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Abstract: This study presents novel findings on the drivers of the calcitic planktonic foraminiferal
and aragonitic pteropod Holocene assemblages of the North Aegean Trough (northeastern Mediter-
ranean), an area recording the interaction between dynamic water masses as they exchange between
the northern and southern Mediterranean sub-basins. Both of these groups of microorganisms are
the major producers of calcium carbonate in the ocean, and are particularly sensitive to climate
and oceanographic changes over the late Quaternary. Downcore micropaleontological data from
the gravity core AEX-15, supplemented with multivariate statistical Q-mode cluster and principal
component analyses (PCA) results, provide significant insights on the water column dynamics during
the Holocene. Focusing on the last ~10 calibrated thousands of years before the present day (ka cal
BP), our integrated study reveals that primary productivity is the dominant factor controlling the
planktonic foraminifera distribution in the North Aegean Sea, whereas water column stratification,
and particularly the intensity of the oxygen minimum zone, seems to be the major driver on the
pteropod distribution. Besides productivity and thermal stratification, which show the highest
explanatory power for planktonic foraminifera and pteropod communities, respectively, though they
affect both groups to a different extent, upwelling seems to further affect both faunal groups. Overall,
our findings are consistent with those derived by published late Quaternary eastern Mediterranean
records, highlighting in parallel a useful additional dimension on planktonic foraminiferal and
pteropod ecology, which is inextricably linked with the factors of primary productivity and vertical
stratification of the warm Holocene water column.

Keywords: planktonic foraminifera; pteropods; paleoecology; multivariate statistical analysis;
primary productivity; water column stratification; upwelling; Holocene climatic variability;
hydrological changes; eastern Mediterranean

1. Introduction

The Aegean Sea is a physical laboratory to investigate climatic oscillations at both
a global and local scale due to its intermediate position between the higher- (i.e., North
Atlantic-influenced) and lower-latitude (i.e., monsoonally-influenced) climate systems [1–3],
high sedimentation rate marine records compared to the open Mediterranean Sea [4–6],
and its latitudinal and land-locked configuration [7]. The recent Holocene subdivision
(Greenlandian, Northgrippian, and Meghalayan) confirms the traditional understanding
of an evolution from wetter (Greenlandian) to gradually drier (Northgrippian and Megha-
layan) climatic conditions. Moreover, Holocene sediments of the Aegean Sea include
the most recent sapropel S1 that was deposited during the Holocene Climatic Optimum
(10.8–6.1 ka cal BP; [8,9]) under reduced oxygen and productive conditions [10–18]. There-
fore, the sedimentary archive corresponding to this time interval can be considered as a
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natural “experiment” in order to investigate the plankton response to such severe pale-
oenvironmental changes. In particular, the basin’s limited communication with the open
ocean implies that any paleoceanographic signals will be recorded in an amplified fash-
ion, and, therefore, this heightened sensitivity to the effects of climate variability further
underlies the prominent role of such marginal basins in the understanding of the global
climatic evolution.

Plankton indicators have long been used as a biomonitoring tool [19,20] and/or for in-
vestigating modern [21–25] and past [26–31] environments because of their rapid response
to environmental changes. Two distinct communities of plankton bio-indicators are used
in this study: planktonic foraminifera and pteropods. Planktonic foraminifera are excellent
bio-eco-stratigraphic [32–35], paleoceanographic [31,36–40], and paleoclimatic [41–46] indi-
cators, due to their wide distribution in the world oceans, the good fossilization potential
for their calcitic shells, their long geological record, their upper water column habitat,
and their preservation in the deep-sea sedimentary record [47,48]. Pteropods are holo-
planktonic aragonitic molluscs, widespread and abundant in the world’s oceans, [49–51]
which play an important role in the direct export of organic carbon (12% of the carbon flux
worldwide [52]) to the deep ocean [25]. Several studies (e.g., [28,29,53–59]) have shown an
enhanced sensitivity of late Quaternary pteropod assemblages to environmental changes,
particularly of temperature, oxygen concentration, and salinity, making them valuable for
paleoenvironmental and paleoclimatic reconstructions.

