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Abstract: The use of an autonomous underwater vehicle (AUV) to inspect underwater industrial
infrastructure requires the precise, coordinated movement of the AUV relative to subsea objects. One
significant underwater infrastructure system is the subsea production system (SPS), which includes
wells for oil and gas production, located on the seabed. The present paper suggests a method for the
accurate navigation of AUVs in a distributed SPS to coordinate space using video information. This
method is based on the object recognition and computation of the AUV coordinate references to SPS
objects. Stable high accuracy during the continuous movement of the AUV in SPS space is realized
through the regular updating of the coordinate references to SPS objects. Stereo images, a predefined
geometric SPS model, and measurements of the absolute coordinates of a limited number of feature
points of objects are used as initial data. The matrix of AUV coordinate references to the SPS object
coordinate system is computed using 3D object points matched with the model. The effectiveness of
the proposed method is estimated based on the results of computational experiments with virtual
scenes generated in the simulator for AUV, and with real data obtained by the Karmin2 stereo camera
(Nerian Vision, Stuttgart, Germany) in laboratory conditions.

Keywords: autonomous underwater vehicle (AUV); subsea production system (SPS); inspection of
underwater object; stereo images; navigation; coordinate referencing

1. Introduction

Advances in submerged industrial infrastructure, including subsea production sys-
tems (SPS), gas and petroleum pipeline systems, etc., require that regular checks of their
state are made. Until recently, inspections were carried out by divers and/or tethered
remotely operated underwater vehicles (ROV). However, in many cases, it is advisable to
use autonomous unmanned underwater vehicles/robots (AUVs) instead of ROVs. The use
of AUVs rather than ROVs is less time-consuming and less expensive when carrying out
a number of operations, particularly in the case of siting SPS objects in the polar regions
with complete ice cover. In [1–4], a review of the subsea infrastructure inspection prob-
lem is given, and the importance of developing new AUV-based technologies along with
ROV-based ones is shown.

One of the tasks when using AUVs to inspect SPS objects is the thorough photography
of its specified fragments (in particular, dashboards), for which navigation references of
the AUV to the SPS with sub-meter accuracy must be provided (it is assumed, of course,
that the water’s transparency allows photographing). Ensuring this accuracy is a challenge.
Utilizing standard on-board autonomous navigation devices along with hydroacoustic
AUV navigation equipment for these purposes makes it impossible to provide the required
sub-meter accuracy. These devices can be used only to arrange the passage of the AUV
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to the object of inspection. A possible solution is to perform a sonar or laser scan for
accurate navigation referencing to the object, and then to work with the internal INS
(inertial navigation system)-based navigation system and Doppler log [5,6]. However, the
accumulated navigation error and the “noisy” data from the Doppler log near the SPS
object, as a result, also do not allow the required accuracy.

The high-precision navigation of an AUV relative to an SPS can be ensured by way
of processing the video images obtained aboard the vehicle on a real-time basis. A key
challenge here is to recognize the underwater object. Experiments on the use of video
information for accurate navigation referencing are currently reduced to the problem of
positioning (hovering) the AUV near a fragment with the given pattern [7]. In a more
general statement, the problem of the navigation referencing of an AUV to the inspected
object based on video information is not considered. Another difficulty is to overcome the
errors accumulated by the prolonged movement of the AUV when using visual odometry,
or any other incremental navigation method. In recent studies, the emphasis has been
on various aspects of the problem of object recognition and the problem of inspecting
underwater structures in general.

In [8], two algorithms for visual odometry based on stereo vision are proposed for cases
of the close movement of the AUV to the seabed. In [9], the authors introduce the navigation
problem in detail and the methods used for the inspection. In [10], a method for localizing
AUVs using visual measurements of underwater structures and artificial landmarks is
described. In a number of works, for example, in [11,12], methods of tracking the desired
trajectory using visual measurements of points features and adaptive control, including
neural networks, are considered. In [13], an approach based on the combined use of an
extended Kalman filter and a vision system for the underwater docking of an autonomous
underwater vehicle is proposed. In [14], algorithms for navigation, obstacle avoidance and
AUV control are proposed to solve the problem of underwater port inspection using AUVs.
In [15], a method of monocular visual odometry with optical flow tracking is proposed,
which, according to the authors, is more suitable for underwater imaging than the classical
approaches based on descriptors. In [16], the authors present a study testing various visual
odometry solutions in relation to AUVs. In particular, the SIFT (scale-invariant feature
transform) and SURF (speed up robust feature) detectors were compared for calculating
vehicle movement. Testing was performed using a set of real data. The article argues that
the proposed strategy could support and improve navigation using the DVL (Doppler
velocity log) or could provide an alternative (without using DVL). In [17], the problem of
landing on the seabed is solved using physical models that take the geometry of the vehicle,
the slope of the seabed, roughness, friction and currents into account. In [18], the authors
present a survey and comparison of global descriptors for 3D object recognition purposes
when a 3D model of the object is available a priori. The area of interest is underwater
IMR (inspection, maintenance and repair) applications. The recognition approach uses
both images collected with a stereo camera and 3D depth data from a range scanner.
In [19], the problem of determining the distance to an underwater object and its orientation
relative to the AUV is solved. To solve this, two new architectures based on convolutional
neural networks are proposed. In [20], a study is presented that was conducted within the
framework of the Seventh EU Framework Program “CADDY—Cognitive Autonomous
Diving Buddy” (University of Zagreb. Faculty of Electrical Engineering and Computing,
Zagreb, Croatia). The approach aims to take advantage of the complementary traits of a
human diver and an AUV by making their synergy a potential solution to the mitigation
of state-of-the-art diving challenges. The proposed algorithms use measurements from a
stereo camera, sonar, and ultra-short baseline acoustic localization to ensure the vehicle
constantly follows and observes the diver. In [21], a large overview of modern technologies
for solving the problems of the communication, localization and navigation of AUVs in
underwater environments, which take into consideration the impossibility of relying on
radio communications and global positioning systems, is presented.



