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Abstract: Accelerated urbanisation has replaced many natural shorelines with coastal defences,
resulting in the loss of natural habitats. However, structures such as seawalls can support some
biotic assemblages, albeit of lower species richness. Ecological engineering techniques such as coral
transplantation can enhance biodiversity on these artificial structures, but its success is circumscribed
by high costs. Little is known about the fusion of discrete coral colonies that could potentially
improve coral transplantation success on seawalls, particularly for the slow-growing massive species
that are generally well-adapted to living on seawalls. Here, we investigated the feasibility and
cost-effectiveness of transplanting Platygyra sinensis on seawalls by comparing the survivability
and growth of fragments transplanted adjoining with those transplanted further apart. Fragments
(approximately 3 cm diameter; n = 24) derived from three individuals were randomly grouped into
two treatments, transplanted at 0.5 cm and 5 cm apart. Fragments in the former treatment came into
contact with each other after three months. We observed that in all cases, the contact zones were
characterised by a border of raised skeletal ridges without tissue necrosis, often termed nonfusion
(=histoincompatible fusion). The adjoining transplants showed better survival (75 vs. 43%) and
grew at a rate that was significantly higher than fragments transplanted 5 cm apart (3.7 ± 1.6 vs.
0.6 ± 1.1 cm2 month−1). Our projections demonstrated the possibility of reducing transplantation
cost (USD cm−2) by 48.3% through nonfusion. These findings present nonfusion as a possible strategy
to increase the overall cost-effectiveness of transplanting slow-growing massive species on seawalls.

Keywords: coral transplantation; ecological engineering; coral growth; coral survivorship; contact
reaction; massive corals; coral fusion; Singapore

1. Introduction

The world’s natural coastlines are increasingly replaced with artificial structures such
as groynes, breakwaters and more commonly, seawalls that primarily serve to defend
the coast [1]. These structures mitigate the risks of flooding [2] while protecting infras-
tructures from coastal erosion and wave impact [3,4]. However, this has also resulted
in the extensive loss of coastal habitats such as seagrass meadows, mangroves and coral
reefs, along with the associated biodiversity and ecosystem functions. In spite of these
impacts, studies have recently documented how artificial structures can provide habitats
to molluscs [5], corals [6–9] and fish [10–12], although some biotic assemblages can be
less diverse compared to their natural counterparts [9,12,13]. As it is crucial to preserve
the myriad ecosystem services that human communities are reliant on, strategies such as
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ecological engineering, which aim to enhance biodiversity on artificial structures such as
seawalls, are increasingly being studied see [14–17]. One of the developing approaches in
ecological engineering is coral transplantation see [16–18], a technique that is commonly
employed in reef restoration [19,20].

A primary goal of coral transplantation is to quickly increase the amount of live coral
cover at degraded reefs [21]. Thus, although massive corals are more resilient to physical
impacts [22–24] and thermal stress [25–27], most transplantation efforts disproportionately
focus on branching coral species [22] such as acroporids and pocilloporids, which are fast-
growing and can be easily propagated to generate large areas of coral cover [28,29]. Among
coral species that were transplanted on seawalls, branching and plating corals did not seem
to survive well [17,19], while transplants of massive species on both subtidal [17,30] and
intertidal seawalls [19] were observed to survive better than their branching counterparts.
Greater fluctuations in environmental parameters such as temperature [31,32] and wave
motion [33,34] in the vicinity of seawalls appear to be more stressful to branching corals.
Recent studies have shown that more massive species were found naturally on seawalls
than branching species [8,35,36]. Nevertheless, knowledge gaps exist in the enhancement
of coral cover on seawalls. It is therefore important to develop and refine techniques that
improve the growth and survivorship of massive coral transplants, so as to maximise the
success of ecological engineering efforts [18].

