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Abstract: Undoubtedly, the Wageningen B-screw Series is the most widely used systematic propeller
series. It is very popular to preselect propeller dimensions during the preliminary design stage before
performing a more thorough optimisation, but in the smaller end of the market it is often used to
merely select the final propeller. Over time, the originally measured data sets were faired and scaled
to a uniform Reynolds number of 2 · 106 to increase the reliability of the series. With the advent of
the computer, polynomials for the thrust and torque values were calculated based on the available
data sets. The measured data are typically presented in the well-known open-water curves of thrust
and torque coefficients KT and KQ versus the advance coefficient J. Changing the presentation from
these diagrams to efficiency maps reveals some unsuspected and surprising behaviours, such as
multiple extrema when optimising for efficiency or even no optimum at all for certain conditions,
where an optimum could be expected. These artefacts get more pronounced at higher pitch to
diameter ratios and low blade numbers. The present work builds upon the paper presented by
the author at the AMT’17 and smp’19 conferences and now includes the extended efficiency maps, as
suggested by Danckwardt, for all propellers of the Wageningen B-screw Series.

Keywords: propeller; Wageningen B-screw Series; open-water characteristics; propeller efficiency
map; Danckwardt diagram; optimum propeller

1. Introduction

1.1. The Wageningen B-Screw Series and Its Polynomial Representation

The Wageningen B-screw Series dates back to 1936 [1], when the first results were published. In the
following years, the series was systematically expanded to include more than 120 single propellers.
The measured data were presented inter alia in open-water diagrams showing the dimensionless
thrust and torque coefficients, KT and KQ, and the open-water efficiency ηo as functions of the also
dimensionless advance coefficient J:

J =
va

nD
, (1)

KT =
T

ρn2D4 , (2)

KQ =
Q

ρn2D5 =
PP

2πρn3D5 , and (3)

ηo =
J

2π
· KT

KQ
, (4)

where T = measured thrust; Q = measured torque; PP = propeller power; ρ = water density; n = shaft
speed (in s−1); D = propeller diameter; and va = speed of advance. If not stated otherwise, all values
are in SI base units.
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All tested propeller models had a diameter of 240 mm and, hence, different section chord lengths
due to the variable blade area ratio and number of propeller blades. The propellers were tested in
varying model basins of MARIN using a diverse rate of revolutions resulting in considerably different
Reynolds numbers for each propeller in the whole series. Oosterveld and van Oossanen engaged in
the formidable tasks of scaling all available open-water data sets to a uniform Reynolds number of
2 · 106 (based on chord length and section advance speed) and calculating polynomials for the thrust
and torque coefficients by multiple regressions analysis [2]. With the help of these polynomials, it is
possible to calculate these coefficients as functions of the advance coefficient J, the pitch to diameter
ratio P⁄D, the expanded blade area ratio Ae ⁄A0, and the number of blades Z:

KT = ∑ Cs,t,u,v · Js · (P/D)t · (Ae/A0)
u · Zv and (5)

KQ = ∑ Cs,t,u,v · Js · (P/D)t · (Ae/A0)
u · Zv, (6)

where Cs,t,u,v = coefficient; and s, t, u, and v = whole-number exponents.
These polynomials are nowadays widely used in either selecting the optimum propeller or as a

basis for further refinements. It is therefore of utmost significance that these polynomials are consistent
and accurate.

1.2. Time Line of Experimental Results

As shown by Helma for the B4-70 propeller, the open-water characteristics have changed
substantially over time [3], see Figure 1. The effect on the widely used Bp–δ diagram was also
outlined in the same work, see Figure 2.

Figure 1. Open-water diagrams originally published by van Lammeren and van Aken in 1949 [4],
scaled and faired, the fitted polynomials (both by van Lammeren et al. in 1969 [5]), and the most
recent polynomials by Oosterveld and van Oossanen (1975) [2]) of propeller B4-70. The Reynolds
number is 2.72 · 105 for the original data, otherwise 2 · 106. Reproduced from [3] with permission from
AMT’17, 2017.
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Figure 2. Bp–δ diagram of propeller B4-70 based on the originally published values by van Lammeren
and van Aken in 1949 ([original black print, Reynolds number = 2.72 · 105) and on the scaled and
faired open-water characteristics by van Lammeren et al. in 1969 (blue, Reynolds number = 2 · 106).
Note the different lines for ηo,max (in bold). Bp = N ·

√
PP/v2.5

a and δ = N · D/va, where N = shaft
speed (in min−1); PP = delivered power (in hp); va = advance speed (in kn); and D = propeller diameter
(in feet). Reproduced from [4,5], with permissions from SWZ|Maritime and Society of Naval Architects
and Marine Engineers, 1949 and 1969.

2. Efficiency Maps

2.1. Basic Efficiency Maps

It is assumed, that the presentation in the form of the standard open-water diagrams for propellers
are known to the reader. To recap, these diagrams show three families of curves with the thrust
and torque coefficients and the efficiency as functions of the advance coefficient—KT(J), KQ(J),
and ηo(J)—for a set of constant P⁄D-values for each propeller of the Wageningen B-screw Series.

