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Abstract: Estimating wave effects on vertical mixing is a necessary step toward improving the
accuracy and reliability of upper-ocean forecasts. In this study, we evaluate the wave effects on
upper-ocean mixing in the northern East China Sea in summer by analyzing the results of comparative
experiments: a stand-alone ocean model as a control run and two ocean–wave coupled models
that include the effect of the breaking waves (BW) and of the wave–current interaction (WCI) with
a vortex-force formalism. The comparison exhibits that under weak wind conditions, the BW
effect prescribed by wave dissipation energy significantly enhances near-surface mixing because of
increased downward turbulent kinetic energy (TKE), whereas the WCI has little effect on vertical
mixing. Increased TKE results in a mixed-layer depth deepened by ~46% relative to the control
run, which provides better agreement with the observed surface thermal structure. An additional
experiment with local wind–based BW parameterization confirms the importance of nonlocally
generated waves that propagated into the study area upon near-surface mixing. This suggests that
under calm wind conditions, waves propagated over distances can largely affect surface vertical
mixing; thus, ocean–wave coupling is capable of improving the surface thermal structure.

Keywords: vertical mixing; ocean–wave coupling; breaking waves; turbulent kinetic energy; wave
dissipation energy

1. Introduction

Vertical mixing in the upper-ocean in mid-latitude is one of the main processes in heat
transfer between the warm surface layer and the cold subsurface layer, and it greatly influences
the ocean–atmospheric interaction through changes in sea surface temperature. Generally, vertical
mixing is caused by turbulence that can be generated by many processes, such as winds, tides, and waves,
and their interactions [1,2]. Ocean waves influence turbulence generation at the ocean–atmosphere
interface and modify the surface boundary layer, thereby affecting vertical mixing in the upper ocean.
Over the past few decades, many studies have been carried out to represent ocean–wave mixing in an
ocean circulation model using subgrid scale parameterizations [3–5]. However, because of the range of
scales and processes, it is still limiting and challenging to properly represent wave-induced dynamics in
ocean modeling. Studies have pointed out the importance of surface waves in upper-ocean mixing and
the need for an ocean–wave coupled modeling system that represents the interaction processes [6–13].

The wave effect on vertical mixing can be presented as an increase in turbulent flow at the
boundary layer because of the increase in vertical shear instability generated by wave-induced Stokes
drift, i.e., wave–current interaction (WCI) [14–17], and strengthening of turbulent kinetic energy (TKE)
by transferring wave dissipation energy, i.e., breaking waves (BW) [5,18,19]. The changes in the
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wave-induced current, e.g., Stokes drift and wave-related transport, result in large, vertical eddy
diffusivity and thus can play a key role in momentum exchange and vertical mixing [16]. Chune
and Aouf (2018) [17] investigated the effect of WCI on the tracer in an ocean circulation model and
demonstrated that a warm-biased surface temperature in the tropical ocean can be significantly
improved by providing more realistic momentum and energy flux from the wave model.

BW are the principal source of TKE and inject wave energy into the water column, resulting in a
near-surface turbulent boundary layer at which energy is dissipated by turbulence [18,20,21]. Wada
et al. (2009) [12] showed that wave energy dissipation by BW dominated strong vertical mixing in
the continental shelf under strong wind events. Carniel et al. (2009) [22] incorporated the injection of
TKE by BW into an ocean model by parameterizing vertical mixing using a generic length scale (GLS)
scheme and highlighted the need for wave-induced turbulence to improve the accuracy of temperature
structures in the ocean surface.

Our study area in the northern East China Sea (ECS) is mostly characterized by a shallow
continental shelf, tides, and monsoonal winds. In summer, surface heating and weak monsoons allow
strong stratification, resulting in a vertical thermal structure above the thermocline. This region was
widely influenced by the Tsushima Warm Current, which is a branch of Kuroshio in the ECS. The
Tsushima Warm Current flows northeastward along the ECS continental shelf and a part of the current
enters the Jeju Strait by turning clockwise and then flows eastward. This current is called the Cheju
Warm Current [23,24]. The surface thermal structure in the ECS can also be influenced by nonlocally
generated waves or swell propagated from the northwestern Pacific Ocean. Using a wave-circulation
coupled model, Yang et al. (2004) [25] reported that enhanced vertical mixing by non-BW can improve
the thermal structure in the upper 50 m in the northern ECS during summer. However, a warm bias
remained near the surface in their model [26], indicating that heat transfer between the warm surface
and the cold subsurface water was not sufficient to make the surface mixed-layer depth (MLD) as thick
as that observed. Because BW and the WCI can affect the shallow mixed layer within a few meters
from the sea surface, understanding of their effect on surface mixing is essential to improving the
accuracy of the vertical thermal structure and associated MLD. Nevertheless, less attention has been
given to the effect of surface gravity waves on the thermal structure in the ECS, particularly during
summer when wind conditions are calm.