Fusion, defined as segments of coral colonies in contact [37], could represent a scalable
method of enhancing coral cover on seawalls since studies have shown that it can accelerate
coral growth [22,37,38]. Fusion can be divided into two groups, histocompatible and his-
toincompatible reactions. The former refers to complete fusion: characterised as continuous
skeleton and tissue across the contact area, while the latter is subdivided into nonfusion
and rejection [39]. Nonfusion occurs where tissues of corals in contact are demarcated by
a border of sutures (raised skeletal ridges) without tissue necrosis [40]; rejection occurs
where tissue necrosis is present at the zone of contact, which is subsequently colonised by
algae [40,41]. Fusion between isogeneic (i.e., same parent) juveniles resulted in increased
colony size and a greater number of polyps than allogeneic (i.e., different parent) pairs,
thus bolstering both the survivorship and growth of small coral colonies [38]. Addition-
ally, isogeneically fused fragments of Acropora millepora (Ehrenberg, 1834) [42], Pocillopora
damicornis (Linnaeus, 1758) [38] and Stylophora pistillata (Esper, 1797) [39] exhibited faster
growth and lower mortality than individual fragments. Additionally, juveniles of Mon-
tipora capitata (Dana, 1846) that aggregated were more resilient against bleaching than
those that were solitary [39], suggesting that physical contact between conspecific coral
fragments could confer benefits beyond increased growth, survivorship and bleaching
resilience. Research on fusion has largely focused on coral spats or juveniles of branching
coral genera such as Pocillopora and Seriatopora see [38,40,43]. In comparison, less is known
on the effects of fusion on the fragments of massive coral species, as well as whether
such an approach has the potential to augment coral transplant growth, and consequently,
ecological engineering outcomes.

Because transplantation can be costly [17,44–46], it is also important to assess the
variability in biological responses that arise from employing a new ecological engineering
technique such as coral fusion, so that the cost-effectiveness of such an approach can be opti-
mised [46]. Toh et al. showed that providing Artemia to juvenile corals resulted in improved
post-transplantation growth and survivorship, as well as greater cost-effectiveness [44].
There are, however, few studies projecting or comparing cost breakdowns between alter-
native strategies in ecological engineering [17,44–46]. For example, it was demonstrated
that labour cost was substantially reduced through volunteer-driven coral nursery main-
tenance [17] and that transplanting only small coral fragments (2–4 cm) could result in
greater return-on-effort given limited coral source material [30]. These thought experiments
can aid in identifying strategies that represent the best use of limited resources [45] and
are increasingly crucial given the growing acceptance and implementation of ecological
engineering techniques in coastal development see [15–18,45,47–49].
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This study seeks to evaluate the feasibility of histoincompatible coral fusion as a
technique to improve the success of transplanting fragments of Platygyra sinensis (Milne
Edwards and Haime, 1849), a massive species frequently found on seawalls [8] and com-
monly used in reef restoration and ecological engineering initiatives [17,30]. Here, we
compared the survivorship and growth of fragments of P. sinensis transplanted in close con-
tact (“adjoining”) with those transplanted apart (“separate”). We hypothesised that fusion
between adjoining transplants would lead to significantly greater growth and survivorship
than transplants that were placed separately. What-if scenarios were also conceived in this
study to assess how transplantation protocols and decision-making could be augmented
through cost estimates in ecological engineering [50]. Subsequently, we estimated the cost-
effectiveness of coral fusion to determine its economic viability for coral transplantation
efforts. The findings of this study will augment ecological engineering initiatives, especially
for slow-growing massive coral species.

2. Materials and Methods

Twenty four fragments of P. sinensis that were reared for at least six months in
flow-through aquarium tanks at the St. John’s Island National Marine Laboratory were
transplanted subtidally on a sloping seawall at Lazarus Island, Singapore (1◦13.37′ N,
103◦51.08′ E; Figure 1). The fragments originated from three parent colonies that were at
least 15 m apart to ensure genetic diversity. All fragments were approximately 3 cm in
maximum diameter. In order to investigate the effect of fusion on growth and survivorship
of P. sinensis transplants, 12 fragments were each assigned to two treatments: adjoining
(transplanted approximately 0.5 cm apart from two other fragments in a cluster) and sepa-
rate (See Figure 2a,c) (transplanted 5 cm apart from two other fragments in a cluster). Each
treatment comprised four clusters of three fragments. Fragments in each cluster were all
from different parent colonies. The initial area of fragments did not differ significantly
between treatments (F = 0.48, p > 0.05). Transplants were secured onto granite boulders on
the seawall at approximately −2 m (Chart Datum), using marine epoxy.