Many authors suggested a different way of representing the nondimensional open-water data
(see Appendix A.2); we will call them efficiency maps, as proposed by many of these authors. There are
two efficiency maps: the KQ–J and the KT–J map. On the KQ–J efficiency map, we draw the family of
KQ(J) curves for our set of constant P⁄D-values as for the conventional open-water diagram (thin red
lines, please refer to Figure 3a). Instead of adding the family of efficiency curves for constant P⁄D-values,
we add contour lines for the efficiency: ηo

(
J, KQ(J)

)
= const for a set of selected ηo-values (thin black

lines). We can also draw the contour lines for the thrust coefficient: KT
(

J, KQ(J)
)
= const (dashed red

lines). So far, this gives us a diagram with exactly the same information content as for the conventional
open-water diagram, just displayed in a different way.

We can now draw two lines of maximum propeller efficiency into this basis efficiency map: “ηo,max

for J = const” (bold black line) and “ηo,max for P/D = const” (bold red line). (Appendix A.1 describes
their derivation.) In the open-water diagram, the curves corresponding to the “ηo,max for J = const”
and “ηo,max for P/D = const” lines would be the envelope to and the line connecting the maxima of all
ηo(J) curves, respectively.
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(a) Basic efficiency map showing KQ (thin red lines),
KT = const (dotted red lines), ηo = const (thin black
lines), and the construction of “ηo,max for J = const”
(dotted black line and point A, bold black line) and
“ηo,max for P/D = const” (point B, bold red line).

(b) Extended efficiency map additionally showing
TD = const (thin blue lines) and the construction of
“ηo,max for TD = const” (point C, bold blue line).

Figure 3. Composition of the KQ–J efficiency map. For its construction, see Appendix A.1.

2.2. Enhanced Efficiency Maps

To enhance the basic efficiency map, these families of curves can be added:

TD =
KT

J2 = const, (7)

PD =
KQ

J3 = const, (8)

Tn =
KT

J4 = const, and (9)

Pn =
KQ

J5 = const. (10)

These four curves have a very practical significance, because each of them eliminates one of
the two unknowns in propeller optimisation: D or n, the propeller diameter and the shaft speed,
respectively. (Examples of how these diagrams can be used for propeller selection are presented in
Appendix A.4).

Note that in the KQ–J efficiency map, the lines for PD and Pn = const are ordinary curves to
the single power of three and five, whereas the curves for TD and Tn = const are truly parametric
curves. Having established these families of curves, we can now draw the four lines of maximum
propeller efficiency for each of them: “ηo,max for TD = const”, “ηo,max for PD = const”, “ηo,max for
Tn = const”, and “ηo,max for Pn = const”, all connecting the points of maximum efficiency (see
Appendix A.1.3 for how they are constructed). Figure 3b shows the family of curves for TD = const
(thin blue lines) and for “ηo,max for TD = const” (bold blue line).

As mentioned earlier, there exists a second diagram: the KT–J efficiency map with KT as
the ordinate. It is composed of the families of KT(J) curves for the set of constant P⁄D-values and
the contour lines KQ (J, KT(J)) and ηo (J, KT(J)) = const for the set of selected KQ- and ηo-values.
The lines for maximum efficiency are called “ηo,max for J = const” and “ηo,max for P/D = const”
as before. This efficiency map can also be enhanced with the families of curves “TD, PD, Tn, and
Pn = const”, where the curves for TD and Tn = const are curves to the single power of three and five.

There are certain advantages of efficiency maps over open-water diagrams for finding
the optimum propeller. These are described in Appendixes A.3 and A.4. For the purpose of this
article, we will concentrate on the shape of the lines for maximum efficiencies. To recap, these lines are
the solutions of the optimisation problems under different constraints. We will use the KQ–J efficiency
map enhanced by the addition of the TD and Tn = const curves and the KT–J map enhanced with
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the PD and Pn = const curves, as proposed by Danckwardt [6]. We will call them the T–J and P–J
Danckwardt diagrams (see Appendix A.2 for a short historical overview).

2.3. Remake

The author presented efficiency maps for the Wageningen B-screw Series during the smp’19
conference [7]. For the purpose of this paper, the two Danckwardt diagrams for all propellers of
the Wageningen B-screw Series, as outlined in Table 1, were recreated with the help of a purpose-made
computer program. This program employs the polynomials (5) and (6), as described in Section 1
and published by Oosterveld and van Oossanen in 1975 [2]. For these newly generated diagrams,
the symbols were updated to the ITTC nomenclature [8] (see also Table A1 for the differences to
the nomenclature used by Danckwardt). In addition to the curves presented in the original diagrams,
the line for “ηo,max for P/D = const” and the contour lines for KT(J, KQ) or KQ(J, KT) = const were
added. All these recalculated Danckwardt diagrams are presented in Appendix B, and Table A4 shows
an overview of the composition of these diagrams. Examples of how these diagrams are used are
explained in Appendix A.4.

