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Abstract: In this paper, an efficient and robust Cartesian Mesh Generation with Local Refinement
for an Immersed Boundary Approach is proposed, whose key feature is the capability of high
Reynolds number simulations by the use of wall function models, bypassing the need for accurate
boundary layer discretization. Starting from the discrete manifold model of the object to be analyzed,
the proposed model generates Cartesian adaptive grids for a CFD simulation, with minimal user
interactions; the most innovative aspect of this approach is that the automatic generation is based on
the segmentation of the surfaces enveloping the object to be analyzed. The aim of this paper is to
show that this automatic workflow is robust and enables to get quantitative results on geometrically
complex configurations such as marine vehicles. To this purpose, the proposed methodology has
been applied to the simulation of the flow past a BB2 submarine, discretized by non-uniform grid
density. The obtained results are comparable with those obtained by classical body-fitted approaches
but with a significant reduction of the time required for the mesh generation.

Keywords: Cartesian adaptive grids; immersed boundaries; LES simulation

1. Introduction

The increasing popularity of Computational Fluid Dynamics (CFD) in marine en-
gineering sciences, observed in the last few decades, is to be ascribed to the growth of
computational power, in combination with the increase of robustness and accuracy of CFD
solvers. Today, Reynolds averaged Navier—Stokes simulations on body-fitted meshes are
commonly performed in naval architecture, in order to save time in the design process and
make it less expensive; conventional towing tank or water channel tests are usually limited
to a few shapes obtained in the final design. Nevertheless, the bottleneck of the whole
simulation procedure remains mesh generation; in order to obtain a mesh that satisfies the
requirements of smoothness and proper clustering, particularly in boundary layers and
wakes, its generation still requires lengthy human interaction and relevant expertise by
the user.

Nowadays, the most used method for geometry discretization is the body-fitted ap-
proach, particularly for high Reynolds number flows, and most solvers handle unstructured
or block-structured grids, possibly with partial overlapping: their generation remains the
most demanding task in the total effort and time for the complete simulation [1,2]. The
major reason for this last aspect is that the process is never completely automatic, except in
those cases where the geometry is so simple that it is possible to parametrize its shape. This
is even more complicated in optimization algorithms, where only minor model changes in
shape (and not in topology) are allowed.

In the two last decades, the Immersed Boundary (IB) method has emerged as a valid
alternative to the body-fitted meshes-based CFD methods. The key idea of IB methods
is to locally modify the governing equations in order to enforce the boundary conditions
without a body-fitted mesh: this avoids the complex and time-consuming body-fitted
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meshes generation, by allowing the discretization with a simple structured Cartesian mesh.
The most important advantages of this technique are the easy grid generation, also when
dealing with moving boundaries. The IB idea can be attributed to Peskin et al. [3], who
used it to simulate cardiac mechanics and the associated blood flow. Nowadays, many
variants and procedures of the IB original ideas are proposed: in order to enforce the
boundary condition on the interfaces, some exploit a continuous forcing term in the field
equations, others explicitly locally modify the equations; excellent reviews can be found,
for instance, in [4,5]. With the introduction of wall models [6,7], the use of IB methods
was applied also to resolve high Reynolds number flows, mitigating the need for accurate
resolution within the boundary layer.

This paper proposes an efficient and robust Cartesian Mesh Generation with Local
Refinement for Immersed Boundary Approaches. In particular, the proposed methodology
was developed to be suited for the method proposed in [8], which couples the Immersed
Boundary approach to the level-set method, and also makes use of wall functions at rigid
walls. Although several methods have been published in the literature [8], none of them
completely satisfies the requirements of the specific IB considered here; furthermore, for the
authors’” knowledge, none considers the differential geometric properties of the model sur-
faces to be analyzed to define an optimized geometry-based discretization. The proposed
method aims to overcome these limitations by introducing strategies of diversification of
the mesh dimensions in the different parts of the model, based on automatic segmentation
of the surfaces enveloping the object.

The proposed methodology, i.e., the Cartesian Mesh Generation with Local Refinement
and the IB method with wall functions, is applied to study the flow past a submarine at
a high Reynolds number. The obtained results show how the use of the proposed CFD
tools is extremely helpful to capture the main flow characteristics in the wake of all the
appendages, although the details in the boundary layers are lost because of the adoption of
wall functions. The reported results suggest that the use of immersed boundary approach
is mature enough to be used as an investigation tool in naval architecture.