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 4 of 14 
 

 

 
Figure 1. Map of mainland Singapore with the study site (marked “x”) located at Lazarus Island (inset). Figure 1. Map of mainland Singapore with the study site (marked “x”) located at Lazarus Island (inset).



J. Mar. Sci. Eng. 2021, 9, 1377 4 of 13
J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 5 of 14 
 

 

 
Figure 2. Representative fragments of Platygyra sinensis, transplanted approximately 0.5 cm apart at month 0 (a) and month 
12 (b), transplanted approximately 5 cm apart at month 0 (c) and month 12 (d). Length of each coloured square = 2 cm. 

2.1. Statistical Analysis 
After fragments in the adjoining treatment came into contact over the course of the 

study, the live tissue area of fragments from both treatments was subsequently measured 
as a single mass for each cluster (n = 4). Survivorship of the transplants in both treatments 
was examined with Kaplan–Meier survival analysis and compared with log-rank (Man-
tel–Cox) tests. To compare differences in growth between adjoining and separate treat-
ments, one-way ANOVA and post-hoc tests using the Tukey’s test and Bonferroni correc-
tion were performed, after fulfilling the assumptions of normality and homogeneity of 
variance. All analyses were conducted using SPSS Statistics (Version 21, IBM). 

  

Figure 2. Representative fragments of Platygyra sinensis, transplanted approximately 0.5 cm apart at month 0 (a) and month
12 (b), transplanted approximately 5 cm apart at month 0 (c) and month 12 (d). Length of each coloured square = 2 cm.

Survivorship and live tissue area of the transplants were monitored monthly for
16 months by photogrammetry, a simple and accurate method for tracking two-dimensional
changes in coral growth, as previously described by Kikuzawa et al. [51]. Each transplant
was individually photographed from a top-down angle with a scale bar, using an Olympus
TG-5 camera, and subsequently processed with the ImageJ software (NIH). The increase in
live tissue area was monitored as a proxy of coral growth. Transplants that were detached
or had >95% dead tissue were considered “dead”.

2.1. Statistical Analysis

After fragments in the adjoining treatment came into contact over the course of the
study, the live tissue area of fragments from both treatments was subsequently measured
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as a single mass for each cluster (n = 4). Survivorship of the transplants in both treatments
was examined with Kaplan–Meier survival analysis and compared with log-rank (Mantel–
Cox) tests. To compare differences in growth between adjoining and separate treatments,
one-way ANOVA and post-hoc tests using the Tukey’s test and Bonferroni correction were
performed, after fulfilling the assumptions of normality and homogeneity of variance. All
analyses were conducted using SPSS Statistics (Version 21, IBM).

2.2. “What-If?” Scenarios for Improved Cost Effectiveness

“What-if?” scenarios were formulated to predict the estimated cost of live coral area
generated when fragments were transplanted based on two hypothetical scenarios: ad-
joining and separate. Each scenario entailed the collection of 1000 cm2 of coral material,
fragmentation into 100 fragments of 9 cm2 each with the assumption of up to 10% of coral
material lost as wastage see [30], transplantation of fragments in adjoining and separate
designs respectively, as well as monitoring and maintenance of the transplants for a year.
The projected coral tissue area after one year was computed:

Projected live tissue area = (G + I) × N × S

where G = tissue growth in a year (cm2), I = initial tissue area (cm2), N = number of
fragments or clusters, and S = mean survivorship. The calculation for the cost per unit
area of coral was adapted from Toh et al. [16], as the transplantation technique used was
similar. The projected total live tissue area after one year was based on the results from the
current study (see Supplementary Table S1). Costs were estimated in Singapore dollars
(SGD) prior to conversion to USD at the rate of SGD 1.33 = USD 1.