Table 1. Summary of the propeller models of the Wageningen B-screw Series.

Z Ae/A0

2 0.30 0.38
3 0.35 0.50 0.65 0.80
4 0.40 0.55 0.70 0.85 1.00
5 0.45 0.60 0.75 0.90 1.05
6 0.50 0.65 0.80 0.95
7 0.55 0.70 0.85

The computer program calculates the lines of maximum efficiency by finding all points, where
the tangents to the TD, Tn, PD, and Pn curves are tangential to the efficiency contour lines. As a free
variable, the pitch to diameter ratio P⁄D was used. This choice was found to be necessary to be able
to remove possible multiple solutions for the ηo,max lines. It must be mentioned that, as a possible
consequence, the calculation of the ηo,max lines for TD, Tn, PD, and Pn = const sometimes did not
succeed at one or the other boundary due to numerical difficulties. The artefacts on the left boundary
at low J- and P⁄D-values were manually deleted and extrapolated by hand whenever possible. The right
border, where the J- and P⁄D-values are high, posed a different numerical challenge. In all cases however,
it was possible to reconstruct the valid line manually, but sometimes not right up to the maximum
value of P⁄D. It should be mentioned that these difficulties never arose at high P⁄D-values when the ηo,max

line doubles back, as discussed in the following section.

3. Ambiguity of the ηo,max Lines

3.1. Introductory Example

We have seen that the Danckwardt diagrams lend themselves to finding the optimum propeller
under certain constraints. For the sake of argument, let us assume that we have already decided on
the blade number (Z = 5) and blade area ratio (Ae/A0 = 0.9), and we know the torque Q (from the given
available power PP), the inflow velocity va, and propeller diameter D but not the shaft speed n,
which should be optimised together with the pitch to diameter ratio P⁄D. Using these known values,
we can calculate PD from Equation (A4), which we assume to be 0.15. On the Danckwardt P–J
diagram for the Wageningen B5-90 propeller (see Appendix B), we find the intersection of the curve
for PD = 0.15 with the “ηo,max for PD = const” line (blue lines). We can read off the values for J, KT ,
KQ, P⁄D, and ηo (approximately 0.65, 0.24, 0.041, 1.04, and 0.60, respectively).

Let us now assume that we want to investigate a three-bladed propeller with the blade area ratio
Ae/A0 of 0.80 for the same operating condition. In the diagram for the Wageningen B3-80 propeller,
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we find the intersection for our assumed value of PD = 0.15 with the “ηo,max for PD = const” line
(blue lines) at J, KT , KQ, P⁄D, and ηo equal to 0.62, 0.20, 0.035, 1.00, and 0.57, respectively. However, there
also exists another intersection between the PD = 0.15 and the “ηo,max for PD = const” lines at a higher
P⁄D-value: 0.74, 0.295, 0.062, 1.30, and 0.56. It looks to be that there are two optimum propellers for this
condition, since the ηo,max lines are solutions to the optimisation problem under the given constraints!

The reason for this somewhat puzzling behaviour is obviously the doubling back of the ηo,max

lines. Two solutions to the optimisation problem exist in the region of this overlap, whereas no solution
to the optimisation problem exists right of this region of overlap.

3.2. Classification

To classify this overlap, the value of TD| P/D|max
, where the “ηo,max for TD = const” line intersects

the maximum P/D|max curve, was calculated for every propeller in the Wageningen B-screw Series
(please refer to Figure 4) as proposed in [7]. The intersection of this TD = const curve with the “ηo,max

for TD = const” line was found. The pitch to diameter ratio at this intersection is denoted as P̂/D|TD .
The minimum value of TD|min is determined, where there is also no optimum propeller right of this
curve! The difference between these two values for TD is denoted as ∆TD. For the Tn, PD, and Pn

curves, these values are calculated accordingly. Table 2 shows an overview of all these values for all
propellers in the Wageningen B-screw Series. The table clearly shows that this overlap does not just
sporadically occur, but that it is a widespread phenomena.

Figure 4. Symbols and definitions used to describe the overlap of the ηo,max lines given in Table 2 using
the example of the TD and Tn curves in the Danckwardt T–J efficiency map.
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Table 2. Main characteristics of all overlaps found in the recreated Danckwardt diagrams. (For symbols
and definitions, see Section 3.2 and Figure 4).

Propeller TD Tn PD Pn

P̂/D TD|min ∆TD P̂/D Tn|min ∆Tn P̂/D PD|min ∆PD P̂/D Pn|min ∆Pn

B2-30 ———— ———— ———— ————
B2-38 ———— ———— ———— ————

B3-35 0.94 0.155 0.182 1.14 0.102 0.043 0.93 0.033 0.049 1.14 0.021 0.010
B3-50 0.89 0.167 0.225 1.13 0.114 0.042 0.88 0.037 0.065 1.12 0.025 0.010
B3-65 0.86 0.228 0.385 1.12 0.162 0.056 0.86 0.054 0.127 1.11 0.037 0.014
B3-80 0.86 0.384 0.932 1.11 0.266 0.094 0.85 0.101 0.389 1.11 0.063 0.025