In this paper, we evaluate wave effects on surface thermal mixing in the northern ECS during
summer using an ocean–wave coupled modeling system. In situ measurement data are compared with
the coupled model simulations that include the effects of BW and the WCI. This study also highlights
the contribution of nonlocally generated waves to surface thermal mixing by comparing a coupled
model simulation with an uncoupled ocean model that includes local wind-based BW parameterization.

2. Modeling System

2.1. Model Configurations

To investigate the effect of waves on surface thermal mixing, we used the coupled
ocean–atmosphere–wave–sediment transport modeling system [27]. In this study, the modeling
system was composed of an ocean circulation model (regional ocean modeling system, ROMS,
https://www.myroms.org/) and a wave model (simulating waves nearshore, SWAN, http://swanmodel.
sourceforge.net/).

ROMS integrates the Navier–Stokes governing equation based on the hydrostatic and Boussinesq
approximation and is extensively used for various regional and basin-scale modeling studies. To
simulate realistic ocean circulation, we used the analysis results of the global hybrid coordinate
ocean model as the initial and boundary conditions for sea level, water temperature, salinity, and
ocean currents. The 10 tidal constituents (M2, S2, N2, K2, K1, O1, P1, Q1, Mf, and Mm) from
TPXO 7 (TOPEX/POSEIDON, https://sealevel.jpl.nasa.gov/missions/topex/) data were imposed to
generate the tidal currents and sea-level variations [28]. The surface forcing provided by the National
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Centers for Environmental Prediction (NCEP) global forecast system (GFS) final analysis data (FNL)
with a 1-h interval was used to compute the surface boundary conditions with a bulk formula [29].
The GLS vertical mixing closure scheme using the k −ω method was adopted as a vertical mixing
parameterization [30,31].

The surface wave simulations were carried out using SWAN, a state-of-the-art, third-generation
spectral wave model that computes wind-generated waves in offshore and coastal areas [32]. The
model solves the wave action balance equation, which describes the generation, propagation, and
dissipation of surface waves. The dissipation of wave energy in the governing equation is represented
by the total sum of the whitecapping, bottom friction, and depth-induced breaking terms [33,34].
Whitecapping, which represents wave steepness-related breaking, and wave growth by the surface
wind, was calculated based on Komen et al. (1984) [35] and Hasselmann (1974) [36] with default
coefficients of SWAN version 41.01. Information about the global wave field from Wave Watch 3 [37]
was adopted as the boundary condition to impose the incoming waves propagated into the model
domain. We used the wind speed at a 10 m height from the GFS analysis data, the same wind field
used as the surface boundary condition of the ocean model, to apply the energy transfer of wind to the
wave growth.

Model domains of the ocean and wave models cover the ECS and the Yellow Sea from 22.5◦ N to
42.5◦ N and from 113◦ E to 133◦ E (Figure 1). The horizontal resolution was set to 1/12◦ for both the
ocean and the wave model. The realistic bathymetry used in the ocean and wave models was extracted
from the General Bathymetric Chart of the Oceans (GEBCO), which has a horizontal resolution of 30 s.
The ocean model had 20 layers in the vertical stretched terrain-following coordinate. Both the ocean
and the wave model were initialized at 00:00 UTC on 22 June 2017. The models were spun up using
their initial states for a week to obtain a stable solution before the analysis on July. Because the initial
state of the ocean model was obtained from near-real time, high-resolution, and operational analysis of
HYCOM (hybrid coordinate ocean model), a week of spin-up period was known be enough to resolve
the steady state in the ocean simulation. A series of comparative experiments were performed during
July 2017.
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and depth (CTD) measurements (black circles) and ocean buoy location (red asterisk). The CTD 
survey was conducted on 24 July 2017 by the Ocean and Fisheries Research Institute, Jeju Special-
Governing Province, Korea. 