2. The Cartesian Mesh Generation Method

The proposed Cartesian mesh generation method is specifically developed for the IB
method developed in [1]; the approach produced a Cartesian grid with the following features:

e  asigned distance from the wall (positive inside the body and negative outside) is
defined at each point;

®  the mesh can be easily refined close to the boundary and where the solution requires
finer discretization (typically in the wake);

* it can consist of block structured Cartesian blocks with possible partial overlapping.

Particular attention is given to the data structure, in order to optimize the storage and
minimize interfaces, in view of parallel calculation.

In the related literature, many methods have been published for the generation of
Cartesian grids (the interested reader can find details in [8]), although none completely
suited to the needs of the developed flow solver. Therefore, a specific grid generation
algorithm, whose flow-chart is shown in Figure 1, is implemented.
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Figure 1. Flow-chart of the proposed method.

Deleting algorithm

2.1. Model Analysis

The proposed algorithm starts from a discrete manifold model (in STL format) and
store it into two tables (named as “Points” and “Triangles”) containing the information
about the planar triangular facets (Figure 2a):

e Points (x;, y;, z;) for i =i, ..., np: where the coordinates of the np unique points are
stored;
¢  Triangles: where three pointers to Points are stored for each triangle.

The structure of the two tables avoids redundancy of information. The model is then
positioned by rigid roto-translation operations in the Global Reference System (O, x, v, z)
of the computational domain so that:

M _
xmin 0
ye =0
M _

zg =0

flow direction // x-axis

Here, {Xéd, Ygl, Zg} are coordinates of the model centroids where the origin of the
new reference frame is translated; all the coordinates of the Points are then recomputed in
this reference system (Figure 2b). The model processing includes an automatic surfaces
segmentation, based on a fuzzy analysis of the discrete differential properties, according to
the method proposed in [9] (Figure 2c).
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Figure 2. Key steps of the proposed grid generation method: (a) the imported discretised manifold model; (b) the oriented
discretised manifold model; (c) the results of the discretised manifold model segmentation; (d) the boxes generated with the
geometry-based refinement criterion; (e) the boxes generated with the progressive refinement decrease criterion.

2.2. Boxes Definition

The sole explicit operation from the user is the definition of the computational do-
main where local refinement is required on the basis of the expected flow structure (i.e.,
wakes); this is done by the definition of a box, identified by the two extreme vertices
{Xmin, Ymin, Zmin } and {Xmax, Ymax, Zmax } in the Global Reference System and by the size
of the far-boundary cells {Axf ar, Ayf ar Azf ”’}, where Ax/" = Ayf ar — Azfor = x 2kc,
where kg is an integer and / is the minimum cell size. The first generated grid is a set of
hexahedra having face normal oriented along in the three axes directions of the Global
Reference System. The number of Voxels along the three directions is defined as follows:

N, = max(l, int (7Xmarxm‘“ ) )

Axfar
Ny, = max(l, mt(%)) )
— ; Zmaxfzmi.n
N, = max(l, znt(w>)

Each of the N = Ny - Ny - N; cells is identified by three sets of generalized indices,
defined in the following:
*  Equivalent structure cell indices G;jx = (Gj, G, G,) where 1 < G; < Ny, 1 < Gj < Ny,
1<G, <N
*  Three coordinates of the center Cijx = (Cijkx, Cijky, Cijk,2);
*  Refinement level index Kjjx = kg.
The complete grid with proper local size is generated by implementing the following
refinement criteria, applied to the initial grid:
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e  geometry-based criterion: refinement based on the distance from the wall surface of
the model;

¢  flow-based criterion: refinement defined on the bases of flow features, in regions with
relevant variations of the fluid-dynamic quantities (for example, pressure gradient
and vorticity);

¢ explicit window-based criterion: any other refinement in regions of interest.

The first criterion is automatic; the second and the third ones require that the operator
defines each of the Ngo; region of interest by its two extreme vertices { X%, Y, ,Z¥ 1,
and { X%, Y% Z2ax 1 (Where 1 < I < Npoj) coincident with two vertices of the initial
grid and the refinement level as 2kw (with the integer kyy < kg). In the sequel of this
research activity, the last two will also be rendered fully automatic.

The geometry-based refinement criterion is based on the surfaces segmentation (Figure 2d):

for the i-th segmented surface, the algorithm:
}and {XM YM  ZM

*  creates a box (whose extreme vertices {XM  yM 7M R oA

min/ ~min’/ “min
coincide with the initial grid) that contains it;
e calculates a value of the grid dimension (2. with the integer ky, i < k) on the basis

of the surface minimum characteristic dimension.

Regardless of the refinement criteria, the boxes are generated with the extreme points
coincident with grid nodes of the computational domain. This allows for keeping the
consistency of the discretization schemes also with local refinements.

