ)
(
∂p∗n

∂x

)
i−1,kcmax

)]
+

γxi+1,kcmax

[
u∗i+1,kcmax

− ∆t
γvi+1,kcmax
λvi+1,kcmax

(
ϕ
(
∂p∗n+1

∂x

)
i+1,kcmax

+ (1−ϕ)
(
∂p∗n

∂x

)
i+1,kcmax

)]
.
(
ξn

i+2−ξ
n
i−2

2∆x

)
−

1
∆x

kcmax∑
k=kcmin



θ′
(
γx i+1,k .

[
u∗i+1,k − ∆t

γvi+1,k
λvi+1,k

(
ϕ
(
∂p∗n+1

∂x

)
i+1,k

+ (1−ϕ)
(
∂p∗n

∂x

)
i+1,k

)]
.∆zi+1

)
+

(1− θ′)(γx i+1,k .un
i+1,k.∆zi+1)−

θ′
(
γx i−1,k .

[
u∗i−1,k − ∆t

γvi−1,k
λvi−1,k

(
ϕ
(
∂p∗n+1

∂x

)
i−1,k

+ (1−ϕ)
(
∂p∗n

∂x

)
i−1,k

)]
.∆zi−1

)
−

(1− θ′)(γx i−1,k .un
i−1,k.∆zi−1)





+

 −
4∆t

(∆zi−1+2∆zi+∆zi+1)

γvi,kcmax−1
λvi,kcmax−1

(
ϕ
(
p∗n+1

i,kcmax
− p∗n+1

i,kcmax−2

)
+ (1−ϕ)

(
p∗ni,kcmax

− p∗ni,kcmax−2

))
−

∆t
γvi,kcmax−1
λvi,kcmax−1

(( ρ
ρr

)
i,kcmax−1

− 1
)
g

− 3w∗i,kcmax+1



+

γvi,kcmax
32∆t

(∆zi−1+2∆zi+∆zi+1)

ϕ


( ρ
ρr

)
i,kcmax

g


ξn

i −
∆t
∆x

kcmax∑
k=kcmin



θ

(
γx i+1,k .

[
u∗i+1,k − ∆t

γvi+1,k
λvi+1,k

(
ϕ
(
∂p∗n+1

∂x

)
i+1,k

+ (1−ϕ)
(
∂p∗n

∂x

)
i+1,k

)]
.∆zi+1

)
+

(1− θ)
(
γx i+1,k .un

i+1,k.∆zi+1
)
−

θ

(
γx i−1,k .

[
u∗i−1,k − ∆t

γvi−1,k
λvi−1,k

(
ϕ
(
∂p∗n+1

∂x

)
i−1,k

+ (1−ϕ)
(
∂p∗n

∂x

)
i−1,k

)]
.∆zi−1

)
−

(1− θ)(γx i−1,k .un
i−1,k.∆zi−1)




− p∗n+1

i,kcmax


+

(1−ϕ)
(( ρ
ρr

)
i,kcmax

gξn
i − p∗ni,kcmax

)


=

−4∆t.γvi,kcmax

(( ρ
ρr

)
i,kcmax

− 1
)
g

(40)

By applying the finite difference method (FDM) for discretization of pressure derivatives at the
top layer and gauss divergence theorem for pressure derivatives below the top layer, the pressure
equation at the free surface layer can be obtained according to the pressure values at ith column and
two adjacent water columns.
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4.2. Numerical Solution of the Pressure Poisson Equation (PPE)

By applying Equation (40) for cells that are located at the top layer of the numerical domain and
pressure Poisson Equation (26) for cells below the top layer, the system of partial differential equations
(PDEs) is written as follows:

Ap∗n+1
ic−2 + Bp∗n+1

ic + Cp∗n+1
ic+2 = Di, (41)

where ic is the reference number of the center of computational grids in the x direction. The above
equation can be rewritten as follows:



Bicmin Cicmin . . . 0

Aicmin+2 Bicmin+2 Cicmin+2 .

. . . .

. . . .

Aic Bic Cic

. . . .

. . . .

. Aicmax−2 Bicmax−2 Cicmax−2

0 . . . Aicmax Bicmax



.



p∗n+1
icmin

p∗n+1
icmin+2

.