The objective of the present work is to determine the plankton assemblages of the
North Aegean Sea during the last 10 ka BP, and further assess the environmental factors that
control their distributional pattern, based on marine sediments retrieved by a gravity core
(AEX-15). In order to advance the understanding of the temporal variability of observed
climatic and oceanographic changes and elucidate forcing mechanisms, this study aims at
achieving high-resolution sediment core at a sub-centennial to centennial scale. The faunal
distribution pattern of both planktonic foraminiferal and pteropod species identified in
AEX-15 core, supplemented by the ecological interpretation obtained through multivariate
statistical analyses, provide significant insights on the unraveling of the paleoclimatic
history, the determination of the surface conditions, and the orbital configuration of the
climatic changes recorded on Holocene sediments.

2. Oceanographic and Geologic Setting

The Aegean Sea is in the northern sector of the eastern Mediterranean, between the
Turkish coastline to the east, the Greek mainland to the north and west, and bounded
on the south by the island of Crete and the Cretan Arc. It is connected to the Black Sea
through the Straits of Bosphorus and Dardanelles, and to the Levantine Sea through
several larger and deeper straits between the Peloponnese, the islands of Crete and Rhodes,
and south-western Turkey (Figure 1a). It is separated into two major sub-basins with
different climatic conditions: the “north” and the “south” Aegean Sea. The north is more
humid than the semiarid south basin [60]. The studied core comes from the North Aegean
Trough (NAT; Figure 1a), a northeast–southwest (NE–SW) elongated depression with
a depth range between 800 and 1590 m that includes several interconnected sub-basin
depressions, separated from each other by 100- to 350-m-deep intervening shoals and
associated islands [5,61].
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Figure 1. (a) Map of the Aegean Sea; inset shows location of the north Aegean sediment core AEX-15 (39°39.900′ N, 
24°15.369′ E; 1242 m water depth, length 178 cm), gray arrows show the Black Sea Water (BSW) inflow and the Levantine 
Intermediate Water (LIW) that enters the Aegean Sea from the Levantine Sea; (b) lithological log of core AEX-15. 

The hydrography of the Aegean Sea is characterized, in general, by a cyclonic sur-
face water circulation, although the most active dynamic features are the mesoscale 
permanent and/or recurrent cyclonic and anticyclonic eddies [60], which form as a con-
sequence of the Etesian winds [62]. In the study area, the water column structure com-
prises three major water masses: the superficial nutrient-rich and less saline Black Sea 
Water (BSW; 9–22 °C and 22–23 psu), the warmer and saline Levantine Intermediate 
Water (LIW; 16–25 °C and 39.2–39.5 psu), and the North Aegean Deep Water (NADW; 
13–14 °C and 39.1–39.2 psu) [63,64]. The surface and intermediate waters follow the 
general counterclockwise circulation of the Aegean Sea and progressively mix as they 
flow southward along the east coast of Greece [65]. The main characteristic of the north 
Aegean is the fluvial freshwater inputs that discharge from the Black Sea and the river 
runoff from the Greek and Turkish mainland, which dilute the highly saline waters from 
the Levantine and south–central Aegean. The lateral and diapycnal mixing of warm 
subsurface intermediate waters with low salinity surficial waters leads to strong 
near-surface thermal stratification, which is a dominant feature of the north Aegean wa-
ter column during the summer. During the winter, upwelling nutrient-rich waters seem 
to create favorable conditions for primary production [66]. Such seasonal upwelling 
pathways are very important for the low-chlorophyll and phosphorus-controlled oceanic 
system of the eastern Mediterranean basin [67–69], highlighting the importance of 
small-scale hydrographic dynamics in controlling primary productivity of this meso-
trophic to oligotrophic setting. 

  

Figure 1. (a) Map of the Aegean Sea; inset shows location of the north Aegean sediment core AEX-15 (39◦39.900′ N,
24◦15.369′ E; 1242 m water depth, length 178 cm), gray arrows show the Black Sea Water (BSW) inflow and the Levantine
Intermediate Water (LIW) that enters the Aegean Sea from the Levantine Sea; (b) lithological log of core AEX-15.