Figure 1. (a) Model domain (rotated squared box) and bathymetry (in meters) in the Yellow Sea and
East China Sea. The gray box indicates the study area. (b) Stations of in situ conductivity, temperature,
and depth (CTD) measurements (black circles) and ocean buoy location (red asterisk). The CTD survey
was conducted on 24 July 2017 by the Ocean and Fisheries Research Institute, Jeju Special-Governing
Province, Korea.

2.2. Experimental Design

Four experiments were designed to investigate the effects of BW and the WCI on surface thermal
mixing: (1) a stand-alone ROMS model as a control run, (2) two-way coupled ROMS-SWAN without
the WCI effect but including the BW effect (BW run), (3) two-way coupled ROMS-SWAN without
the BW effect but including the WCI effect (WCI run), and (4) a stand-alone ROMS model with local
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wind-based BW parameterization (CB run). The experimental designs are listed in Table 1. In the
coupled experiments, the two models were coupled via the Model Coupling Toolkit [38,39], which
allowed informational exchange between ROMS and SWAN. In the coupled procedure, ROMS received
updated wave information (i.e., wave dissipation energy, significant wave heights, wave periods, and
directions) from SWAN. Additionally, ROMS passed the barotropic current field to the governing
equation of the SWAN according to the method of Kirby and Chen (1989) [40], sharing sea level
variation and bathymetry.

Table 1. Summaries of key processes included in the experiments to introduce wave effects on the
near-surface layer.

Wave Effects on
the Ocean

Uncoupled Coupled

Control CB BW WCI

Breaking wave ×

Wind-based
parameterization

(Equation (3))

Wave dissipation
energy (E in Equation

(1) from the wave
model)

×

Wave-Current
interaction × × ×

Stokes-Coriolis force,
Stokes drift advection,
Vortex force (Kumar et

al. 2012)

In the BW run, the ocean model estimated the effect of wave breaking on surface thermal mixing
using wave dissipation energy E directly transferred from the spectral wave model. The dissipated
wave energy was converted into TKE in the process of vertical mixing [41], which was determined by
the GLS two-equation turbulence model [30,31]. The additional TKE production in the GLS scheme is
given by the following:

TKE =
(1.5× σk)

1/3(
c0
µ

)3/4
× α× E2/3 (1)

where σk is the Schmidt number for the eddy diffusivity of TKE and c0
µ is the stability coefficient.

Both are constant in GLS k − ω. The nondimensional parameter α is bounded by 0, meaning no
contribution of the wave to TKE, and 1, meaning all wave dissipation energy goes to TKE. The surface
roughness length that determines the turbulence length scale is calculated by Z0s = 0.5×Hs, where Hs

is the significant wave height transferred from the wave model [22,42]. The turbulence length scale
contributed little to surface mixing in all experiments because of the relatively low height of the waves
during the study period (data not shown). Therefore, the BW run allowed the BW effect on thermal
mixing through changes of TKE because of wave dissipation energy transferred from the wave model.
Unlike in the BW run, in the control and WCI runs, wave dissipation energy that resulted from wave
breaking was not considered in TKE production, whereas wind-induced surface stress τ was directly
added as follows:

TKE =
(
1/c0

µ

)2
× τ (2)

Surface roughness was also parameterized by wind stress, as described in Charnok (1955) [43].
The WCI run computed the wave effects on the oceanic circulation using a vortex-force formalism [44].
This vortex-force method considers the wave-induced current and its mass flux transport, including
the Stokes drift, Stokes–Coriolis interaction, pressure gradient modifications because of wave-induced
sea-level perturbation, and vortex-force terms [44]. Because wave dissipation energy resulting from
BW was not considered in the WCI run, it was expected that the vertical thermal mixing caused by TKE
production would be mainly determined by the wave-induced current changes in this experiment.
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In the CB run, the BW effect on turbulence was parameterized by the assumption that BW can be
described by the surface wind stress τ with a control parameter c [18].

TKE =
(1.5× k)1/3(

c0
µ

)3/4
× τ× c2/3 (3)

The nondimensional coefficient c was set to 100 in this study [30,45].

3. Results

3.1. Model Validation

Before analyzing the effects of waves on upper-ocean mixing, we needed to confirm that the
wave model yielded acceptable performance. First, the NCEP/FNL wind data used in the numerical
experiments were compared with the data measured using the buoy at Mara (Figure 1b), which is
the buoy closest to the area of conductivity, temperature, and depth (CTD) observation, from 1 to 30
July 2017.