2.3. Progressive Coarsening
To guarantee the smoothness of the refinement level in each direction between a cell
and its neighborhoods, an isotropic recursive algorithm working is implemented. At each

iteration, six wrapping boxes are generated around each box for which k; < %G (Figure 2e)
with grid dimension k; ., = 2 * k;. The algorithm stops when all the outermost boxes

within the computational domain have grid dimension k; < %G

2.4. Removal of Overlapping Boxes with the Same Grid Dimension

The above processes can generate prisms with the same grid dimension that overlaps:
to reduce this redundancy of information, a voxelization-based method with subsequent
clustering of adjacent prisms is implemented.

2.5. Grid Generation with Signed Distance Calculation

For each Voxel of each box, the vertices are generated according to the scheme of
Figure 3. In order to minimize redundancy, all this information is stored in two tables:

U nodes (x;,y;,z;) fori =1,..., Ny, where the coordinates of the N, unique vertices are
stored;
®  Voxels where, for each Voxel, the eight pointers to nodes are stored.

Figure 3. The scheme generation of the vertices of each voxel.

The fourth column of the table nodes is the signed distance between the corresponding
node and the model, whose sign encodes whether the point is inside (negative) or outside
(positive) to the watertight surface. The value of the distance is evaluated by searching
the minimum distance between each node and some points generated parametrically
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8238

2418

on the triangular faces of the model. The distance sign is defined, for its simplicity and
computational efficiency, by using a ray-tracing technique [8].

3. Case Study

The case study analyzed in this paper is a BB2 submarine with casing and ap-
pendage taken from https:/ /www.marin.nl/markets/defence/naval-subsurface-vessel-
hydrodynamic-design-services, accessed on the 24 February 2021 (Figure 4). The model
has foreplanes on the sail and tailplanes; no propulsion systems and mobile appendages or
rudders are present.

foreplanes

tailplanes

N\

45°

Figure 4. The analyzed BB2 submarine with some of the characteristic dimensions.

The choice of this model was done to apply the proposed method to a practical
geometry of interest for naval architecture. The Cartesian grid generation of this model is
critical because of the different characteristic dimensions and shape of the appendages.

3.1. The Refined Cartesian Meshes” Generation

The original solid model was transformed into a discrete model defined by triangular
flat faces. Figure 5a shows the oriented model with the bounding box dimension and points’
density measures. The clear non-uniformity of points distribution permits to analyze the
robustness of the proposed generation method. In Figure 5b, the fundamental characteristics
of the computational domain defined for the CFD analysis are depicted. First of all, the far
boundaries are placed far enough to minimize blockage effects; then, once grid dimension
(ki) is defined, its extreme points ({ Xmin, Ymin, Zmin } and { Xmax, Ymax, Zmax }) Were recom-
puted in order to obtain integer numbers of cells according to (1). Figure 6 shows the results
of the surfaces segmentation method superimposing the auto-generated geometry-based
boxes refinement. The algorithm correctly recognizes and segments eight surfaces and
calculates the k) ; integers on the base of the corresponding surface minimum characteristic
dimension.


https://www.marin.nl/markets/defence/naval-subsurface-vessel-hydrodynamic-design-services
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Figure 5. The oriented model (7) and the computational domain (b).

kyg=7

Figure 6. The segmented model with geometry-based boxes refinement.

For the application of the proposed algorithm to a realistic CFD analysis, three re-
finement boxes are introduced to properly capture the expected wakes behind the sail,
foreplanes, and tailplanes (Figure 7).

Once the computational domain and the refinement windows are defined, the grid
is generated according to the operations shown in Figure 1 and discussed in Section Grid
generation; for the test case under consideration, the generated grid consists of 12.8 million
cells. This value is about 20 times smaller than that used in [10] to analyze the same
geometry, simplified by eliminating the two foreplanes. Figure 8a shows the zero level of
the signed distance function with superimposing the grid sections on three perpendicular
planes, whereas Figure 8b highlights the difference between the original shape and the one
obtained by interpolation from the signed distance function. From the figure, it can be seen
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that the larger errors are close to the sharp trailing edges of the profiles which, anyhow, are
between 60 mm and 100 mm with a maximum error of always <0.14%.