The hydrography of the Aegean Sea is characterized, in general, by a cyclonic sur-
face water circulation, although the most active dynamic features are the mesoscale per-
manent and/or recurrent cyclonic and anticyclonic eddies [60], which form as a conse-
quence of the Etesian winds [62]. In the study area, the water column structure comprises
three major water masses: the superficial nutrient-rich and less saline Black Sea Water
(BSW; 9–22 ◦C and 22–23 psu), the warmer and saline Levantine Intermediate Water (LIW;
16–25 ◦C and 39.2–39.5 psu), and the North Aegean Deep Water (NADW; 13–14 ◦C and
39.1–39.2 psu) [63,64]. The surface and intermediate waters follow the general counter-
clockwise circulation of the Aegean Sea and progressively mix as they flow southward
along the east coast of Greece [65]. The main characteristic of the north Aegean is the
fluvial freshwater inputs that discharge from the Black Sea and the river runoff from the
Greek and Turkish mainland, which dilute the highly saline waters from the Levantine and
south–central Aegean. The lateral and diapycnal mixing of warm subsurface intermediate
waters with low salinity surficial waters leads to strong near-surface thermal stratifica-
tion, which is a dominant feature of the north Aegean water column during the summer.
During the winter, upwelling nutrient-rich waters seem to create favorable conditions
for primary production [66]. Such seasonal upwelling pathways are very important for
the low-chlorophyll and phosphorus-controlled oceanic system of the eastern Mediter-
ranean basin [67–69], highlighting the importance of small-scale hydrographic dynamics
in controlling primary productivity of this mesotrophic to oligotrophic setting.
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3. Materials and Methods
3.1. Material

The study core was recovered from the NAT (39◦39.900′ N, 24◦15.369′ E; 1242 m water
depth, length 178 cm), with R/V Aegaeo in October 2013 (Figure 1a,b). The planktonic
foraminiferal and pteropod assemblages derived from 115 downcore samples, were picked
from 10 cm3 of wet sediment after washing through a 125 µm mesh sieve and cleaning
using the HyPerCal protocol of [70]. All shells (300 individuals for each group) were
handpicked, identified, and counted in each sample and then converted into percentages
(Table S1; Supplementary Material). Detailed micropaleontological procedures, along with
the time stratigraphic framework of the analyzed core are described in [30]. Based on the
published age model of the study core, which is based on a combination of accelerator
mass spectrometry (14C AMS) radiocarbon date measurements, additional control points,
and bioevents of planktonic foraminifera, its sediments cover the last 10.1 ka BP with an
average sedimentation rate of 17.32 cm/ka.

3.2. Multivariate Statistical Analyses

The number of planktonic foraminifera and pteropods (Euthecosomata) counted is
statistically reliable for both paleoceanographic and paleoclimatic reconstructions [71]. To
determine the overall statistical similarity between samples, Q-mode cluster analysis was
used, following the algorithms of [72] using the correlation coefficient matrix. In the case
of planktonic foraminifera, the totality of the samples was used, whereas for pteropods,
cluster analysis was carried out in 105 out of 115 samples. This was due to the lack of
pteropod fauna in samples 1.5, 47, 51, 57, 59, 107, 122.5, 141.5, 142.5, and 143.5 cm. For
paleoenvironmental reconstructions, multivariate statistical analyses have been performed
on the data set, after exclusion of rare species (<3%) and grouping of species that have a
discontinuous, scattered distribution at generic level. The results of cluster analysis were
reported as Morisita similarity and arranged in two-dimensional hierarchical dendrograms,
wherein locations were presented along the Y-axis while similarity level was plotted on
the X-axis. Q-mode cluster analysis was performed in both faunal groups (planktonic
foraminifera and pteropods) in order to investigate the differences or correlations among
the biotopes identified within plankton communities.

Furthermore, principal component analysis (PCA) was applied to reduce the dimen-
sionality of a multivariate data set to a few principal factors that determine the distributions
of species. Raw data were processed using PAST (2.17) multivariate statistical software
package of [73]. The factors obtained were rotated using a varimax-normalized algorithm,
which allows more straightforward interpretation of the loadings of the principal compo-
nents and maximization of the variances explained by the factors extracted. The resulting
factor scores show the contribution of each factor in every sample and, therefore, the down-
core contribution of each factor. The total number of factors was defined by minimizing
the remaining “random” variability, and by the possibility to relate the factors to modern
hydrographic conditions, and planktonic foraminiferal and pteropod ecology.