Overall, a weak wind speed of less than ~10 m/s was measured at the buoy location. The FNL
wind matched the buoy observation throughout the study period, with a mean root mean square
error of less than 1.72 m/s. This implies that the wind data used in our experiments was reasonable
for simulating the wave fields. Weak wind, of less than 5 m/s, was observed during the in situ CTD
surveys on 24 July 2017.

Then, the modeled significant wave height was validated by direct observation at the Mara
buoy (Figure 2b). The observed wave height was in the range from 0.5 to 2.8 m during the period.
In particular, notably weak wave heights of less than 1 m were found on 24 July 2017 during CTD
measurement when weak wind conditions prevailed. The wave model (BW run) reproduced the
timing and magnitude of the observed significant wave height at the buoy location, with a root mean
square error of 0.38 m (red line in Figure 2b). The simulated significant wave height from the WCI run
is not shown here, because almost no difference was found between BW and WCI runs. The statistical
indices, including bias, root mean square error (RMSE), linear correlation coefficient, and the index of
agreement (IOA, Willmot et al. 2012 [46]) of wind forcing and modeled Hs, are provided in Table 2.

The vertical temperature structure measured along the CTD stations shown by Figure 1b was
compared to validate the ocean model result with respect to the upper-ocean’s thermal structure. The
vertical structures of temperature along each line on 24 July 2017 obtained from the observation and
control experiments are shown in Figure 3. For all lines, the observations showed that the water
columns in July were well stratified, with a strong thermocline at a 10 to 20 m depth, and that the
thermoclines gradually sloped downward from offshore toward shore (A1, B1, and C1 stations) because
of strong tidal mixing near the western coast of Jeju Island. Below the thermocline, offshore cold water
existed that originated from Yellow Sea’s bottom cold water [24,47]. Of particular interest is that above
the thermocline, the water column was well mixed for all lines, despite weak wind conditions of less
than 5 m/s, with the surface MLD reaching a depth of about 6–12 m. The ocean model from the control
run captured the general features of the observed temperature structures along the vertical sections.
The strong surface stratification with cold bottom water of ~125◦ E appeared in all sections, showing
a downward slope of the thermocline to the shore, which was fairly consistent with the observed
distribution. However, in the surface layer, vertical mixing was weaker compared with the observation,
showing a shallow MLD of ~2.5 m, which corresponds to less than half of the observed MLD. This
result indicates that the vertical mixing process of the surface layer needs to be improved in the ocean
circulation model and that surface gravity waves may be a factor for improvement of the surface
mixing effect.
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3.2. Effect of Waves on the Ocean-Surface’s Thermal Structure

To examine wave-induced changes in the vertical structure of water temperature, we analyzed
the differences between the control run and the three other experiments (Figure 4). The largest effect
on the thermal structure was found in the result from the BW run that used an ocean–wave coupled
system (Figure 4a–c). In all transects, strong negative temperature differences were clearly confined
to a thin surface layer, shallower than ~3 m, which corresponds to the MLD calculated from the
control run. Below the surface layer, the water became warmer, with the maximum temperature
difference at a depth of about 5–8 m. These changes in the vertical thermal structure imply a decrease
in stratification near the surface layer. The effect of wave breaking was also evident from the vertical
profiles of the section-averaged temperature difference between the control run and the three other
runs (Figure 5). The BW run yielded the most remarkable thermal changes in the near-surface layer,
resulting in an increase of ~46% in MLD compared with that of the control run. Although the BW run
still underestimated the observed MLD, it provided better agreement with the observation. However,
different responses of vertical temperature were found in the results of the WCI run (Figure 4d–f).
The WCI with a vortex-force formalism affected the thermal structures mainly below the near surface,
showing different responses in each section. The temperature changed through the water column
below the surface layer, particularly near the shore where the tidal currents are relatively strong. It is
likely that the temperature was horizontally redistributed because of changes in ocean current through
the WCI. However, unlike the BW run, little effect occurred in the surface layer for all sections (Figure 5),
showing no improvement of the MLD. These results demonstrate that the surface temperature decreases
while the subsurface layer increases when the BW effect is included in the ocean–wave coupled model,
suggesting the surface warm temperature is vertically redistributed.