B4-40 1.02 0.272 0.134 1.18 0.177 0.042 1.01 0.063 0.039 1.17 0.039 0.010
B4-55 1.04 0.229 0.100 1.23 0.144 0.018 1.04 0.052 0.028 1.22 0.031 0.004
B4-70 1.10 0.229 0.064 1.31 0.138 0.004 1.10 0.053 0.018 1.31 0.030 0.001
B4-85 1.21 0.254 0.027 ———— 1.21 0.060 0.008 ————
B4-100 1.38 0.286 0.000 ———— 1.38 0.070 0.000 ————

B5-45 1.21 0.301 0.028 1.30 0.191 0.008 1.21 0.071 0.008 1.30 0.043 0.002
B5-60 1.25 0.231 0.015 1.35 0.141 0.001 1.25 0.052 0.004 1.35 0.031 0.000
B5-75 1.32 0.195 0.003 ———— 1.32 0.043 0.001 ————
B5-90 ———— ———— ———— ————
B5-105 ———— ———— ———— ————

B6-50 1.37 0.246 0.001 1.40 0.165 0.000 1.37 0.057 0.000 1.40 0.037 0.000
B6-65 1.37 0.210 0.001 ———— 1.37 0.047 0.000 ————
B6-80 1.40 0.197 0.000 ———— 1.40 0.044 0.000 ————
B6-95 ———— ———— ———— ————

B7-55 1.39 0.204 0.000 ———— 1.39 0.047 0.000 ————
B7-70 ———— ———— ———— ————
B7-85 ———— ———— ———— ————

An overlap can only be observed for the “ηo,max for TD, Tn, PD, and Pn = const” lines, but never
for “ηo,max for J = const” or “ηo,max for P/D = const”.

4. Discussion

4.1. Evaluation

For the following discussion, it should be kept in mind that the ηo,max lines were calculated
in a descriptive way by finding all points, where the tangents to the families of the TD, Tn, PD,
and Pn = const curves coincide with the tangents to the contour lines of ηo,max = const. Mathematically
speaking, this is equivalent to solving an extrema problem.

To investigate the solutions, we take the propeller used in the example in Section 3.2 and plot
the efficiencies along the PD = 0.15 curve against the P⁄D-value, see the blue line in Figure 5. It can
be seen, that the extremum at the lower P⁄D-value of about 1.0 is a maximum, whereas the extremum
at the higher P⁄D-value of about 1.3 is a minimum. Additionally shown in this figure is the run of
the efficiency curves for PD = 0.1 and 0.07 (green and orange lines), the first represents PD|min and just
touches the “ηo,max for PD = const” curve in the apex; the second comes to lay right of the apex.
For these two cases, it is apparent that the propeller with the highest possible efficiency is situated
beyond the boundary of P/D = 1.4.
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Figure 5. Run of the efficiencies versus pitch ratio P⁄D along the lines PD = 0.15, 0.1, and 0.07,
corresponding to the region of the overlap PD|max and the region right of the overlap, respectively.
Additionally shown are the extrema for PD = 0.15 and the apex for PD|max.

The author of this paper believes that these overlaps of the ηo,max lines causing the ambiguities
described are physically not explainable.

There are the obvious reasons: Firstly, the open-water efficiency drops and starts to climb again in
the region of the overlap. Secondly, there is no optimum except at the boundary of the available data,
right of the overlap.

Generally, we can argue that we can extend the propeller series to even higher P⁄D-values.
Eventually we will arrive at a pitch setting, where the open-water efficiency will become zero, since
such a propeller would have blades perpendicular to the section inflow and hence would not be able to
accelerate water in the axial direction. Thus, it is not unreasonable to assume that a pitch to diameter
ratio must exist, where the open-water efficiency is globally at its highest. Indeed, this can be seen in
both Danckwardt diagrams for the Wageningen B2-30 and B2-38 propellers (see Appendix B): a peak
of the open-water efficiency can be noticed at a J-value of about 1 and a P⁄D ratio of about 1.1. It can
be observed that all four lines for ηo,max pass (and must pass) through this absolute maximum of ηo.
Even if this point of the absolute maximum of ηo comes to lie right of and above the set of the KT and
KQ curves—and thus is not displayed in the diagram—the four lines for ηo,max must still converge
towards this single point of the global absolute maximum of ηo. Following this thought, it is evident
that the lines of ηo,max can not bend back, as can be seen with certain propellers, and this behaviour is
deemed as physically inexplicable.