J. Mar. Sci. Eng. 2021, 9, 1038 3 of 18

In most of the known works, the problem of developing accurate visual navigation
methods that are resistant to the accumulation of errors during long movements of the AUV
is solved without recognizing underwater objects and subsequent coordinate references to
those objects.

Increasing the efficiency of navigation in these cases is achieved through various
modifications of the ICP (iterative closest point) algorithm, the use of the long-term tracking
of features in images, situations of closed contours, combinations with other sensory
measurements, etc. In these works, the accuracy of the proposed methods is also assessed
in comparison with other methods.

In the examples of work of this kind considered below, estimates are given for the
accuracy of navigation, both for virtual scenes and in conditions of underwater sea scenes.
These estimates give an idea of the level of navigation accuracy of the proposed methods,
including in comparison with the classical visual odometry scheme.

In [22], the authors compared three pose estimation methods for unmanned ground
vehicles in GPS (global positioning system)-denied environments (RANSAC (RANdom
SAmple Consensus) EKF (extended Kalman filter), GICP (generalized ICP) and iSAM
(incremental smoothing and mapping)) using visual data on a real-world dataset (for an
urban environment). Regarding the absolute final error (m) for a trajectory with a length of
1.443 km, the error in navigation accuracy varied from 16 to 29 m.

In [23], a practical approach to performing underwater visual localization was pro-
posed, which improves upon the traditional EKF-SLAM (simultaneous localization and
mapping). According to the authors, thanks to the realized ability to reliably solve the
"closed loops" problem, as shown in the experiments, the presented approach provides
accurate pose estimates, using both a simulated robot and a real robot, in controlled and
real underwater scenarios. In experiments with a virtual scene, the error of the visual
method was 4.4 cm. In experiments with the real robot in a pool (7 m long, 4 m wide
and 1.5 m depth), the accumulated localization error of the robot when moving along
a closed trajectory reached ≈40 cm. In an experiment in real undersea conditions, two
implementations were compared: classical visual odometry and SLAM with loop closings
established during the mission execution. It was noticed that visual odometry showed a
significant location error of up to 7 m due to drift. On the contrary, according to the authors,
the SLAM estimates were much closer to the real trajectory thanks to several loop closings
established during the mission’s execution.

In [24], which is devoted to the 3D reconstruction of objects, estimates of errors were
obtained when restoring the shape of an underwater object in experiments with a real
underwater scene, with errors of 2–2.8%.

In [25], the authors present the results of a comparative analysis of the effectiveness
of eight known software packages that are based on the use of visual odometry and are
designed to calculate the trajectories of the AUV and 3D reconstruction of underwater
objects from images. Estimates of the errors in calculating the AUV trajectories are given in
this article for underwater scenes with a trajectory length of ≈400 m. The best result was
achieved by the ORB (Oriented FAST and Rotated BRIEF)-SLAM package [26], with an error
of 11.2 m. The COLMAP package (Swiss Federal Institute of Technology Zurich, Zurich,
Switzerland and University of North Carolina, Chapel Hill, North Carolina, USA, license
https://colmap.github.io/license.html) (accessed on 15 September 2021) [27] showed a
better result of 9.2 m, although the time to obtain the estimated trajectory can be very long,
e.g., for 700 images, 7–8 h. For other software packages, these errors are much larger (as
indicated in the article), ranging from 20 to 112 m. [27] proposes a structure-from-motion
algorithm that improve the state-of-the-art in terms of completeness, robustness, accuracy,
and efficiency. In [28], a good overview of the SLAM issue is presented.

Some new works related to underwater vehicles (ROV and AUV) and new applications
of underwater robots are presented in [29–33]. In [29], the problem of the negative impact of
ocean currents and various unmodeled disturbances on the UV control system is considered.
The authors carried out a study based on nonlinear dynamics to implement the reliable
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https://colmap.github.io/license.html


J. Mar. Sci. Eng. 2021, 9, 1038 4 of 18

positioning control of an over-actuated autonomous underwater vehicle under the influence
of ocean currents and model uncertainties.

In [30], the authors analyze the movement of a paired unmanned surface vehicle
(USV)–umbilical cable (UC)–unmanned underwater vehicle system to investigate the
interaction behavior between the vehicles and the UC in the ocean environment. For this, a
new dynamic modeling method is used to study the multi-body dynamic system of this
communication system.

In [31,32], the physical aspects of the functioning of an underwater construction robot
for underwater use are considered.

In [33], the authors present a new algorithm for docking a torpedo-shaped autonomous
underwater vehicle (AUV). The algorithm comprises three phases: depth tracking, docking
feasibility region analysis and docking success probability evaluation. This article proposes
an approach to ensure accurate AUV navigation in the SPS coordinate space by performing
regular referencing to the object coordinate system based on processing stereo images. The
emphasis is on the object recognition algorithm using a predetermined point model of the
object, in which there are a limited number of characteristic points with known absolute
coordinates.