Window-based boxes #1
XW =21,048 mm; XV =92,728 mm;
min max
YW o =-6144mm; YW =6144mm; k. =7

Zv =8192mm; Z"  =12288mm;

Window-based boxes #2

w w
X i =21,048 mm; X = 92,728 mm;
v =-2048mm; Y' =208 mm; k=7

W W
Zz . =4096mm; Z = 12,288 mm;

Window-based boxes #3
XY . =64,056 mm; X" =133,690 mm;

mi

Y""mi" =—6144 mm; YWmax =6144mm; k =7

v =-6144mm; Z"  =6144 mm;

Figure 7. The segmented model with window-based boxes refinement.
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a) The zero level of the signed distance function with b) The distance map between the original model and
superimposed the grid s;::;inoer;s in three perpendicular the zero level of the signed distance function

Figure 8. The grid generation results.

3.2. Mathematical Models and Numerical Algorithms

The CFD simulation was carried out by the immersed boundary algorithm described
in [8], to which the reader is referred for details. For the sake of completeness, the key
elements of the algorithm are summarized here.

The immersed boundary approach is applied to the solution of the Navier—Stokes
equations for incompressible flows. The governing equations that are solved by numerical
approximations are here reported with index notation (the repeated index convention
is used):

aui

axi

du; | odujuj 1dp  OT; @
ot | ox; | pox;  Ox;

The symbols adopted for physical quantities are:

. t for time;
U e;, i = 1,2,3 for the base unit vectors;
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. x;, i = 1,2,3 for spatial coordinates;

. x = x;e; for the position vector;

. p for the density;

. u;, i = 1,2,3 for the i-th velocity component;

* u = u;e; for the velocity vector;

*  pfor the pressure;

¢y for the dynamic viscosity;

e v = u/p for kinematic viscosity;

U vt for the turbulent viscosity;

* and 5 = (v+vr)(u; +uj;) for the stress tensor divided by p (the Boussinesq
hypothesis was adopted).

Detached Eddy Simulation [11-13] was used for the computation of v; required to
model the turbulent stresses. The above equations hold in the fluid domain. On the solid
wall, no-slip conditions were applied (i.e., u#; = 0), whereas, on the fictitious boundary in
the far-field, the velocity was enforced on the inlet boundary, and ambient pressure was
fixed on the outlet. As initial conditions, the flow was started from a resting position and
accelerated to the final value during a transient of time length given by L/ U, L being the
body length, and U, the velocity in the far-field.

The equations are discretized by a finite difference approach, where the convective
and pressure fluxes are discretized by a fifth-order WENO scheme [14], while the viscous
terms are approximated with second-order centered approximation. Time integration was
performed by a second-order fully implicit scheme, with a constant time step equal to
UsAt/L =5x1072.

3.3. Numerical Set-Up

In all the simulations, the adopted Reynolds number was Re = 2.7 x 10°, as in the
experiments reported in [10].

To enforce the boundary conditions on the submarine walls, the Immersed Boundary
procedure described in detail in [8] was applied; the algorithm can be summarized as
follows:

1. at the beginning of each time step, the solution is extrapolated inside the body in the
normal direction to the body surface;

2. the solution at internal points is then modified in order to get null velocity on the
rigid walls;

3. the discrete equations are locally modified to retain at least second order accuracy in
the neighborhood of the wall.

Given the high value of the Reynolds number, the wall stresses were evaluated by the
use of wall functions, as described in the referenced paper; of course, by this approximation,
the details of the boundary layers on the hull are lost, and only the wall stress exerted
on the external flow is represented in the model. With the adopted grid, cell size on the
walls in terms of wall units is y* = dur/v = O (200~300), d being the cell thickness,
ur = \/Tw/p the friction velocity, and T, the tangential stress on the wall. Nevertheless,
vorticity production on the solid walls and the following evolution in the wakes are very
well represented, as shown in the next section.

3.4. Results
The computed pressure on the submarine hull is reported in Figure 9, whereas the
instantaneous vortex structures are reported by the Q-criterion [15] with Q = —50 in

Figure 10. From this figure, it can be seen that the grid is able to capture the details of
the large vortical structure; in particular, the tip vortices from the sail wings are very
well captured, together with their interaction with the vortex structures in the wake of
the sail. Similarly, all the details of the large eddies in the wake of the main body and of
the tail appendages are captured, and their evolution is very well represented in all the
refined regions.
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Figure 9. Non-dimensional pressure contours of the submarine surface.

Figure 10. Instantaneous vortex structures visualized by the Q criterion (Q = —50).

The time average of the computed solution is reported in the lower part of Figure 11
in terms of axial velocity on the symmetry plane; in the top part of the same figure, the
instantaneous contours of the same variable are also reported. In Figure 12, the averaged
axial velocity is reported on six cross planes downstream the hull.