4.2. Implications

Admittedly, paper charts are seldom used nowadays in propeller design work, but depending on
the computer algorithm used for automatically searching the propeller with the highest achievable
efficiency, the following problems can be encountered: Firstly, in the region of the overlap, the computer
program could pick the solution on the upper branch of the ηo,max curve, if no appropriate checks
are implemented. It could also jump between the two extrema. Equipped with the knowledge
of the described behaviour, the algorithm can be tweaked to find the correct solution. Secondly,
in the region right of the overlap, where there exists no optimum, the algorithm could calculate
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the optimum propeller to have a pitch ratio of 1.4, which is right on the boundary of the available data.
As can be clearly seen in Figure 5, the line for PD = 0.07 still climbs in the vicinity of the boundary,
indicating that there exist propellers with even higher efficiencies beyond the boundary of the tested
propellers. It has to be emphasised that, based on the polynomials, there simply does not exist an
optimum propeller in this region, where such an optimum propeller must exist. Thirdly, it can be
argued that there exists an optimum propeller up to the point where the ηo,max curve doubles back.
Nevertheless, special care must be taken in the region of the apex, because the line of optimum
efficiency already starts to swerve away.

4.3. Accuracy of the Polynomials

As the issue of the doubling back of the ηo,max lines cast some doubts on the accuracy of
the underlying polynomials, the question of the overall accuracy of the polynomials also arises.
Whereas Figure 6a,b show a good agreement of the ηo,max lines between the original and the recreated
diagrams for the whole range but the area of doubling back, Figure 6c,d show a big discrepancy
between the polynomials published in 1969 and 1975. These deviations can be of varying significance,
depending on the subsequently employed and more detailed optimisation procedures. When
the Wageningen B-screw Series is used to find the optimum propeller and the thus obtained
dimensions will be kept fixed and only small corrections are applied to them—as is common practice
at the smaller end of the market—it is of paramount importance that this optimisation routine based
on the polynomials gives consistent and accurate results.

For large propellers, the outcome of the optimisation based on the Wageningen B-screw Series
polynomials is used as the starting point for further and more detailed optimisation. An accurate
starting point would speed up the subsequent full optimisation processes, but should not change
the outcome. In reality, the optimised variable D or n found in the first step is very often kept fixed and
will not be optimised further in the final optimisation. In this case, it is again of highest importance to
get accurate results from the polynomials.

4.4. Provenance and Causes of Overlaps

It must be emphasised, that the overlaps observed are not a feature of the presentation in the form
of efficiency maps, but of the underlying data, i.e., the polynomials (5) and (6) published by Oosterveld
and van Oossanen in 1975 [2]. It should also be noted that at the time when Danckwardt published his
diagrams—which show no overlaps at all, see Figure A1a,b—the and polynomials were not known
yet. The design charts published by Yosifov et al. are already based on the polynomials [9]. On all
their efficiency maps, the lines for ηo,max stop before they reach the maximum P⁄D-value. Yosifov et al.
do not mention or explain this behaviour. Those diagrams, where the lines stop far from the maximum
P⁄D ratio, are for the same propellers, where we have identified an overlap.

Nonetheless, it is not clear where these ambiguities were introduced during the process of
manufacturing, measuring, fairing, scaling to uniform Reynolds number, and calculating the regression
polynomials. Without further investigation into all of these steps, the source of this behaviour
is not known, but some possibilities spring to mind: Between the testing of the first and the last
propeller, a time span of more than 30 years passed. During this time span, it can be assumed that
the manufacturing of the model propellers and the testing technology improved. The propellers were
tested at different basins and also at different Reynolds numbers, and were only later corrected to a
uniform Reynolds number of 2 · 106. Even the numerical regression used to calculate the polynomials
could have introduced this behaviour. Helma shows in [3], for selected propellers, that the lines of
maximum efficiency in the recreated Danckwardt diagrams follow the published lines by Danckwardt
at low P⁄D-values (see Figure 6a,b). However, the regression curves given by van Lammeren et al. for
propellers with four blades [5] already exhibit a troublesome behaviour at higher values of the pitch to
diameter ratio (see Figure 6c,d).
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(a) P–J (KT–J) diagram of propeller B3-50, 1956
(original black and white print) and 1975 (coloured).

(b) T–J (KQ–J) diagram of propeller B3-50, 1956
(original black and white print) and 1975 (coloured).

(c) T–J (KQ–J) diagram of propeller B4-70, based on
the polynomials from 1969 (broken lines) and 1975
(solid lines).

(d) P–J (KT–J) diagram of propeller B4-70, based on
the polynomials from 1969 (broken lines) and 1975
(solid lines).

Figure 6. Comparison between the original Danckwardt diagrams, 1956 [6] (probably based on
the original data from 1949 [4]); diagrams calculated with polynomials for the scaled and faired
open-water characteristics, 1969 [5]; and the most recent polynomials, 1975 [2]. Reproduced from [3],
with permission from AMT’17, 2017.

5. Conclusions

With the help of the alternative presentation of open-water characteristics as efficiency maps,
it was shown that the current set of polynomials for the Wageningen B-screw Series, as published by
Oosterveld and van Oossanen in 1975 [2], shows some troublesome behaviours for higher pitch to
diameter ratios for many propellers of the series.

Considering the widespread use of these polynomials, it is suggested to revisit the originally tested
data and check all steps involved in the processing of the data sets for the deduction of the polynomials.