Problem Statement

SPS inspection using AUV implies that the vehicle passes along the trajectory that is
most suitable for accomplishing the tasks on a working mission. These tasks include but
are not limited to taking photos of individual elements and units, maintaining commu-
nication lines and surveying for cathodic protection. To generate the trajectory, accurate
coordinate referencing of the AUV to the inspected SPS objects is needed. To do this, one
should formulate a method to accurately coordinate the referencing of the AUV to the SPS
coordinate system. In this work, we base the method of referencing on video information
that is received from the stereo camera mounted aboard the vehicle.

The SPS includes the individual parts that are isolated from one another, such as the
drilling stations and manifold. The SPS integrates these parts into a network via pipelines
and flexible drill strings. The SPS structure is schematically shown in Figure 1.

J. Mar. Sci. Eng. 2021, 9, 1038 4 of 19 
 

 

Some new works related to underwater vehicles (ROV and AUV) and new applica-

tions of underwater robots are presented in [29–33]. In [29], the problem of the negative 

impact of ocean currents and various unmodeled disturbances on the UV control system 

is considered. The authors carried out a study based on nonlinear dynamics to implement 

the reliable positioning control of an over-actuated autonomous underwater vehicle un-

der the influence of ocean currents and model uncertainties. 

In [30], the authors analyze the movement of a paired unmanned surface vehicle 

(USV)–umbilical cable (UC)–unmanned underwater vehicle system to investigate the in-

teraction behavior between the vehicles and the UC in the ocean environment. For this, a 

new dynamic modeling method is used to study the multi-body dynamic system of this 

communication system. 

In [31,32], the physical aspects of the functioning of an underwater construction robot 

for underwater use are considered. 

In [33], the authors present a new algorithm for docking a torpedo-shaped autono-

mous underwater vehicle (AUV). The algorithm comprises three phases: depth tracking, 

docking feasibility region analysis and docking success probability evaluation. This article 

proposes an approach to ensure accurate AUV navigation in the SPS coordinate space by 

performing regular referencing to the object coordinate system based on processing stereo 

images. The emphasis is on the object recognition algorithm using a predetermined point 

model of the object, in which there are a limited number of characteristic points with 

known absolute coordinates. 

Problem Statement 

SPS inspection using AUV implies that the vehicle passes along the trajectory that is 

most suitable for accomplishing the tasks on a working mission. These tasks include but 

are not limited to taking photos of individual elements and units, maintaining communi-

cation lines and surveying for cathodic protection. To generate the trajectory, accurate co-

ordinate referencing of the AUV to the inspected SPS objects is needed. To do this, one 

should formulate a method to accurately coordinate the referencing of the AUV to the SPS 

coordinate system. In this work, we base the method of referencing on video information 

that is received from the stereo camera mounted aboard the vehicle. 

The SPS includes the individual parts that are isolated from one another, such as the 

drilling stations and manifold. The SPS integrates these parts into a network via pipelines 

and flexible drill strings. The SPS structure is schematically shown in Figure 1. 

 

Figure 1. Subsea production system (SPS). Figure 1. Subsea production system (SPS).

The video information-based navigation method used on the AUV [34] facilitates
the calculation of the trajectory of movement and the construction of a set of 3D points
observed by the camera (3D cloud) in each position of the trajectory. The bottom relief
points and the points belonging to SPS objects are some of the observed points.

It is assumed that the geometric model of the SPS has a two-level structure with a set
of constituent objects, and each object is represented by a set of 3D feature points (FPs)
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coordinated in the coordinate system (CS) of the object. Firstly, such a structure makes
it possible to plan the expected trajectory across the entire SPS space. Simultaneously,
this model would ensure more accurate coordinate referencing to the object CS when
performing necessary measurements or manipulations. Secondly, referencing to the object
allows for the elimination of some navigation errors. These errors are linked to the time-
related variations in the FPs, such as silting and fouling, and minor changes in the mutual
arrangement of SPS objects relative to one another, which is a result of soil movement or
subsidence. That is, when performing actions in relation to any object of the SPS, it is better
to navigate in relation to the FPs belonging to this object.

It is also anticipated that each object has at least three FPs. The absolute coordinates
are measured within the external CS when mounting the object on the bottom. For FP
images on pictures, corner points are usually utilized. Corner points can be accurately
determined with a greater degree of certainty by detectors and trackers.

To confirm the specified referencing of an AUV to an SPS as a whole and to each
object individually, a method needs to be developed with the goal of finding the FPs of SPS
objects in the 3D cloud. These objects are captured by a stereo camera. Next, a method for
calculating the respective matrices of geometric transformation from the AUV/camera CS
to SPS CS, and finally to the CS of each object, is developed.

The rest of the paper is organized as follows. Section 2 describes the suggested method
for the coordinate referencing of an AUV to an SPS. In particular, Section 2.1. presents
a geometric model of the SPS utilized for the identification of underwater SPS objects.
Additionally, Section 2.2. presents a detailed algorithm for the identification of underwater
objects using FPs. Next, Section 2.3. describes a procedure for the direct computation of
the desired matrix of referencing using the feature points of an object, which are matched
to a model. In Section 2.4, the visual navigation method (visual odometry) is specified and
the obtained coordinate references for the navigation of the AUV are used in the SPS space.
Section 3 discusses the results of computational experiments with model scenes, and also
presents the evaluation of how the method works via an example of processing real data,
which is collected using a stereo camera under laboratory conditions.