.

p∗n+1
ic

.

.

p∗n+1
icmax−2

p∗n+1
icmax



=



Dicmin

Dicmin+2

.

.

Dic

.

.

Dicmax−2

Dicmax



, (42)

where p∗n+1
ic is the unknown pressure vector at icth column and is expressed as:

p∗n+1
ic =

[
p∗n+1

ic,kcmin
, p∗n+1

ic,kcmin+2, . . . , p∗n+1
ic,kc , . . . , p∗n+1

ic,kcmax−2
, p∗n+1

ic,kcmax

]
, (43)

The coefficient matrix in Equation (42) forms a block tri-diagonal matrix, which has the dimension
of

[
1/2

(
icmax − icmin

)
+ 1

]
×

[
1/2

(
icmax − icmin

)
+ 1

]
, and each block takes the following form:



fkcmin kcmin
fkcmin kcmin+2

fkcmin kcmin+4
. . . 0

fkcmin+2 kcmin
fkcmin+2 kcmin+2

fkcmin+2 kcmin+4
fkcmin+2 kcmin+6

.

fkcmin+4 kcmin
fkcmin+4 kcmin +2 fkcmin+4 kcmin+4

fkcmin+4 kcmin+6
fkcmin+4 kcmin +8 .

. . . . . .

. . . . .

fkc kc−4 fkc kc−2 fkc kc fkc kc+2 fkc kc+4

. . . . . .

. . . . . .

. fkcmax−4 kcmax−8
fkcmax−4 kcmax−6

fkcmax−4 kcmax−4
fkcmax−4 kcmax−2

fkcmax−4 kcmax

0 . . . fkcmax−2 kcmax−6
fkcmax−2 kcmax−4

fkcmax−2 kcmax−2
fkcmax−2 kcmax

fkcmax kcmin
fkcmax kcmin+2

. . . fkcmax kc . . . fkcmax kcmax−2
fkcmax kcmax



(44)

with the exception of top layer, it is a five-diagonal matrix with the dimension of[
1/2

(
kcmax − kcmin

)
+ 1

]
×

[
1/2

(
kcmax − kcmin

)
+ 1

]
.

In the presented model, the system of partial differential equations (Equation (42)) was solved by
applying a direct approach of the Thomas algorithm, and pressure fields were calculated for the whole
computational domain. After calculating the pressure fields, the velocity components at the new time
level (un+1, wn+1) were obtained by solving Equations (18) and (19). Then, the free surface elevation
was updated by using Equation (28) and the new grid system was generated to fit the new surface
level and to initiate the next time step.

4.3. Initial Boundary Conditions

Two types of boundary conditions, namely, Dirichlet and Neumann were used in the present model.
The Dirichlet boundary condition assumed zero for vertical velocity components at impermeable bed,
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and the Neumann boundary condition was imposed by assuming zero for normal gradient of the
horizontal velocity components at impermeable bed and the vertical velocity components at the left
side of the numerical domain. Furthermore, horizontal velocity components at the upstream boundary
were specified as inflow conditions at x = 0. A free exit for the flow was considered at the downstream
boundary of the domain by considering the dynamic pressure equal to zero.

5. Results and Discussions

Before proceeding to the study of wave interaction with a permeable coastal structure, the accuracy
of the model in the absence of the porous medium must be evaluated. In this regard, the numerical
model is firstly validated by comparing the numerical predictions with the analytical solutions proposed
for the determination of the Stokes and solitary wave propagation in a wave tank. It can be derived
from Equations (7) and (8)—for a control volume full of water the porosity components are equal to
1 (γv = γx = γz = 1) and the governing extended Navier–Stokes equations become identical to the
conventional equations. This implementation was considered in the two following sections. Then,
the model was utilized to investigate the solitary wave interaction with a permeable submerged
breakwater and the model results were compared with the experimental measurements.