4. Results

Both faunal groups are abundant and well preserved in the samples of the studied core.
In particular, 17 species of planktonic foraminifera lumped in 12 groups and 11 species
of pteropods were identified (Table S1; Supplementary Materials). The most abundant
planktonic foraminiferal species are Globigerina bulloides, Turborotalita quinqueloba, and
Globigerinoides ruber alba, whereas the species Globorotalia inflata and Neogloboquadrina
pachyderma present sporadic peaks. Pteropod species in abundance with a continuous
distributional pattern are Heliconoides inflatus and Boasia chierchiae, whereas the rest of them
present a scattered distributional pattern. More details on the distributional patterns of
both planktonic groups are given in [30].
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4.1. Q-Mode Cluster Analysis

The Q-mode hierarchical cluster analysis represents the grouping of samples based
on the downcore abundance of the species higher than at least 3% in one sample. Three
distinct assemblages of planktonic foraminifera and pteropods were identified by Q-mode
cluster analysis in the studied core, reflecting different biotopes during the Holocene. Each
assemblage is characterized by the dominant species and named accordingly after it.

4.1.1. Planktonic Foraminifera

Cluster I (T. quinqueloba assemblage): it contains 47 samples (samples 61 cm, 97 cm, and
samples between 120 and 166 cm; Figure 2). Apart from samples 61 and 97, the remaining
45 samples correspond to the most recent sapropel S1. This assemblage is dominated
by T. quinqueloba (up to 65%), an eutrophic species preferring low salinities [74]. In this
assemblage, G. bulloides also occurs with high percentages (up to 50%), as well as the warm
oligotrophic Globigerinoides ruber rosea (25%) and SPRUDTS group.
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Figure 2. Dendrogram resulting from Q−mode cluster analysis on planktonic foraminifera and the
clusters identified in core AEX−15: T. quinqueloba assemblage with pink color (Cluster I), G. inflata
assemblage with yellow color (Cluster II), and G. ruber alba assemblage with green color (Cluster III).

Cluster II (G. inflata assemblage): this assemblage groups three samples (115 cm,
117 cm, and 119 cm; Figure 2), which belong to the oxidized part of sapropel S1. The domi-
nant component of this assemblage is G. inflata (up to 32%), which is a temperate species
indicative of a homogenous water column that prefers to live at the bottom of thermocline
depths [47]. Additional components of this assemblage are the species N. pachyderma,
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G. ruber alba, G. ruber rosea, T. quinqueloba, and G. bulloides. Neogloboquadrina pachyderma
thrives in cool water close to or below the thermocline [75]. Its abundance is related to the
development of the deep chlorophyll maximum (DCM) [75].

Cluster III (G. ruber alba assemblage): it includes 65 samples (from 113 to 1.5 cm, and
between 166.5 and 173.5 cm; Figure 2) that correspond to the post-sapropel S1 interval,
apart from the samples 166.5–173.5 cm, which derive from the pre-sapropel interval. This
assemblage is characterized by the predominance of the warm, oligotrophic G. ruber alba
(average 40%). Next in abundance are the eutrophic N. pachyderma (17%), G. bulloides (16%),
and T. quinqueloba (13%). Globigerinoides ruber rosea and Globoturborotalita rubescens are also
present but with significantly lower percentages (average 13% and 5%, respectively).

4.1.2. Pteropods

Cluster I (Diacria trispinosa assemblage): it contains six samples (samples 6.25 cm,
165.5 cm, and from 168 cm to 173.5 cm; Figure 3) that mainly correspond to the pre-
sapropel interval. This assemblage is characterized by the high relative abundance of
the mesopelagic D. trispinosa (up to 60%) along with the epipelagic Creseis acicula (up to
50%). Additional components are the species B. chierchiae (25%), Clio pyramidata (20%), and
H. inflatus (15%).

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 6 of 16 
 

 

nant component of this assemblage is G. inflata (up to 32%), which is a temperate species 
indicative of a homogenous water column that prefers to live at the bottom of thermo-
cline depths [47]. Additional components of this assemblage are the species N. pachyder-
ma, G. ruber alba, G. ruber rosea, T. quinqueloba, and G. bulloides. Neogloboquadrina pachy-
derma thrives in cool water close to or below the thermocline [75]. Its abundance is related 
to the development of the deep chlorophyll maximum (DCM) [75]. 

Cluster IIΙ (G. ruber alba assemblage): it includes 65 samples (from 113 to 1.5 cm, and 
between 166.5 and 173.5 cm; Figure 2) that correspond to the post-sapropel S1 interval, 
apart from the samples 166.5–173.5 cm, which derive from the pre-sapropel interval. This 
assemblage is characterized by the predominance of the warm, oligotrophic G. ruber alba 
(average 40%). Next in abundance are the eutrophic N. pachyderma (17%), G. bulloides 
(16%), and T. quinqueloba (13%). Globigerinoides ruber rosea and Globoturborotalita rubescens 
are also present but with significantly lower percentages (average 13% and 5%, respec-
tively). 