The main contributions of this work include a method for identifying an underwater
object, the core of which is the algorithm for searching the points belonging to the SPS
object in the 3D cloud (Sections 2.2 and 3 for a discussion of the results). Furthermore, a
method is proposed for calculating the matrix of binding the AUV to the CS of the object
(Section 2.3.) and the calculation of the movement of the AUV in the coordinate space of
the SPS object (Section 2.4.).

2. Method for Coordinate Referencing

The following designations will be applied hereafter (Table 1).

Table 1. Coordinate systems and transformations matrices.

WCS – World Coordinate System

CSAUV_i – Coordinate system associated with AUV in position i.
CSAUV_0 – Coordinate system associated with AUV in the initial position.

CSSPS – SPS coordinate system.
CSob_id – Coordinate system of object id, belonging to SPS.

HCSAUV_0,CSAUV_i –

Transformation matrix from the coordinate system in the initial
AUV position to the coordinate system in position i. This matrix

is formed by multiplying out local matrices of relative
displacement, each of which connects the css of the two

adjacent positions.

HCSAUV_i ,CSob_id – Transformation matrix from the coordinate system of AUV in
position i to the coordinate system of object No.id.
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Table 1. Cont.

WCS – World Coordinate System

HCSob_id ,WCS – Transformation matrix from the coordinate system of object id
to the world coordinate system.

HCSAUV_0,WCS – Transformation matrix from the coordinate system of AUV in
position 0 to the world coordinate system.

2.1. SPS Model

The SPS consists of several objects that are remote from one another. As a pre-formed
model that uniquely identifies the SPS object, the set of its feature points (FP) and the set of
measured distances between them are considered. Accordingly, a set of 3D points visible
via the camera (3D cloud) is used (during the AUV movement) to search FPs corresponding
to the object model. The 3D cloud is formed by matching 2D features of the images of
a stereo pair (a Harris corner detector is used to extract corners and infer features of an
image, and a SURF detector is used to match the selected features in a pair of images by
descriptors) and by the triangulation of rays on the matched features. Let the set of the
FPs of object ob_id be denoted by Mob_id. In set Mob_id, the three FPs are singled out, for
which the absolute coordinates are measured when the object is mounted on the bottom.
The coordinates in the external CS, which are designated as the world CS (WCS), are called
the absolute coordinates. The CS of this object is constructed using this triplet according to
the rule demonstrated in Figure 2.
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Figure 2. Construction of an object coordinate system based on points P1, P2, and P3 specified in the
WCS: the X axis is determined by points P1P3, the Z axis is normal to the plane of the P1P2 and P1P3

vectors, and the Y axis is normal to the ZX plane.

The transformation matrix HCSob_id ,WCS connecting CSob_id and WCS is formed based
on the unit vectors CSob_id specified in WCS:

HCSob_id ,WCS =

∣∣∣∣∣∣∣∣
e1x e1y e1z 0
e2x e2y e2z 0
e3x e3y e3z 0
rx ry rz 1

∣∣∣∣∣∣∣∣ (1)

where e1, e2, e3 are unit vectors CSob_id, and r is the vector of the CSob_id origin, specified in
WCS.

The first point out of the above three FPs is the origin of the object CS. All the object
FPs are specified in the object CS (relative coordinates). Thus, for each object, there is a
matrix used to transform the coordinates of its points from the object CS to the WCS. For
each object, a min–max-shell for the object CS and the WCS is computed, which is required
to simplify the problem of creating inspection AUV trajectories and controlling the AUV’s
autonomous movement close to the object. The points of interest in terms of inspection are
specified in the object CS.
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The SPS CS must also be defined, for which the CS of one of the objects can be used.
All the objects (points of the CS origin for each object) are coordinated in the SPS CS. The
min–max-shell of the SPS in the WCS is constructed in a similar way.

There are two stages of the coordinate referencing of an AUV to SPS objects. At the
stage of rough referencing, the displacement of the AUV to the SPS localization area is
controlled. To do this, the AUV standard acoustic navigation equipment can be used.
Subsequent to the displacement of the AUV to the SPS localization area, the problem of
the accurate coordinate referencing of the AUV to the object CS using video information is
resolved.

Two approaches to solving this problem can be taken. The first one is based on the
estimation of the AUV’s movement in the WCS space using a SLAM algorithm (see, for
example, review [27,28]). Then, the SPS object is coordinated in the WCS via the previously
obtained transformation HCSob_id ,WCS, and the AUV is coordinated in the WCS using trans-
formation HCSAUV_0,CSAUV_i , obtained in our case by our own SLAM algorithm [34] and the
previously obtained transformation HCSAUV_0,WCS. Then, the desired transformation can be
computed in the following manner (Figure 3):

HCSAUV_i ,CSob_id = (HCSAUV_0,CSAUV_i )
−1·HCSAUV_0,WCS·(HCSob_id ,WCS)

−1 (2)
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However, this method of AUV navigation in the space of the object CS can be not
quite accurate, owing to the error introduced by the visual navigation method. It is
known that this method involves an accumulation of errors when there are long-term AUV
displacements. In this instance, the error will be accumulated while calculating matrix
HCSAUV_0,CSAUV_i .