The propeller designers would be very well advised to take caution when designing propellers
whenever any line of ηo,max doubles back.
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AMT International Conference on Advanced Model Measurement Technology for the Maritime Industry
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MARIN Maritime Research Institute Netherlands
smp International Symposium on Marine Propulsors
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Appendix A. Efficiency Maps

Appendix A.1. Lines of Maximum Efficiency

Section 2 introduces the efficiency map and describes the elements found therein. It also introduces
the lines “ηo,max for J, P⁄D, TD, PD, Tn, and Pn = const”, where the efficiency is maximum under certain
constraints. Efficiency maps lend themselves to construct these lines of maximum efficiency graphically,
but they can also be calculated with the help of any optimisation procedures solving for maximum
efficiency with the appropriate constraints. For the following discussion on how these lines are derived
and their significance, please consult Figure 3.

Appendix A.1.1. Line “ηo,max for J = const”

If the J-value is known, the propeller with the maximum efficiency can be found by drawing a
vertical line at this given value of J (dotted black line). The propeller with the maximum efficiency
can be found at the point where this vertical line just touches the efficiency contour line (point A).
The KQ-value can be read off the ordinate and the KT- and P⁄D-values can be interpolated between
the curves for KQ

∣∣
P/D=const and KT = const (thin red and dotted red lines). Connecting all points of

these maximum efficiencies for every J-value gives us the line “ηo,max for J = const”, which can be
drawn into the efficiency map (bold black line). Note that the equivalent to this line on the conventional
open-water diagram is the envelope to all ηo(J) lines.

Appendix A.1.2. Line “ηo,max for P/D = const”

Another line of maximum efficiencies is the line called “ηo,max for P/D = const” (bold red line).
This line can be used to find the propeller with the maximum efficiency, if the P⁄D ratio is known.
It connects all points where the tangents of the KQ curve (thin red line) and the ηo contour line (thin
black line) coincide (point B). On the conventional open-water diagram, this line corresponds to the line
connecting the maxima of all ηo(J) (which is situated below the envelope to the efficiency curves,
resulting in a lower efficiency for the same advance coefficient).

Appendix A.1.3. Line “ηo,max for TD = const”

If the propeller diameter, the speed of advance, and the (required) thrust are known, we can plot
the curve

TD =
1

D2v2
a

T
ρ
= const, (A1)

which is equal to

TD(J) =
KT(J)

J2 = const, (A2)

into the efficiency map (thin blue lines). This formulation uses the old trick of eliminating
the unknown shaft speed n, which now becomes part of the solution, when optimising for the highest
possible efficiency.

This curve can be drawn either into the KT–J or the KQ–J efficiency map. In the KT–J diagram,
the curve is a simple quadratic curve in the form of cJ2, where c = suitable constant; whereas in
the KQ–J diagram, the line becomes the truly parametric curve with J as parameter

TD
(

J, KQ(J)
)
=

KT
(

J, KQ(J)
)

J2 . (A3)

In case of a given set of constant TD-values, a family of curves results.
Once again, a line for propellers with the highest possible efficiency can be constructed by

connecting all points, where the tangent to the “TD = const” curve coincides with the tangent to
the “ηo = const” contour line (point C); this is called the “ηo,max for TD = const” line (thick blue line).
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Please refer to Appendix A.4 to see how this can be used to find the optimum propeller quickly if
the thrust T, the propeller diameter D, and the speed of advance va is known.

Appendix A.1.4. Lines “ηo,max for PD, Tn, and Pn = const”

Finally, other families of curves can be drawn:

PD =
KQ

J3 =
1

D2v2
a

Qn
ρva

=
1

D2v2
a

PP
2πρva

, (A4)

Tn =
KT

J4 =
n2

v4
a

T
ρ

, and (A5)

Pn =
KQ

J5 =
n2

v4
a

Qn
ρva

=
n
v4

a

PP
2πρva

. (A6)

These formulations eliminate the shaft speed n, Equation (A4), and the propeller diameter D,
Equations (A5) and (A6). In Appendix A.4, it is shown how these formulations help in solving each of
the six possible optimisation problems a propeller designer can encounter.

The corresponding lines of maximum efficiency are called “ηo,max for PD = const”, “ηo,max for
Tn = const”, and “ηo,max for Pn = const”, respectively.

Appendix A.2. Origins

The first diagrams using the presentation discussed were published in 1917 by Bendemann and
Madelung [10] and in 1923 by von der Steinen (Von der Steinen argues in his paper that he had
finished it earlier, but could not publish it for 6 years because of a exceptionally high work load, thus
claiming the intellectual of these diagrams.) [11]. Bendeman and Madelung based their idea and how
the data should be presented on the polar diagram of aerofoils. In 1936, Papmel published design
charts [12] using the same setup. Schoenherr included all four lines of maximum efficiency in 1949 [13].
All authors mentioned so far suggested to plot the TD and Tn curves into the KT–J and PD and to
plot Pn into the KQ–J efficiency map. Bendemann and Madelung pointed out that the usage of a
double logarithmic scale results in the TD and Tn curves becoming straight lines, making it easier for
the designer to use these maps.