5.1. Progressive Stokes Waves Propagation

The capability of the newly developed model for simulating the non-linear progressive wave
train in a deep water was firstly evaluated. An incident wave with the height of H = 0.5 m and wave
period of T = 5 s propagated in a water depth of h = 15 m. According to the validity range of various
wave theories presented by Le Méhauté [32], the second-order Stokes wave was obtained for the above
features. For second-order Stokes waves, the linear dispersion Equation (45) is valid [33]; therefore,
the wave number can be obtained as k = 0.16344 rad/m.

σ2 = gk.tanhkh, (45)

Using equations k = 2π/L and C = L/T, the wave length and wave celerity are calculated as
38.44 m and

, respectively. The numerical domain with a length of L = 1500 m was discretized with uniform
grids of ∆x = 1 m in the horizontal direction and 15 layers in the vertical direction. The increment of
dimensionless time was chosen to be ∆t = 0.05 s and a total simulation time of t = 140 s was adopted.
For second-order Stokes waves, the analytical equations for surface elevation and velocity components
are obtained by [34]:

η =
H
2

cos(kx− σt) +
H2k
16

cosh kh
sinh3kh

(2 + cosh 2kh). cos 2(kx− σt), (46)

u =
Hgk
2σ

cosh kz
cosh kh

cos(kx− σt) +
3H2σk

16
cosh 2kz

sinh4kh
cos 2(kx− σt), (47)

w =
Hgk
2σ

sinhkz
cosh kh

sin(kx− σt) +
3H2σk

16
sinh2kz

sinh4kh
sin 2(kx− σt), (48)

where z is the elevation above the datum and σ = 2π/T is the angular frequency. Comparison between
numerical result and analytical solution for free surface displacements at t = 140 s, is shown in Figure 3.

As shown in Figure 3, the predicted results agree well with analytical solution for free
surface evolution.
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Figure 3. Comparison of surface displacement for a progressive Stokes wave at t = 140 s.

5.2. Solitary Wave Propagation

A numerical wave tank with the length of L = 2000 m was used and a solitary wave with the
amplitude of H = 1 m propagated in a constant water depth of h = 10 m. A uniform grid system
with ∆x = 2 m in the x direction and 10 layers in the z direction was deployed for the discretization of
the computational domain. The numerical time interval was set at ∆t = 0.1 s, and calculations were
continued for t = 180 s. According to Boussinesq equations, the analytical free surface displacements
and velocity components are derived as proposed by Lee et al. [33]:

η = Hsech2

√3
4

H
h3 X

; X = (x− ct) (49)

u = ghηh[1− 14ηh + h3hη(1− 32z2h2)d2ηdX 2] (50)

w = −ghzh[(1− 12ηh)dηdX + 13h2(1− 12z2h2)d3ηdX3] (51)

where c =
√

g(h + H) is the celerity of the solitary wave which can be obtained as c = 10.388 m/s.
By assuming the upstream inflow boundary at x = −300 m, the solitary wave in the computational
domain will start at its highest point. Figures 4–6 compare the numerical predictions and analytical
solutions for the surface evolution and velocity components in the x and z directions, respectively.J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 16 of 26 
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The figures show that the newly developed model provides a high accuracy level in predicting
the free surface distribution and velocity components.

5.3. Solitary Wave Interaction with a Permeable Submerged Breakwater

In this section, the newly developed model was deployed to investigate the solitary wave
propagation over a submerged permeable breakwater. Numerical outputs were compared with the
experimental data presented by Wu and Hsiao (2013). The experiment was conducted in a wave
tank with the length of L = 25 m and a permeable submerged structure with the length of a = 13 cm
and height of b = 6.5 cm was situated at the bottom. The breakwater was made of glass spheres
with a diameter of D = 1.5 cm, yielding a total porosity of n = 0.52. A solitary wave with a height
of H = 4.77 cm propagated in a water depth of h = 10.6 cm. The PIV method was utilized for the
experimental measurements of flow field around the porous structure. The origin of the coordinate
system was assumed to be at the intersection of the impermeable bed and the left side of the breakwater.
The time series of the surface displacement was measured by two capacity gauges located at x = −1.8 m
and x = 1.8 m. In calculations, the time t = 0 s was defined as the time when the solitary wave crest
reached the first gauge. Figure 7 shows the schematic description of the numerical wave tank.