Hence, it is suggested that the second approach to solving the problem of referencing
the coordinates of AUV to the SPS be used, which employs the estimation of the AUV’s
movement relative to the SPS object. This approach eliminates the above-mentioned draw-
back, and is intended to ensure high-precision navigation in the SPS space. Nevertheless,
it requires that the problem of identifying the feature points of the SPS object should be
solved using a priori knowledge of the object model. Therefore, the data of the SPS model
(models of all objects and coordinate transformation matrices connecting the CS of objects
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with the CS SPS) are loaded into the on-board AUV program for the subsequent operation
of the object recognition algorithm during the AUV inspection mission.

2.2. Identification of the SPS Feature Points

A set of spatial points C {C1 . . . CM} (3D cloud), seen by the camera, is formed in
the current position of the AUV trajectory. The absolute coordinates of the points from
the 3D cloud are calculated using the visual navigation method according to the known
procedure:

• FPs matching on images of two stereo pairs;
• Calculation of 3D coordinates of the corresponding points in CSAUV_i;
• Computation of the local matrix to transform the coordinates at the current stage;
• Computation of matrix HCSAUV_0,CSAUV_i via combining local matrices from the previ-

ous stages;
• Calculation of absolute coordinates, sequentially applying two transformations—

(HCSAUV_0,CSAUV_i )
−1·HCSAUV_0,WCS.

Next, the object is recognized using the algorithm described below for searching in
a 3D cloud of points belonging to the SPS object. The algorithm for searching is carried
out in two stages. As the main recognition criterion, the principle of structural coherence
is implemented: the same mutual arrangement of points is desired in two comparable
groups of points. In the context of the problem being solved, this means that a subset
of points is searched for in a 3D cloud, the mutual arrangement of which corresponds
to a certain subset of points of the SPS object model. Since searching in a 3D cloud for a
subset of points of the corresponding object model involves enumerating a large number
of options, the problem of reducing this enumeration arises. Therefore, the first stage
of the algorithm consists of selecting candidate points for belonging to an object using
rough filtering, which drastically reduces the search for options. Filtering is based on the
construction for each point of the object model of a spatial rectangular shell in the 3D
cloud, inside which candidate points are searched for that match the point of the model.
The spatial shell is built using knowledge of the absolute coordinates of both the points
of the SPS object and the points of the 3D cloud. In the second stage, for the obtained
limited set of candidate points, a search is performed for a subset of points of an object with
unambiguous identification based on a criterion that implements the principle of structural
coherence. It should be noted that the algorithm in [35], unlike the approach suggested in
this paper, considered the complete enumeration of possible options of matching the 3D
cloud points to the object model points.

2.2.1. Stage 1

The min–max-shell in the WCS space is calculated for each FP of the SPS object ob_id
(set Mob_id). The absolute coordinates of the point are found using the available matrix
HCSob_id ,WCS of the transformation of the relative coordinates of the object to the WCS
coordinates. The linear dimension of the rectangular shell is selected by taking into account
the known error in the used method of the AUV’s visual navigation.

The points from the 3D cloud are checked in succession to see whether they belong to
the shell. If the point is inside the shell, it may be an appropriate point of the SPS object. If
there are several such points in the cloud, all of them will be deemed candidate points for
matching with the analyzed point of the SPS object.

The outcome of the above check of all the object FPs is the subset of points
Sob_id

{
Pi1 , . . . Pip , . . . Pin

}
∈ Mob_id{P1, . . . Pn}, of which the points potentially belonging to

the object were found in the 3D cloud. Here, N—number of dimensions of model Mob_id,
n—number of dimensions of Sob_id, ip—number of a point in set Mob_id, and the index p
relates to the numbering in Sob_id. Each point Pip is related to the list lp

{
Cj1 , . . . Cjt , . . . Cjm

}
of the points in the 3D cloud, which are considered suitable for correspondence with this
point of SPS. Here, m—length of list lp, Cjt —the point in the 3D cloud with number jt,
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t—a number in list lp. Each list contains one or more points of the 3D cloud. Thus, the
integration of lists lip is the subset of points in the 3D cloud, in which the points belonging
to the SPS are searched for and identified.

2.2.2. Stage 2

At this stage, a search is carried out for a subset in the 3D cloud that meets the
criterion of structural coherence. The implementation of the criterion is based on checking
the mutual distances between 3D points. Taking into account the fact that when more
points are identified, the degree of object identification certainty will be higher, the search
starts from longer subsets. In accordance with stage 1, set Sob_id{Pi1 , . . . Pin

}
is the model

subset with the maximum length in this context.
The search algorithm is schematically applied as follows (Figure 4):
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1. On set Sob_id of the points of the object model (see stage 1), a set of samples

sob_id
m

{
Pi1 , . . . Piq

}
is generated, where m—the sample number, q—the sample length.