3. Results

In the adjoining treatment, fragments all came into contact during the third month and
continued to increase in size until the end of the study (Figure 2). No signs of rejection (i.e.,
tissue mortality) were observed after contact (Figure 3). Upon close examination, fragments
in the adjoining treatment were regarded as exhibiting a nonfusion contact response since
this response was previously reported [40,41]. On the eighth month, sutures had begun
to form at the contact areas. In the 15th month, some of these sutures became raised and
progressed to grow over another fragment (Figure 3).
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Figure 3. Fragments of Platygyra sinensis exhibiting responses associated with nonfusion, indicated by arrows. (a) Neither
tissue rejection nor mortality was observed upon contact at Month 3; (b) nonfusion and raised suture formation between
two fragments at Month 8; (c) overgrowth of the top transplant over the bottom observed at Month 15.

After 16 months, fragments in the adjoining and separate treatments registered 75.0%
(n = 4) and 42.7% survivorship respectively (n = 12; Figure 4). While the survivorship of
both treatments decreased sharply during the eighth month, survivorship in the separate
treatment subsequently decreased again during the 11th month. After a year, the survivor-
ship of both adjoining and separate fragments stabilized until the end of the study period
(Figure 4).
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Figure 4. Mean survivorship (%) of adjoining and separate treatments of Platygyra sinensis across 16 months. Dotted line
indicates when contact occurred between fragments in the adjoining treatment.

Although the mean live tissue area of clusters in both treatments increased, the average
monthly increase in the live tissue area of adjoining transplants was more than five times
that of the separated transplants (Table 1). The average monthly increase in the live tissue
area of adjoining transplants (3.74 ± 1.58 cm2 mth−1) was significantly greater (F = 7.66,
p = 0.05) than that of separated transplants (0.63 ± 1.13 cm2 mth−1). The total live tissue
area of adjoining and separated transplants after 16 months was 291.4 cm2 and 160.1 cm2

respectively (Table 1). Between Month 5 to Month 8, monitoring was suspended due to
unexpectedly high levels of turbidity and sedimentation at the study site, resulting in poor
visibility and large deposits of silt on the transplants. Interestingly, we observed that less
sediment had accumulated on the adjoining transplants than on the separated transplants
(Figure 5). The survivorship of separated transplants decreased sharply after Month 8
and continued to decline, while that of adjoining transplants remained constant (Figure 4).
Tissue damage from Drupella spp. (Gastropoda) or Scaridae was not observed in this study.
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Table 1. Mean live tissue area, monthly areal growth (± SD) and total live tissue area of clusters of Platygyra sinensis,
16 months after transplantation.

Treatments
Initial Mean Live

Tissue Area
(cm2; ± SD)

Final Mean Live
Tissue Area
(cm2; ± SD)

Mean Monthly
Areal Growth (cm2

mth−1; ± SD)

Total Initial Live
Tissue Area (cm2)

Total Final Live
Tissue Area (cm2)

Adjoining (n = 4) 38.44 ± 3.41 97.13 ± 23.27 3.74 ± 1.58 153.78 291.40
Separate (n = 4) 41.53 ± 4.79 53.37 ± 16.92 0.63 ± 1.13 166.13 160.10
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Figure 5. Representative fragments of Platygyra sinensis affected by the highly sedimented conditions at the study site:
adjoining transplants in (a) Month 9 and (b) Month 15; separated transplants in (c) Month 9 and (d) Month 15. Length of
each coloured square = 2 cm.