In an ocean circulation model, the contribution of wave breaking to surface mixing can be
parameterized as a function of local wind stress magnitude τ, as shown in Equation (3) [18,44]. The
CB run that is a stand-alone ocean model with BW parameterization reproduced a pattern of vertical
temperature differences similar to those of the BW run (Figure 4g–i). The temperature in all sections
showed a decrease near the surface and an increase beneath, i.e., a weakened stratification in the
near-surface layer. This indicates that the surface thermal structure can be improved by the wave
effect parameterized by local wind–based BW in the ocean circulation model. However, as revealed
by section-averaged temperature profiles in Figure 5, the changes of vertical temperature in the
parameterization were relatively weak compared with the result of the BW run. A small decrease
in water temperature was detected in the surface layer, whereas a small increase was seen in the
subsurface layer, which was about half that found in the coupled BW run. The difference in the BW
effect between the two experiments (i.e., BW and CB runs) is discussed in the following sections.
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Figure 5. Vertical profiles of section-averaged temperature differences between each experiment and
the control run at (a) line A, (b) line B, and (c) line C on 24 July 2017. Red, blue, and green lines indicate
the differences in the BW run, WCI run, and CB run, respectively.

4. Discussion

4.1. Surface Thermal Mixing Induced by BW

The preceding model comparisons suggest that under weak wind conditions, BW have the
potential to strengthen surface thermal mixing above the thermocline when coupled with the wave
model. In an ocean model, the vertical thermal structure is primarily controlled by vertical diffusion in
the mixing processes so that the wave effects on vertical mixing can be quantified through vertical
diffusion in the ocean model. To examine the contribution of vertical mixing to the surface thermal
structure, the vertical diffusion term (∂z(KH∂zT)) in the temperature rate equation on the section along
line B was compared in the comparative experiments (Figure 6). Because of weak wind conditions and
summer heating, strong vertical mixing was restricted to a surface layer shallower than ~3 m in the
control run (Figure 6a), suggesting that without the wave effects, vertical heat exchange is restricted to
shallow surface water. However, vertical diffusion reached the top of the thermocline when BW were
included in the ocean–wave coupled model, i.e., the BW run (Figure 6b). Comparison between the
control run and the BW run indicates that BW can deepen the surface MLD above the thermocline,
thereby contributing to surface cooling (Figure 4a–c). The WCI run that included Stokes–Coriolis
forcing yielded vertical diffusion similar to that of the control run (Figure 6c) and consequently
contributed little to the surface thermal structure (Figure 4d–f). Meanwhile, BW parameterized by
local wind stress (i.e., the CB run) affected vertical diffusion in the surface layer but were not significant
compared with the BW run.

Vertical mixing in the ocean model is determined by TKE and the turbulent length scale in the
GLS turbulence closure [30,31]. To identify the wave effects on TKE near the surface, the vertical
TKE profiles obtained from the comparative experiments were compared on line B (Figure 7a). In the
control run (black solid line), the highest TKE was found in the surface layer and its value sharply
decreased down to an ~4 m depth, but it remained constant beneath this depth. With wave-breaking
turbulence, i.e., the BW run, the maximum value of TKE was ~10−3 m2/s2 in the surface layer, which is
10 times greater than that of the control run. TKE transferred downward sharply decreased with depth
to ~10−5 m2/s2 at a depth of ~6 m, which was deeper than that of the control run. At the same time,
the increased and deepened TKE in the surface layer resulted in increases in vertical eddy viscosity
and diffusivity, as shown in Figure 7b,c, respectively. Unlike the BW run, TKE and the associated
vertical viscosity and diffusivity profiles obtained from the WCI run (blue line) show almost the same
responses as those of the control run, suggesting that the wave-induced current changes have little
effect on TKE intensification.
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TKE responses to wave forcing are clearly evident in Figure 8, which shows the temporal changes
of the TKE profile averaged on line B from the comparative experiments. In the control and WCI runs,
TKE (Figure 8a,c), restricted to the shallow surface layer, rapidly intrudes down to a depth of ~15 m on
26–27 July 2017 and then rises suddenly on 29–30 July. These changes in the TKE profile correspond
to fluctuations of wind speed measured at the ocean buoy (Figure 2a). For example, the minimum
TKE at the surface was found on 28–29 July when the wind speed was the smallest (less than ~2 m/s).
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This shows that the TKE profile mostly depends on shear production resulting from wind conditions,
because there is no TKE injection by waves. However, the BW run produces relatively strong TKE in
the surface layer during the period (Figure 8b). In particular, even though the wind was the weakest
on 28–29 July, the surface TKE was more than 10 times greater than in the control and WCI runs. These
comparisons indicate that under weak wind conditions, wave dissipation energy caused by breaking is
a key source of enhanced TKE and consequently affects surface thermal structures through intensified
vertical mixing.
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4.2. Effect of Swell-Related BW