The number of possible samples is defined by the number of permutations of n − q at
a given time—Aq

n = n!
(n−q)! ;

2. The set of distances Dob_id
m

{
dob_id

i1,i2
, . . . dob_id

iq−1,iq

}
is constructed, where dob_id

ik ,is is the dis-
tance between points Pik and Pis . Here, ik and is are the numbers of points in the object
model Mob_id, and indices k and s are related to the numbering of points in sample
sob_id

m , which is linked to each sample sob_id
m

{
Pi1 , . . . Piq

}
. There are q(q−1)

2 elements in

set Dob_id
m ;

3. The set of samples ccloud
n

{
c1, . . . cp, . . . cq

}
, comprised of the 3D cloud points, is gen-

erated for each sample sob_id
m

{
Pi1 , . . . Pip , . . . Piq

}
of the object model. Here, n is the

number of samples. The point from list lp
{

Cj1 , . . . Cjm
}

, connected to point Pip (see
stage 1), is taken as the cp element of sample ccloud

n . The number of the generated
samples ccloud

n is defined by the number of lists q and the lengths of these lists. For
example, if q = 3, and the lengths of the corresponding lists are length1, length2,
length3, the number of samples will be length1· length2 · length3;

4. The set of distances Dcloud
n

{
dcloud

1,2 , . . . dcloud
k,s , . . . dcloud

q−1,q

}
is constructed, where dcloud

k,s
is the distance between points Ck and Cs—here, indices k and s are related to the
numbering of points in the sample, and ccloud

n is linked to each sample ccloud
n . There

are q(q−1)
2 elements in set Dcloud

n ;
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5. For a sample sob_id
m

{
Pi1 , . . . Piq

}
(step 1) from the object model, the sample

ccloud
n

{
c1, . . . cq

}
(par.3) from the 3D cloud is sought, such that Dob_id

m = Dcloud
n . Here,

the equivalence means the equivalence between all the corresponding pairs of ele-
ments:

∣∣∣dob_id
ik ,is − dcloud

k,s

∣∣∣ ≤ ∆. The error ∆ is determined by the accuracy of measuring
the coordinates of the 3D cloud points (depending on the resolution of pictures and
the distance between the camera and the points). In that case, with consideration
for the above-described rules of forming samples, the determined correspondence
between sample ccloud

n and sample sob_id
m enables the unambiguous identification of

the points of the 3D cloud that belong to the SPS object, and for them to be matched
with the object model points;

6. If there are no corresponding points found in the 3D cloud for the specified length q
of sample sob_id

m , the correspondence for a smaller sample shall be searched for, i.e., for
q = q− 1. It should be noted that the implementation of searching, aimed at detecting
the maximum number of points matched to the SPS object model’s points, in the
3D cloud increases the degree of certainty of object identification. Subsequent to the
identification of several points (three as a minimum) belonging to the SPS object, in
the 3D cloud, the coordinate referencing of the AUV to the SPS can be performed.
Using more FPs would improve the accuracy of the method.

2.3. Calculation of the Matrix of the Geometric Transformation of the Points from the AUV CS to
the SPS Object CS

The desired matrix referencing the coordinates of the AUV to the SPS object can be
computed based on the fact that the coordinates of the SPS object’s points, identified in
the 3D cloud, are known both in the AUV CS (CSAUV_i) and in the object CS (CSob_id). Let
C1, C2 and C3 be the object points identified (applying the algorithm as described above)
in the 3D cloud. Let the auxiliary CS (CSad) be constructed on the identified object points,
according to the rule shown in Figure 1; i.e., let unit vectors e1_AUV, e2_AUV and e3_AUV
of the CSad coordinate system be constructed in the CSAUV_i coordinate system.

Then, the transformation matrix HCSad ,CSAUV_i , connecting CSad and CSAUV_i, is formed
from unit vectors:

HCSad ,CSAUV_i =

∣∣∣∣∣∣∣∣
e1_AUVx e1_AUVy e1_AUVz 0
e2_AUVx e2_AUVy e2_AUVz 0
e3_AUVx e3_AUVy e3_AUVz 0

rC1_AUVx rC1_AUVy rC1_AUVz 1

∣∣∣∣∣∣∣∣ (3)

where rC1_AUV is the vector of CSad’s (point C1) origin, specified in CSAUV_i.
On the other hand, the coordinates of points C1, C2, C3 in CSob_id are known, which

means that the constructed unit vectors of the CSad coordinate system can be defined in
CSob_id as well. Let e1_ob_id, e2_ob_id, e3_ob_id denote these vectors. Accordingly, the
matrix of transformation from CSad to CSob_id can be formed from the unit vectors specified
in CSob_id:

HCSad ,CSob_id =

∣∣∣∣∣∣∣∣
e1_ob_idx e1_ob_idy e1_ob_idz 0
e2_ob_idx e2_ob_idy e2_ob_idz 0
e3_ob_idx e3_ob_idy e3_ob_idz 0

rC1_ob_idx rC1_ob_idy rC1_ob_idz 1

∣∣∣∣∣∣∣∣ (4)

Then, the desired transformation from the AUV CS to the SPS object CS can be
obtained as follows (Figure 5):

HCSAUV_i ,CSob_id = (HCSad ,CSAUV_i )
−1·HCSad ,CSob_id (5)
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Other Methods for Calculating the Transformation from the AUV CS to the CS of the
SPS Object

When there are more than three points of the SPS object identified in the 3D cloud, to
calculate the transformation matrix HCSAUV_i ,CSob_id , a standard method can be applied to
minimize the total discrepancy between the two matched sets of points that overlap within

one coordinate space: min
n
∑

k=1
‖Pk − Ck HCSAUV_i ,CSob_id‖; here, Pk and Ck are the matched

points of the object model and the 3D cloud, respectively. An alternative method for finding
the matrix can also be utilized: the method for the fast computation of the local matrix of
geometric transformation [36].