Danckwardt calculated design charts for the Wageningen B-screw Series in 1956 [6], but instead of
drawing the TD and Tn curves into the KT–J efficiency map, he plotted the PD and Pn curves (and vice
versa). This deliberate decision makes life easier for the propeller designer (but not for the draftsman
plotting these efficiency maps!), since now only one single chart is required to get the missing torque
or thrust coefficient, which are not available in the efficiency maps suggested by previous authors.
To honour the inventor, these came to be known as Danckwardt diagrams. We will refer to them
as P–J and T–J diagrams to distinguish them from the general KT–J and KQ–J efficiency maps. As a
mnemonic, remember that you use the T–J diagram whenever the thrust T is known and P–J whenever
the power PP (or the torque Q) is known.

In 1983, Yosifov et al. calculated the design charts according to Papmel for the Wageningen
B-screw Series with the aid of a computer using the polynomials [14], which previously became
available in 1975 [2]. Finally, Yosifov et al. published polynomials for the ηo,max lines in 1986 [9],
removing the need to resort to paper and pencil.

All these diagrams might use different symbols or alternative definitions of the variables (mostly
multiplied by constant values or using inverse values). They also show different degrees of details, but
they all build on the same idea of the efficiency map. Examples for original Danckwardt diagrams and
design charts calculated by Yosifov et al. are shown in Figures A1 and A2, respectively.
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(a) P–J diagram, based on the KT–J efficiency map,
called Nw–Λ diagram by Danckwardt.

(b) T–J diagram, based on the KQ–J efficiency map,
called s–Λ diagram by Danckwardt.

Figure A1. Example of the original Danckwardt diagrams for the propeller B3-50. See Table A1 for
the differences between Danckwardt’s and ITTC’s nomenclature. Reproduced from [6].

(a) Papmel KT–J design chart. Note the use of Kd =

1/
√

TD and Kn = 1/ 4
√

Tn.
(b) Papmel KQ–J design chart. Note the use of K′d =

3.455/
√

PD and K′n = 3.455/ 4
√

Pn.

Figure A2. Example of the original Papmel design charts for the propeller B3-50, as recreated by Yosifov
et al. Reproduced from [14], with permission from Bulgarian Ship Hydrodynamics Centre, 1983.

Table A1. Differences between the nomenclature used by Danckwardt and ITTC.

Name Danckwardt ITTC

Pitch H P
Blade area ratio Fa/F Ae/A0

Speed of advance ve va
Thrust S T
Torque M Q

Delivered power NW PD
Advance coefficient Λ J

Thrust coefficient ks KT
Torque coefficient km KQ

Open-water efficiency ηp ηo
Slip sn SR
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Appendix A.3. Advantages of Efficiency Maps

It was certainly noticed by the reader that the efficiency maps introduced in Section 2 and above
are comparable, but not identical, to the Bp–δ diagram. One of the benefits of the efficiency maps is
that they include the bollard pull condition, whereas this condition disappears into infinity on the Bp–δ

diagram, because δ—as the inverse of the J-value— becomes infinity for J = 0.
The efficiency maps can also include all six solutions lines for the optimum propeller in one

diagram, but such diagrams were never published because they would be even more confusing than
the published diagrams with three or four solution lines. In comparison, the Bp–δ diagrams can only
be used to solve one single problem. This is certainly another big advantage for the propeller designer.

Compared to the conventional open-water diagrams, the efficiency maps can contain the solutions
for real-world optimisation problems, whereas the open-water diagrams can only show the “ηo,max for
J = const” and “ηo,max for P/D = const” lines (but very seldom do).

Appendix A.4. How Are Efficiency Maps Used to Optimise a Propeller for Given Conditions?

The main purpose of using efficiency maps in the scope of this paper is to show the ambiguity of
polynomials, as explained in Section 3. Nevertheless, we want to show in this section the practical
significance of these diagrams for optimising a propeller.

The optimisation challenges a propeller designer can encounter can be categorised into six basic
problems. These are tabulated in Table A2 together with the corresponding solution path using
the Danckwardt diagrams. Efficiency maps can be used to solve any of these problems in a direct way
without the need to resort to an iterative process.

Table A2. The six basic optimisation problems encountered by propeller designers and their solution
paths. All unknown values can finally be calculated from the solution.

Nº

Problem Definition Solution Path

SolutionKnown
Values

Unknown
Values Calculate . . . . . . Using

Equation

To Find Optimum
Use Line
“ηo,max

for . . . = const”

1 va, n, D P⁄D J (1) J P⁄D, KT , KQ
2 D, P va, n P⁄D — P⁄D J, KT , KQ
3 T, va, D n, P⁄D TD (A1) TD J, P⁄D, KQ
4 Q, va, D n, P⁄D PD (A4) PD J, P⁄D, KT
5 T, va, n D, P⁄D Tn (A5) Tn J, P⁄D, KQ
6 Q, va, n D, P⁄D Pn (A6) Pn J, P⁄D, KT

We will explain the solution path using the “Example 1: Optimum rotation rate for a given
diameter” from Kuiper’s book “The Wageningen Propeller Series” [15]. Kuiper presents the problem,
where the propeller thrust T (1393 kN), the propeller diameter D (7 m), and the advance speed va

(16.8 kn) are given. The density of water ρ is assumed to be 1025 kg m−3. These values were typical for
a container vessel of that time with a speed of 21 kn. He also assumes that a four-bladed propeller has
been chosen. The task at hand is to find the optimum propeller, the required power PP, and especially
the shaft speed n. Kuiper calculates the required blade area ratio Ae ⁄A0 to be 0.48. For the optimisation
process, he selects a blade area ratio of 0.55 to agree with the diagrams published.