4.1.2. Pteropods 
Cluster I (Diacria trispinosa assemblage): it contains six samples (samples 6.25 cm, 

165.5 cm, and from 168 cm to 173.5 cm; Figure 3) that mainly correspond to the 
pre-sapropel interval. This assemblage is characterized by the high relative abundance of 
the mesopelagic D. trispinosa (up to 60%) along with the epipelagic Creseis acicula (up to 
50%). Additional components are the species B. chierchiae (25%), Clio pyramidata (20%), 
and H. inflatus (15%). 

 
Figure 3. Dendrogram resulting from Q−mode cluster analysis in pteropods and the clusters
identified in core AEX−15: D. trispinosa assemblage with blue color (Cluster I), H. inflatus assemblage
with pink color (Cluster II), and L. trochiformis assemblage with green color (Cluster III).



J. Mar. Sci. Eng. 2021, 9, 1249 7 of 16

Cluster II (H. inflatus assemblage): this cluster includes 50 samples (from 99 to 166.5 cm)
the majority of which correspond to the sapropel S1 interval (exceptions are samples
99–105 cm and 166.5 cm) (Figure 3). Dominant component of the fauna is the warm
oligotrophic H. inflatus (72%), followed by the epipelagic B. chierchiae (66%). The rest of
the pteropod species in these samples present low relative abundances (e.g., Cavolinia spp.
~10%, C. pyramidata ~6%).

Cluster III (Limacina trochiformis assemblage): it groups the rest of the samples (49;
Figure 3) corresponding to the post-sapropel S1 interval (3 cm–4.5 cm, 8 cm–97 cm), with
the exception of the sample 119 cm, which corresponds to the oxidized part of S1. This
assemblage is dominated by the typical upwelling species L. trochiformis (76%). Additional
components of the fauna are the B. chierchiae (29%), H. inflatus (28%), C. pyramidata (26%),
Styliola subula (28%), C. acicula (20%), and Cavolinia spp. (17%).

4.2. Principal Component Analysis

Principal component analysis is a commonly used method for multivariate statistical
analysis, mainly because of its simple algebra and direct interpretation. The application of
this statistical analysis yielded a three-factor model for both planktonic foraminiferal and
pteropod communities. The interpretation of the three components in each case was based
on the screen plots of eigen values, and the factor loadings of the planktonic foraminiferal
and pteropod species, respectively. The distinguished factors account for 90.94% and
79.46%, of the total variance for the planktonic foraminiferal and pteropod, respectively
(Tables 1 and 2), with their factor loadings showing the contribution of each factor in every
sample and, therefore, the downcore contribution of each factor (Tables 3 and 4, Figure 4).
In the case of a bipolar factor, which has extremes of positive and negative loadings, high
positive factor scores are related to the positive pole and high negative scores to the negative
pole, respectively.

Table 1. Principle component analysis (PCA) factors based on planktonic foraminifera and their
percentages of the total variability for core AEX-15.

PCA Factors Eigenvalue % Variance Cumulative % of the Total Variance

1 622.458 67.949 67.949
2 142.717 15.579 83.528
3 67.9386 7.416 90.944
4 27.039 2.952 93.896
5 22.7885 2.488 96.384
6 17.852 1.949 98.333
7 6.21708 0.679 99.011
8 3.39922 0.371 99.382
9 2.74832 0.300 99.682
10 1.76144 0.192 99.875
11 0.784001 0.086 99.960
12 0.342134 0.037 99.998
13 0.0172397 0.002 99.999

Table 2. Principle component analysis (PCA) factors based on pteropods and their percentages of the
total variability for core AEX-15.

PCA Factors Eigenvalue % Variance Cumulative % of the Total Variance

1 494.862 37.764 37.764
2 362.476 27.662 65.426
3 183.956 14.038 79.464
4 95.0715 7.255 86.719
5 78.8895 6.020 92.739
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Table 2. Cont.