2.4. Calculation of the AUV Coordinates in the SPS CS

The parameters of the AUV’s movement during the SPS inspection are computed
using the visual navigation method, which ensures the calculation of the coordinates in the
CS connected to some initial position of the trajectory (relative motion). These coordinates
are transformed to the CS of the SPS object via the previously obtained transformation
HCSAUV_i ,CSob_id . However, a one-time referencing of the AUV to the SPS CS (at the beginning
of the inspection) is inadequate, since the visual navigation method is known to accumulate
errors when long-term displacements occur. Hence, in accordance with the suggested
procedure, the coordinate referencing of the AUV to the SPS shall be performed regularly
to avoid the massive accumulation of navigation error due to the visual navigation method.
Then, the AUV coordinates in the current trajectory position, derived using the visual
navigation method, shall be recalculated to the SPS CS with the use of the last obtained
transformation (2), as follows:

HCSAUV_j ,CSob_id = (HCSAUV_i ,CSAUV_j)
−1·HCSAUV_i ,CSob_id (6)

where j—current position of the AUV, i—position of the last coordinate referencing of the
AUV to the CS of the SPS object, and HCSAUV_i ,CSAUV_j —a product of local matrices Hl,l+1
computed by the method of visual navigation in each position (from pos. i to pos. j) of the
trajectory.

To conclude the discussion of the suggested method of coordinate referencing, we
present the following summary. We used a small number of FPs of the model with known



J. Mar. Sci. Eng. 2021, 9, 1038 12 of 18

absolute coordinates only to optimize the search for FPs of an object in the 3D cloud.
Recognizing multiple FPs of an object then allows the AUV to reference the object and
work in its coordinate system. Knowledge of the absolute coordinates of the FPs of the
object is not required with this approach, and nor is knowledge of the absolute coordinates
of the AUV (due to the inevitable accumulation of error of absolute coordinates for visual
odometry). Even if the SPS object is displaced from its original state, the coordinate
reference of the AUV to that SPS object will not be affected.

3. Experiments

Since operations with a real AUV are quite expensive, we carried out computational
experiments on model scenes (Figure 6) (in the simulator for an AUV [37]) and with real
data obtained using a Karmin2 camera (Nerian’s 3D Stereo Camera, baseline 25 cm) in
laboratory conditions. The parameters of the used PC were as follows: AMD (Advanced
Micro Devices) Ryzen 7 3700X 8-Core Processor 3.60 GHz, 32Gb, AMD Radeon 5600XT
(Advanced Micro Devices, Santa Clara, CA, USA). Although the experiment with the
Karmin2 camera was not conducted in an underwater environment but in a laboratory
environment, it was useful because it allowed us to evaluate the effectiveness of the basic
algorithms via calibration of a real camera (which was not ideal, as for a virtual scene). Two
series of experiments were carried out. In the experiments of the first series, the error of
the proposed method for the direct coordinate referencing of the AUV to the CS of the SPS
object was estimated. The maximum navigation error of the AUV when moving along the
expected trajectory in the SPS space was estimated in the experiments of the second series.
When carrying out model experiments, it was assumed that the AUV was equipped with
thrusters, could be controlled with five degrees of freedom (5-DOF), and had the ability to
move in the speed range of approximately 0–2 m/s, which is optimal for this type of work.
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3.1. Experiments with a Virtual Scene

The virtual SPS included seven objects (production center manifold and wells)
(Figure 1). In the model, 50 points were specified and evenly distributed over the ob-
jects.

A real texture was used in the digital seabed elevation model. The virtual camera
parameters were as follows: the image resolution was 1024 × 768, the pixel size was
0.2 mm, the focal length was f = 100 mm, and the photography frequency when the AUV
moved along a trajectory was 10 Hz. The AUV movement speed was set at approximately
0.2–0.5 m/s. Taking into account the fact that SPS objects are significantly far apart in
space (the distance between objects is up to 50 m), trajectories with different heights of the
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passage of the AUV over the SPS were tested. For a high altitude position of the AUV in
relation to the SPS, several SPS objects with visible FPs fell into the camera’s field of view.
However, only movements at heights of 5 m or less were of practical importance, because
movement at high altitudes is of little use due to the possible turbidity of the water at the
work site. In addition, problems arose with the organization of lighting. At a low height
(<5 m), no more than one object with a small number of FPs fell into the camera’s field of
view (Figures 6 and 7).
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are marked in white. Points belonging to SPS objects are marked in black. Six points belonging to SPS have been identified.

The geometric transformation matrix between the CS of the camera and the CS of
the object was calculated in the experiment of the first type, using the described method
from the identified SPS points in a 3D cloud based on a stereo pair of images (Figure 7). To
calculate the matrix, the three most reliable points were selected from the set of identified
FPs. Since the calibration of the stereo camera was known, before building the 3D cloud, the
set of FPs was filtered based on the verification of the epipolar correspondence. Then, the
calculated matrix was used to estimate the location error of FPs. The error was calculated
as the difference between the calculated coordinates and the FP coordinates in the model
(in the CS of the object). The resulting errors were in the range of 1.6–4 cm for a depth
range of 2–5 m (this corresponds to the height of the AUV above the seabed).