The length of wave tank was discretized with uniform grids of ∆x = 0.005 m, and 20 layers
were considered over the depth of calculation domain. The total simulation time was t = 25 s and
the time interval was chosen to be ∆t = 0.001 s. The coefficients CD and CM that produced the best



J. Mar. Sci. Eng. 2020, 8, 87 14 of 21

agreement with the experimental measurements were considered as the calibration parameters in the
numerical simulation. A number of values for each coefficient were considered and the effect of each
individual parameter was studied by varying one coefficient while keeping another one unchanged
and calculating the root mean square error (RMSE) for each set. In this study, the set of CD = 3.5
and CM = 0.5 resulting in the minimum RMSE was utilized for the numerical calculations. Figure 8
illustrates the comparison between experimental and numerical time histories of surface displacement
at the location of measurement gauges.
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and (b) x = 1.8 m.

As shown in Figure 8, the computed outputs agreed fairly well with the measured outputs for the
incident, reflected, and transmitted waves.

Figures 9–18 show the comparison between numerical predictions and experimental measurements
for the spatial free surface distributions, velocity fields, and velocity profiles at five different time levels.
According to the modelled and measured results, when the solitary wave front reached the permeable
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submerged breakwater, due to the hydraulic jump formation, the flow was separated from the top of
the obstacle and small clockwise vortices were generated at the leading edge of the obstacle (Figure 9).
When the solitary wave passed over the structure, a primary vortex was generated on the lee side of
the structure (Figure 11). This vortex grew in size and penetrated into the deeper layers of water by
increasing time (Figure 13). On the basis of the last two phases, the primary vortex gradually reached
the free surface, lost its strength, and finally faded away due to the diffusive effects (Figures 15 and 17).
It is also seen that due to the resistance forces of the porous medium, the velocity inside the structure
was substantially smaller than the velocity values on the top of the obstacle.J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 19 of 26 
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Comparisons between numerical model predictions and experimental measurements by Wu and
Hsiao [23] show the capability of the newly developed model for the simulation of wave interactions
with permeable submerged structures.
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6. Conclusions

Extended Navier–Stokes equations with a non-hydrostatic pressure distribution were solved
numerically in the whole computational domain to investigate the wave interactions with permeable
submerged structures. The impact of porous medium was considered by including additional terms
for drag and inertia forces into general Navier–Stokes equations. Finite volume method (FVM) in an
arbitrary Lagrangian–Eulerian (ALE) formulation was utilized for the discretization of the numerical
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domain, in which the number of layers was constant during the whole calculations and the new mesh
was generated after updating the surface elevation at each time step. The porosity components were
updated by calculating the fraction of cell open to water and the total porosity of porous medium.
Projection method was used to solve the extended Navier–Stokes equations in two main steps. In the
first step, the Navier–Stokes equations in the absence of pressure gradients were solved to calculate
an intermediate velocity field, which did not satisfy the continuity equation. In the second step,
the continuity and momentum equations in the absence of advection, diffusion, and drag force terms
were solved, and the pressure Poison equations were obtained for the computational grids below
the top layer. The pressure equation for the computational cells located at the free surface layer was
obtained by integrating the continuity equation over the depth and considering appropriate boundary
conditions for the impermeable bed and free surface. The newly developed model in the absence of
porous medium was firstly validated against analytical solutions of second-order Stokes and solitary
wave propagation under non-breaking conditions. Numerical results agreed well with the analytical
solutions. The model was then deployed for the simulation of a solitary wave passing over a rectangular
porous structure. Numerical predictions for the time histories and spatial distribution of the free
surface elevations, velocity fields, and velocity profiles were compared with the reported experimental
measurements using the PIV method. Results showed that when the solitary wave reached the
permeable submerged breakwater, a hydraulic jump was formed and the flow was separated from the
top-left corner of the breakwater. When the solitary wave passed over the obstacle, a primary vortex
was created behind the breakwater, which grew in time and penetrated into the bottom of the wave
tank. This vortex gradually reached the upper layers of water and decreased in strength and finally
disappeared due to the diffusive impacts. Comparisons between numerical results and experimental
data proved the capability of the newly developed model in simulating the integrated fluid-porous
medium problems and the interaction of wave with submerged breakwaters.
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