PCA Factors Eigenvalue % Variance Cumulative % of the Total Variance

6 35.6337 2.719 95.459
7 29.4056 2.244 97.703
8 24.0161 1.833 99.536
9 3.7509 0.286 99.822
10 2.33109 0.178 99.999

Table 3. Ranking of the planktonic foraminifera species and their factor loadings along the PCA
factors. Bold data indicate the most important factor loadings in each factor.

Species Factor 1 Factor 2 Factor 3

Orbulina universa −0.084 −0.170 −0.137
Globigerinoides ruber alba 0.670 0.569 0.256
Globigerinoides ruber rosea 0.077 −0.209 −0.515
Globigerinoides sacculifer 0.027 0.033 −0.027
Globorotalia inflata 0.002 −0.044 −0.183
Globigerina bulloides −0.024 −0.536 0.734
Globoturborotalita rubescens 0.011 −0.158 −0.155
Globigerinella siphonifera gr. 0.004 0.034 −0.023
Neogloboquadrina pachyderma 0.050 −0.004 −0.155
Neogloboquadrina dutertrei −0.003 −0.006 −0.001
Turborotalita quinqueloba −0.731 0.536 0.159
Globigerinita glutinata 0.008 −0.005 0.063

Table 4. Ranking of the pteropod species and their factor loadings along the PCA factors. Bold data
indicate the most important factor loadings in each factor.

Species Factor 1 Factor 2 Factor 3

Heliconoides inflatus 0.866 0.380 0.162
Limacina retroversa −0.006 0.006 −0.011
Limacina trochiformis −0.364 0.300 0.733
Boasia chierchiae 0.218 −0.842 0.244
Creseis acicula −0.133 0.071 −0.448
Styliola subula −0.101 0.062 −0.017
Clio cuspidata −0.015 0.010 0.028
Clio pyramidata −0.190 0.166 −0.088
Diacria trispinosa −0.011 0.035 −0.394
Cavolinia spp. −0.079 −0.137 0.109

4.2.1. Planktonic Foraminifera

The first varimax factor (PCA1) accounts for 67.95% of the total variance (Table 1)
and exhibits a bipolar character with the negative pole to be dominated by the eutrophic
species T. quinqueloba and the positive pole by the oligotrophic G. ruber alba (Table 3) [76–78].
Therefore, this factor is interpreted as a productivity indicator (Figure 4a). The second
factor (PCA2) explains 15.58% of the total variance (Table 1). It is characterized by positive
values of the surface dwellers G. ruber alba and T. quinqueloba [78]. Negative loadings are
dominated mainly by the species G. bulloides, which is highly dependent on enhanced food
levels, upwelling, strong seasonal mixing, or freshwater inputs [79–82]. Thus, the PCA2
factor is referred to as the stratification factor (Figure 4b). The third varimax factor (PCA3)
accounts for the 7.41% of the total variance (Table 1) and is interpreted as an upwelling
indicator (Figure 4c) since its main positive representative species, G. bulloides (Table 3),
is strongly associated with the seasonal upwelling [83–86]. On the other hand, the negative
loadings are represented mainly by the species G. ruber rosea, a warm subtropical species,
whose abundance is mainly controlled by the thermal stratification of the upper water
column [21,22,78].
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Figure 4. Environmental factors controlling planktonic foraminifera and pteropod distribution
resulting from the PCA. (a) PCA1 of planktonic foraminifera was interpreted as a productivity factor;
(b) PCA2 of planktonic foraminifera was interpreted as a stratification factor; (c) PCA3 of planktonic
foraminifera was interpreted as an upwelling factor; (d) PCA1 of pteropods was interpreted as a
stratification factor; (e) PCA2 of pteropods was interpreted as a productivity factor; (f) PCA3 of
pteropods was interpreted as an upwelling factor. Gray and light gray bands correspond to the
sapropel S1 and its oxidized part, respectively.

4.2.2. Pteropods

The first varimax factor (PCA1) explains 37.76% of the total variance (Table 2), with
the positive loadings expressed by the mesopelagic H. inflatus, tolerant to a low oxygen
concentration of the oxygen minimum zone (OMZ), [57] and the epipelagic B. chierchiae
(Table 4). In contrast, negative loadings are expressed mainly by species indicative of
a well-ventilated water column (L. trochiformis and C. pyramidata) [57,87]. Thus, PCA1
can be explained as a stratification factor (Figure 4d). The second factor (PCA2) explains
the 27.66% of the total variance (Table 2). Its positive pole is represented mainly by the
mesopelagic oligotrophic H. inflatus and the negative pole by the epipelagic B. chierchiae,
which proliferates in nutrient-enriched waters (Table 4) [29,57]. Therefore, PCA2 is inter-
preted as a productivity factor (Figure 4e). The third factor (PCA3) describes 14.04% of the
total variance (Table 2). The main representative of the positive pole, L. trochiformis (Table 4),
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is characterized as a typical upwelling species [87,88]; thus, PCA3 can be interpreted as an
upwelling factor (Figure 4f).