Having established the basic conditions of the optimisation problem, he explains that “the thrust
and the diameter are known, but the rotation rate is not. This means that the parameters KT and J
cannot be calculated yet. However, the parameter KT/J2 can be calculated because it does not contain
the rotation rate (as we already have seen in Appendix A.1.3, where we called this parameter TD). Using
the figures above in Equation (A1), he gets a value of 0.3707. Kuiper now starts the program supplied
with the book and searches the P⁄D value for the fixed KT/J2 value of 0.3707, where the open-water
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efficiency ηo becomes a maximum. Stopping at an accuracy of 5⁄100 for P⁄D, he obtains the values given at
iteration 2 of Table A3.

Table A3. The solutions for “Example 1” in Kuiper’s book [15], as obtained by Kuiper using the program
supplied with the book by using Danckwardt diagrams and the exact solution.

Iteration P/D J KT KQ ηo TD

Kuiper
1 0.95 0.674 0.168 0.0278 0.650 0.371
2 1.00 0.699 0.181 0.0310 0.651 0.371
3 1.05 0.723 0.194 0.0344 0.650 0.371

Danckwardt diagram 1.00 0.70 0.18 0.031 0.65 0.371

Exact solution 1.004 0.7007 0.1823 0.031 24 0.6509 0.371 310

Kuiper states that “the conclusion is that the optimum efficiency can be reached with a pitch ratio
of 1.0”. From the advance ratio J, the required shaft speed is derived as 1.767 s−1 (Equation (1)) and
the required power from the torque coefficient KT as 18 513 kW (Equation (3)).

Using the Danckwardt diagrams to solve this optimisation problem follows the same path, but
instead of finding the optimum by manually searching for the maximum efficiency, we use the T–J
diagram for the propeller B4-55 (see Appendix B). We pencil the line for TD = 0.371 between the thin
blue lines for TD = 0.25 and TD = 0.5 and find its intersection with the thick blue line “ηo,max for
TD = const”. The values are given in line 4 of Table A3. The unknown values for n and PP are
calculated as before and we get the same figures.

For comparison, the exact solution is given in the last line of Table A3 with an accuracy of
1⁄1000 for P⁄D.

The other design challenges from Table A2 are solved accordingly.

Appendix B. Efficiency Maps for Wageningen B-Screw Series

The following pages contain the recreated Danckwardt diagrams of all propellers of
the Wageningen B-screw Series, according to Table 1. They are valid for a sectional Reynolds number
of 2 · 106. The diagrams are based on the polynomials published in 1975 by Oosterveld and van
Oossanen [2]. Table A4 explains the composition of the diagrams and the line colours and types used.
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Table A4. Composition of the Danckwardt P–J (KT–J) and T–J (KQ–J) efficiency maps. Additionally shown is the significations of line colour and type. KT =
thrust coefficient; KQ = torque coefficient; ηo = open-water efficiency; J = advance coefficient; T = thrust; Q = torque; PP = propeller power; D = propeller diameter;
P = propeller pitch; n = shaft speed (in s−1); va = speed of advance; and ρ = water density. If not stated otherwise, all values are in SI base units.

Diagram: P–J T–J

Abscissa: J =
va

nD
J =

va

nD

Ordinate: KT =
T

ρn2D4 KQ =
Q

ρn2D5 =
PP

2πρn3D5

One set of curves: KT(J) for P/D = const KQ(J) for P/D = const

Two sets of contour lines:

ηo =
va

nD
= const

KQ =
Q

ρn2D5 =
PP

2πρn3D5 = const

ηo =
va

nD
= const

KT =
T

ρn2D4 = const

Two families of (parametric) curves for
sets of constant values:

PD =
KQ

J3 =
1

D2v2
a

Qn
ρva

=

=
1

D2v2
a

PP
2πρva

= const

Pn =
KQ

J5 =
n
v4

a

Qn
ρva

=

=
n
v4

a

PP
2πρva

= const

TD =
KT
J2 =

1
D2v2

a

T
ρ
= const

Tn =
KT
J4 =

n
v4

a

T
ρ
= const

Four lines of ηo,max:

“for PD= const” (for known Q, va, D)

“for Pn= const” (for known Q, va, n)

“for J= const” (for known va, n, D)

“for P⁄D= const” (for known P/D)

“for TD= const” (for known T, va, D)

“for Tn= const” (for known T, va, n)

“for J= const” (for known va, n, D)

“for P⁄D= const” (for known P/D)
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