The “what-if” scenarios showed that the cost per cm2 of coral transplanted could be
minimised to US$ 6.49 if all transplants were adjoining to promote nonfusion among the
P. sinensis fragments (Table 2). In scenario 1 (adjoining), the cost per cm2 of coral projected
was reduced by 48.3% as compared to scenario 2 (separate).
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Table 2. Cost estimates (in USD) of transplanting coral fragments adjoining to promote nonfusion
(Scenario 1, “adjoining”) versus transplanting fragments apart (Scenario 2, “separate”).

Description Remarks Scenario 1
(Adjoining)

Scenario 2
(Separate)

Cost of collecting of source
material

10 colonies of 100 cm2

each
667.25 667.25

Cost of transplantation
100 fragments of 9 cm2

each
(assuming 10% wastage)

999.63 999.63

Cost of monitoring and
maintenance

Monthly monitoring and
maintenance for a year 6994.42 6994.42

Total production cost 8661.30 8661.30

Average tissue growth in a
year (cm2) (G) See Table 1 44.88 7.56

Initial tissue area (cm2) (I) See Methods 27 9
Amount of coral material

generated (N) See Methods 33 clusters 100 fragments

Mean survivorship (S) See Figure 4 0.75 0.42
Projected total coral tissue

area after
1 year (cm2)

See Methods 1333.65 690.16

Cost per cm2 of coral
transplanted (US$ cm−2)

6.49 12.55

Cost estimates for collecting 1000 cm2 of Platygyra sinensis followed by transplanting 100 fragments (9 cm2)
each, with subsequent monthly monitoring and maintenance for a year. The cost per unit area was calculated
using total cost of production following Toh et al. (2017) and the projected total coral tissue area (from this
study) after one year. Costs were estimated in Singapore dollars (SGD) prior to conversion to USD at the rate of
SGD1.33 = USD1.00. Detailed breakdown of cost estimates is provided in Supplementary Table S1.

4. Discussion

Ecological engineering is necessary and effective in augmenting biodiversity on coastal
artificial structures [16,18,52,53] but is relatively novel and costly [17,47–49]. It includes
techniques such as retrofitting [54] and coral transplantation [55]. A growing body of work
shows that coral transplantation is a viable ecological engineering approach [17,47,49], but
there are several unknowns to consider when increasing coral cover on artificial structures,
such as the appropriate size of transplants and suitability of species. Therefore, it is
important to adopt best practices from other fields including reef restoration. Here we
showed that transplanting allogeneic fragments helps to hasten live coral growth and that
the technique is cost-effective. We also determined that direct contact between allogeneic P.
sinensis transplants resulted in nonfusion (i.e., formation of raised skeletal sutures without
tissue necrosis). We did not observe complete fusion, which is characterised by continuous
tissue and skeleton across the zone of contact [40,41].

The improved growth and survivorship of the adjoining transplants may be explained
by the rapid increase in coral tissue area within the cluster, conferring benefits such as
increased resources to deal with stress. Our findings corroborated with studies that showed
that larger fragments grew faster than smaller fragments [56–58]. As smaller fragments
possess fewer resources, they are more likely to be overwhelmed by physical and environ-
mental stresses [59] such as fragmentation and sedimentation, leading to reduced growth
and survivorship. Conversely, in larger colonies, the proportion of healthy coral tissue
bordering the injury generated from disturbance is greater than in smaller colonies, thus
contributing to greater regeneration and consequently higher survivorship [60]. Further-
more, studies have suggested that resources could be shared between adjoining transplants
upon contact, where additional energy reserves from neighbouring healthy coral polyps
can help improve both tissue regeneration [60,61]. In addition, the high sediment load of
Singapore’s marine environment ranging between 5 to 20 mg cm−2 day−1 [62], could have
led to considerable stress on both adjoining and separated transplants. However, massive
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corals such as P. sinensis are known to be efficient in removing sedimentation through mu-
cus [63,64], ensuring access to light for optimal photosynthetic performance [63,65,66]. This
effect is likely more pronounced amongst adjoining transplants than separated transplants
due to an increase in colony size as the tissue comes into contact. Larger corals with greater
energy reserves can produce more mucus and expand their tissues to remove sediment and
reduce smothering [66,67], hence adjoining transplants were able to both survive and grow
better than the separated transplants. Our observations suggest that adjoining transplants
seemed to deal better with sedimentation stress than the separated transplants. While there
was no evidence of coenosarc tissue fusing between adjoining transplants, detailed studies
investigating the physiological reactions between adjoining colonies could provide insights
into how the growth and survivorship of these colonies are affected.