Similarly to the BW run, the CB run produced enhanced TKE and its temporal changes in the
surface layer; however, its magnitude was only about half that observed in the BW run (Figures 7
and 8). As a result, the depth in which TKE intruded downward was shallower in the CB run than in
the BW run. Of particular interest is that a pronounced difference between the BW run and the CB run
was seen on 28–29 July 2017, when the weakest wind blew. This means that the parameterized BW
effect based on the local wind speed has a limitation in terms of producing surface thermal mixing
under weak wind conditions.

To gain insight into the role of wave dissipation on surface mixing, we examined the spatial
patterns of wind speed and wave heights on 29 July 2017, when the weakest wind blew over the
study area (Figure 9). Because of the southerly summer monsoon, relatively strong wind of above
~4 m/s dominates the central ECS region; however, the wind magnitude decreases as it moves north
(Figure 9a). In particular, the weakest wind of below ~1.5 m/s appears in the study area, i.e., the western
seas of Jeju Island. Because the energy dissipation by wave breaking was parameterized by this local
wind speed in the ocean model, the CB run yielded small TKE and associated weak surface thermal
mixing in the western seas of Jeju Island. However, during the weak wind period, the surface TKE
remained stronger in the BW run, which directly considered wave dissipation energy from the wave
model in the ocean–wave coupled system. The horizontal distribution of wave heights from the wave
model is roughly associated with the wind pattern but clearly shows northward propagation of high
waves from the central ECS toward the study area (Figure 9b). As a result, in the BW run, relatively
energetic waves were found in the western seas of Jeju Island which thus resulted in increased TKE
because of wave energy dissipation by breaking. This result indicates the importance of nonlocally
generated waves or swell on the surface TKE in the study area. The role of waves propagated from
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the south on the surface TKE is evident in Figure 9c, which shows the contribution of swell, which is
independent of local wind, to significant wave height.
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Unlike the wind magnitude, the long-period swell accounts for a great portion of the wave heights
(~70%) over the study area. Our results suggest that under weak wind conditions, swell propagated
over long distances can largely affect surface thermal mixing through wave dissipation energy by
breaking; thus, ocean–wave coupling is capable of improving the vertical thermal structure in the near
surface, especially in summer.

5. Summary

In situ observations, which were conducted in the northern ECS in summer 2017, showed a
well-mixed thermal structure in the near surface, even though local winds are quite weak over the
study area. Because waves are among the major sources of the turbulence in the ocean-surface layer
that cause vertical thermal mixing, in this study, we examined wave effects on surface thermal mixing
in the northern ECS during summer by analyzing the results from a series of numerical experiments.
Without wave effects, the ocean model produces a shallow MLD, which corresponds to less than 50%
of the observed MLD, indicating insufficient surface thermal mixing. However, the BW effect by
wave dissipation energy from the wave model significantly enhances near-surface mixing because of
increased downward TKE. Increased TKE results in deepened MLD, by ~46%, relative to the control run,
which provides better agreement with the observed surface thermal structure, even though it remains
underestimated. This comparison indicates that under weak wind conditions, wave dissipation energy
by breaking is a key source of enhanced TKE and consequently affects surface thermal structures
through intensified vertical mixing. Unlike wave energy dissipation by breaking, wave-induced
currents contribute little to surface thermal mixing, suggesting that the effect of WCI on surface mixing
can be ignored in regions where ocean currents and local winds are weak.

In addition, a stand-alone ocean model with local wind-based BW parameterization confirms
the importance of nonlocally generated waves on near-surface mixing. Under weak wind conditions,
swell propagated over distances significantly affects surface thermal mixing through wave dissipation
energy by breaking. This suggests that the ocean–wave coupling model can improve vertical mixing in
the surface layer and thus provide a more realistic estimate of the surface thermal structure, especially
under calm wind conditions.
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