The numerical uncertainty was evaluated by following the procedure described in [16],
as recommended by most international engineering associations (e.g., International Towing
Tank Conference ITTC and American Institute of Aeronautics and Astronautics AIAA). A
first level of coarser grid was generated from the finest one by removing every other point
in each direction. A third level of coarsening was impossible because the grid would have
been too coarse to capture some basic element of both geometry and flow characteristics.
Therefore, we adopted the two—grid verification procedure in [16], where the uncertainty
U is evaluated as
||/ —wly 1

Uu=Fr
=1 |uf|l

x 100 3)
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where 7 = 2 is the adopted refinement ratio in each direction, 1/ is the solution computed
on the fine grid, u¢ is the solution on the coarse grid, and F is a safety factor that, as
suggested in [16] for the two-grid uncertainty verification, was chosen to be equal to 3. The
quantity ||uf — u°||; is the Li-norm of the difference between the two solution, whereas
|uf||; is the Ly-norm of the field computed on the fine grid. The uncertainty, computed on
the averaged velocity field, was U = 3.08% for the case considered in the reported example.

|-
Y

Figure 11. Non—dimensional instantaneous (b) and averaged (a) axial velocity component on the
plane y = 0.

1.00
0.94
0.88
0.82
0.76
0.70
0.64
0.58
0.52
0.46
0.40
0.34
0.28
0.22

Figure 12. Averaged non-dimensional axial velocity on six downstream sections.

Finally, in Figure 13, the contours of the resolved and modeled kinetic energy are
reported on both the symmetry plane and on several cross-sections. From this figure, it
can be seen that, according to the Pope criterion [17], the grid is adequate for a correct LES
simulation, and the ratio between the modeled to the total turbulent kinetic energy being
always below 0.2.
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Figure 13. Resolved (a) and modeled (b) turbulent kinetic energy.
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4. Conclusions

In this paper, an almost fully automatic methodology for CFD analysis for high
Reynolds number flows is also presented. The proposed workflow includes a new method
for Cartesian Mesh Generation with Local Refinement devised and applied to the IB method
developed in [8]. The innovative aspects in the present Cartesian adaptive grid method can
be found in the strategies of diversification of the mesh dimensions in the different parts
of the model, based on automatic segmentation of the surfaces enveloping the object. In
addition, grid refinement can be explicitly controlled in regions where the flow is expected
to exhibit high gradients. This, together with the use of the IB method and of the wall
functions described in [8], allows the simulation of high Reynolds number flows, with
limited grid requirements of the boundary layers. The whole methodology, starting from a
discrete manifold model of the object to be analyzed and from the following input:

e  definition of the computational domain and regions of interest with the dimensions
of the corresponding grid;
¢ the key information for the CFD simulation (expected high flow gradients);

automatically produce the grid for the CFD analysis. The aim of this paper is to show that
this automatic workflow is robust and enables to obtain quantitative results on geomet-
rically complex configurations such as marine vehicles. For this purpose, the proposed
methodology was applied to study the flow past a BB2 submarine. The grid was able to
capture the details of the large vortical structures from the sail wings and from the tailplanes,
as well as their interaction with the wakes emanating from the sail and from the main body.
Furthermore, the grid proved to be adequate for a correct LES simulation in the wake.

The present research activity will be extended to include the development of an
automated mesh refinement strategy, able to capture flow details without explicit input
from the user. Moreover, other operating conditions (underwater maneuvers, surfacing,
diving) will be addressed, and the results of the fluid dynamic simulations will be verified
and validated against available experimental data. In particular, in future research, the
capability of the present Immersed Boundary approach coupled with automated mesh
refinement will be checked for free surface flows around surface piercing vessels, like ship
hull or submarine vehicles operating at snorkeling depth.
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Abbreviations

The following abbreviations are used in this manuscript:

CFD Computational Fluid Dynamics

1B Immersed Boundary

LES Large Eddy Simulation

{XM,yM, 7MY coordinates of the model centroids

ROI Region of Interest
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{Xmin, Ymin, Zmin } and {Xmax, Ymax, Zmax } two extreme vertices of the computational domain
2kc the computational domain grid dimension
; i ; i ; i two extreme vertices of the box containing i-th
M,i M,i M,i M,i M,i M,i &
{Xmin’ Yomin Zmin} and {Xmax’ Ymdx/ Zma"} segmented surface
the grid dimension of the box containing i-th

ok
segmented surface
[X® Y8 70 Y and (X8, Y Z8. ), :)v;grz::;eme vertices of the I-th ROI defined by the
ks the grid dimension of the I-th box defined by the
operator
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