5. Discussion
5.1. Biotopes of the North Aegean

The main assemblages identified in core AEX-15 through the cluster analysis, repre-
sent the sapropel S1 or the pre- and/or post-sapropel interval. Based on the ecological
characteristics of the species participating in each assemblage, a unification of some of them
into biotopes was made. Thus, each biotope is indicative of paleoenvironmental processes
that affect both faunal groups.

More explicitly, the assemblage of T. quinqueloba, which corresponds to the sapropel
S1 interval in the north Aegean, represents a biotope with low salinity and increased food
availability in the surface waters [6,74,89,90]. This is explained by the larger river inflows
draining the surrounding land [5,89] and supplying nutrients that fuel the productivity.
In addition, the warm oligotrophic G. ruber rosea, and the SPRUDTS group that are also
abundant in this assemblage, suggest enhanced thermal stratification of the upper water
column [47,79,82]. This is further reinforced by the increased percentages of H. inflatus
(H. inflatus assemblage) and the reduction/absence of mesopelagic species typical of a
well-ventilated water column (e.g., Clio cuspidata, C. pyramidata, D. trispinosa) in pteropod’s
fauna. Although Heliconoides inflatus is a mesopelagic species, its presence in this biotope
is explained by its habitat. This species adopts a variable depth habitat during its growth
stages and is also tolerant to low oxygen concentration levels [57]. The presence of low
salinity surface waters, as inferred from the planktonic foraminifera, is also enhanced by
the high relative abundance of the epipelagic pteropod B. chierchiae. This species is known
to proliferate in low, as well as high, salinity shallow waters [29,91,92]. Thus, both plankton
assemblages (T. quinqueloba and H. inflatus) that correspond to the sapropel S1 represent a
biotope with a strongly stratified water column characterized by intense OMZ, with low
salinity and high fertility of the surficial waters.

The next biotope includes the G. ruber alba and L. trochiformis assemblages that cor-
respond to the post-sapropel interval (Northgrippian and Meghalayan stages). In this
biotope, oligotrophic (G. ruber alba, G. ruber rosea, and G. rubescens) and eutrophic (G. bul-
loides, T. quinqueloba, and N. pachyderma) species simultaneously occur, indicating a seasonal
contrast in primary productivity probably related to the food availability. Seasonality is
also reinforced by the continuous presence of Globigerinita glutinata since this species can
survive, both in the oligotrophic surface and in more eutrophic waters, by changing its diet
from diatoms to chrysophytes [47]. Moreover, the findings suggest a seasonal contrast in
temperature as warm-characteristic species (G. ruber alba, G. ruber rosea, and G. rubescens)
coexist with cold-indicative species (T. quinqueloba and N. pachyderma). On the other hand,
the occurrence of mesopelagic pteropods along with epipelagic, suggests a well-ventilated
water column [93]. The high relative abundance of L. trochiformis is indicative of local
upwellings [87], whereas its reduction at ~3.0 ka BP, along with the increased relative
abundance of S. subula, is suggestive of an increase in sea surface salinity [56,57,94]. Thus,
our findings suggest a high seasonal biotope indicative of a well-ventilated and high saline
water column as a result of the reduction in freshwater inputs. This interpretation is in
accordance with clay mineral data derived from north Aegean sediments [5,95] that point
to particularly dry conditions in the north Aegean catchment as well as the reduction in
the surface water Black Sea outflow at ~4.5 ka BP [10,96].