At 0.63 ± 1.13 cm2 mth−1, the mean monthly areal growth of P. sinensis transplanted
separately was lower than that of another ecological engineering project in Singapore,
where P. sinensis fragments were also transplanted apart on seawalls
(3.92 ± 1.15 cm2 mth−1) [17]. The latter growth rate was more comparable to that of the
adjoining transplants in our study (3.74 ± 1.58 cm2 mth−1). Although the mean initial sizes
of fragments used in Toh et al. [17] were greater by approximately five times, recent work
by Sam et al. [30] showed that there was no significant influence of initial fragment size
on the post-transplantation growth of P. sinensis. The differences in growth rates could be
influenced by varying local environmental conditions such as water motion and sedimenta-
tion as previous studies have reported the negative influence of high water motion [68,69]
and high sedimentation [70,71] suppressing coral growth. Nevertheless, we demonstrated
that adjoining transplants grew significantly faster than separated transplants.

High mean survivorship of adjoining P. sinensis transplants (75%) demonstrated the
suitability of this species for transplantation on seawalls. This is similar to that observed in
other studies also involving P. sinensis being transplanted onto seawalls and monitored
for between 6 and 18 months (97% and 65% survivorship respectively) see [17,30]. Taken
together with our results, they suggest that the survivorship of transplants generally
stabilises after one year, underscoring the importance of long-term monitoring (>1 year) for
coral transplantation. Although environmental conditions on the seawall in this study were
not measured, they were likely suboptimal due to acute incidences of high sedimentation
(pers. obs.). However, the higher mean survivorship of adjoining transplants compared to
those transplanted separately suggests that the potential benefits exist when transplanting
corals in close contact, especially in a sedimented environment.

The coral transplantation methods applied in this study are adopted from reef restora-
tion. As reefs remain amongst one of the costliest ecosystems to restore [45], current
ecological engineering techniques are likely expensive as well, however, our proposed
method can reduce overall project cost. Our “what-if” scenarios showed that the overall
cost per cm2 of coral transplanted could be reduced by 48.3% if transplants were adjoining
to promote nonfusion, instead of being placed further apart. Rather than lowering costs by
reducing manpower or materials used during the transplantation process, our approach
reduces ongoing maintenance costs by ensuring higher transplant survivorship. Thus,
we recommend that fragments of P. sinensis should be transplanted in close contact to
promote nonfusion, so as to augment growth and survivorship, and consequently improve
cost-effectiveness. To enhance ecological engineering outcomes, this strategy should also
be tested on other coral species so that its overall effectiveness may be assessed. Findings
from this study can potentially help advance coastal management, as transplanting corals
on coastal artificial structures has been limited, and poses different challenges than trans-
plantation on reefs. By transplanting coral fragments in close contact to promote nonfusion,
colonies could collectively overcome the stressful conditions on seawalls, resulting in
improved survivorship and growth, thus augmenting biodiversity while curtailing the
project costs.

In conclusion, this study has shown that transplanting P. sinensis fragments adjoining
on seawalls is potentially a practical and cost-effective ecological engineering approach.
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Additional studies are needed to verify if this technique is also applicable for other coral
species, especially those with massive and foliose growth forms. Future studies should
also be carried out to discern the physiological factors that have led to the increased
performance of adjoining transplants.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/jmse9121377/s1, Table S1: Detailed cost estimates of transplanting corals adjoining to promote
nonfusion (“what-if” scenario 1) or separate (“what-if” scenario 2) [72].
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