The biotope characteristic of the G. inflata assemblage corresponds to the oxidized
part of S1. The occurrence of the deep mixing species G. inflata and N. pachyderma in
this assemblage reflects the prevalence of horizontally and/or vertically homogenized
conditions in the water column [78,79,97]. Moreover, the biotope characteristic of the
D. trispinosa assemblage corresponds to the pre-sapropel interval. Diacria trispinosa is a
species typical of Atlantic-influenced waters [94,98], reflecting the influence of Atlantic-
modified waters into the eastern Mediterranean basin prior to the S1 deposition. The



J. Mar. Sci. Eng. 2021, 9, 1249 11 of 16

epipelagic euryhaline species C. acicula is also precent in this assemblage. Its distribution
pattern in the Holocene record of the Aegean sea was described for the first time in this
gravity core (AEX-15; [30]), and is negatively affected by the water column stratification.
Similar observations are recorded from the western continental shelf of India [57], where it
appears to be related to the conspicuous differences in water column stratification linked
with the vertical salinity gradient. Thus, our findings reflect a biozone with homogenized
conditions in the water column influenced by Atlantic waters.

5.2. Factors Controlling Planktonic Fauna Distribution

Both faunal groups seem to be reliable indicators for past paleoenvironmental changes
in this setting. The differences relay the extent to which each factor affects the fauna. In
particular, the productivity factor is expressed as being more intensified in planktonic
foraminifera fauna (68%) than in pteropods (28%) (Tables 1 and 2). In the case of planktonic
foraminifera, this can be explained by the species T. quinqueloba and G. bulloides that render
the role of productivity as the main factor, especially in the more humid and eutrophicated
north Aegean region [6,60,89]. In contrast, the pteropod distribution pattern does not
respond in the same way as planktonic foraminifera to changes in productivity. It is known
that nutrient concentration is not a limited factor for their distribution [99], though our
data suggest that fluctuations in nutrients and salinity due to the increased freshwater
inputs, especially during the sapropel S1 deposition, favor the flourishment of the species
B. chierchiae [29]. The stratification factor, on the contrary, affects the pteropod fauna
(38%) more than the planktonic foraminifera (16%) (Tables 1 and 2). Our data suggest
that the pteropod distribution pattern is controlled primarily by the oxygen concentration
of the water column and, thus, the extent and intensity of the OMZ [29,56], which is
related to the stratification of the entire water column. OMZ alterations are climatically
controlled, with humid and milder climates favoring a strong and well developed OMZ,
whereas cooler and/or arid periods are characterized by a more aerated OMZ [93,100]. In
particular, mesopelagic species that are affected negatively by low oxygen concentration
and intensified OMZ, are absent or present with very low percentages during the stratified
conditions of the sapropel S1 layer. In contrast, such intense changes in species abundances
of planktonic foraminifera, are not observed.

Finally, the third factor affecting equally both faunal groups’ distribution in the north
Aegean Sea seems to be upwelling. Upwellings control food availability and foraminifera
reproductive cycles [47,101]. The participation of this factor in Holocene records of the
north Aegean is explained by the presence of cyclonic and anticyclonic eddies and, thus, to
the development of down and upwellings of the organic matter [60,89].

6. Conclusions

Plankton foraminiferal and pteropod faunas have been studied in core AEX-15, from
the North Aegean Trough (northeastern Mediterranean), to evaluate their relationship
with surface water dynamics, and to decipher the control of the Holocene productivity
and stratification changes coupled with the impact of the regional eastern Mediterranean
climate regime. The ecological interpretation of both of these planktonic groups, integrated
with the multivariate statistical analysis data, has provided an accurate interpretation of
the changes in surface water properties prior, during, and after the deposition of the most
recent sapropel S1. The Q-mode cluster and principal component analyses performed
in the planktonic fauna of core AEX-15 revealed three distinct assemblages in the north
Aegean Sea that can be summarized into relevant biotopes, each one representative of
different hydrological and climatic conditions. These biotopes correspond to the sapropel
S1 and its oxidized part, pre- and, post-sapropel intervals. The PCA performed in both
fauna groups, suggested that primary productivity, stratification of the water column,
and upwelling are the main drivers of the planktonic foraminifera distribution. The
same factors are recognized for the pteropod fauna but with a different order, indicating
stratification as the primary factor controlling their distribution. Overall, the observed high-
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resolution water column variability allows a detailed palaeoecological reconstruction for
the Holocene archive in the Aegean Sea and, furthermore, provides a notable contribution
to paleoclimatic studies, facilitating intercorrelations between similar oceanographic basins
and offering a better comprehension of the paleoceanographic history of these basins.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/jmse9111249/s1. Table S1: Raw data of the percentages of planktonic foraminifera and
pteropod species in downcore samples.
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