In the second experiment, the movement of the AUV was carried out in a virtual scene
along a trajectory that was 200 m long, with periodic coordinate referencing of the AUV to
the CS of the object. The calculation of the trajectory while driving was carried out using
the visual navigation program (visual odometry). The first goal of the experiment was to
evaluate the effectiveness of the proposed method of object recognition and referencing
to the object. Since the accumulation of navigation accuracy errors, generated by the
visual method, occurs during the long-term movement of the AUV, the second goal of
the experiment was to evaluate the effectiveness of the technique of regularly linking the
AUV to the object. Presumably, the referencing should periodically clear the accumulated
error and thus provide “constant” AUV navigation accuracy. In this case, the error in the
accuracy of navigation is the sum of the error in the method of binding the AUV to the CS
of the object and the error in the visual navigation method used. The time between adjacent
bindings varied from 0 to 40 s. The error generated by the visual navigation method for
a period of 40 s did not exceed 2 cm. Taking into account the fact that the error of the
referencing method obtained in the first experiment was in the range of 1.6–4 cm (for a
trajectory height of 2–5 m above the bottom), the total error was in the range of 3.6–6 cm.
Thus, the experiments showed that the regular updating of the bindings in a predictable
way limits the increase in accumulated navigation error.
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3.2. Experiments with the Karmin2 Camera

In the first experiment, the instantaneous coordinate referencing of the camera to the
CS of a complex of six objects was evaluated (Figure 8). According to the experimental
technique, the operator indicated the characteristic points that belonged to the objects and
represented the geometric model of the objects. The coordinates were directly measured in
the fixed CS of the complex of objects.
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Figure 8. In the photo taken by the Karmin2 camera, the desired objects are marked: A–F. Points belonging to the desired
objects (model) are marked in black. Their number is 48, as indicated by the operator showing eight on each box. Of these,
33 points fell into the camera’s field of view: on object A—7, on B—7, on C—6, on D—2, on E—4, on F—7. The coordinate
system (CS), in which all points of objects (model) were set, was built on three corner points of object A. The points built by
the Harris detector are marked with white circles. There are 89 of them in the scene.

After using the Harris detector to produce the stereo pair images of the special points,
which was achieved by calculating their 3D coordinates and processing via the described
method, a set of points belonging to objects and compared with the model were identified
(Figure 9). From this set, a set of three points was selected to calculate the matrix of the
geometric transformation of the coordinates of points from the CS of the camera to those
from the CS of the complex of objects. The calculated matrix was further used to estimate
the error in the calculated location of all points of the object model.
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Figure 9. The figure shows the points identified in the 3D cloud (marked in black) as belonging to the sought objects. Their
number was 13: on object A—2, on B—3, on C—3, on D—1, on E—1, on F—3. The matrix connecting the CS of objects
with the CS of the camera was calculated by 3 points (they are marked with numbers 1, 2, 3), which were selected by the
algorithm from the found points.

The camera parameters used were as follows: the image resolution was 1600 × 1200,
the pixel size was 4.45 µm, the focal length was 6 mm and the shooting frequency was
fps = 10. At a distance of 3–3.5 m from objects in the scene (which corresponds to the height
of the AUV’s passage above the seabed), the measured errors were in the range of 1–3 cm
(0.3–0.86%). In the experiment with a distance from the objects of 1.5–2 m, the error did not
exceed 0.5 cm (0.25–0.33%).

In the second experiment, the camera was moved manually to the height of 1.5 m,
starting from the floor and traveling along a trajectory that was 30 m long, at a speed of
≈0.25 m/s. The regularity of the referencing of the AUV to an object was set by the tuning
parameter of the method. In this experiment, the coordinate referencing was updated every
10 m to prevent the accumulation of the errors generated by the visual method.

The error was calculated as the difference between the calculated and the directly
measured coordinates (in the CS of the object). The accumulated error during movement
was within 2 cm. Thus, the resulting navigation error did not exceed 2.5 cm.

3.3. The Discussion of the Results and Comparison with Other Approaches

An inspection mission requires the recognition of underwater objects and the precise
localization of the AUV in the object’s coordinate space. In the performed experiments,
the SLAM algorithm was used to calculate the trajectory of the AUV (author’s imple-
mentation, [34,36]). However, the emphasis in this work is on the method proposed for
recognizing an underwater object using an estimate of AUV position in the CS of an SPS
object.

There are many works on 3D object recognition in underwater scenes, and many
proposed methods in this area. Many existing methods focus on a specific type of object
or scene, or require prior segmentation. A more universal approach was proposed in [38].
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Here, recognition is based on the recognition of pipes, planes and their combinations, with
the simultaneous creation of library models, which makes it possible to recognize more
complex scenes later. In [18], an overview and a comparison of state-of-the-art methods
for object recognition are provided, which are intended to assist AUVs in performing
autonomous interventions in underwater inspection, maintenance and repair applications.
At the conceptual level, a typical local feature-based 3D object recognition system consists
of three main phases: 3D keypoint detection, local surface feature description and surface
matching. A detailed description of some of the methods can be found in [39]. The
surface feature description stage extracts geometric information that is encoded into a
representative feature descriptor. In addition to characteristic points, surface curvature,
edges and contour information, specific surface elements are used as 3D shape feature
objects. At the stage of “surface matching”, the object is recognized directly using the
existing model (or library of models). As noted in [18], the main bottlenecks of existing
methods include the presence of occlusions and the high computation cost in scenes.
Comparing the method proposed in this article with those considered above, we note
the following. The proposed recognition method, based on the model represented by
characteristic points, corresponds to the general approach, but without reference to specific
surface shapes. The main difference is associated with the specific formulation of the
problem (the presence of several points of the object with absolute coordinates), which
made it possible to implement an effective algorithm for finding points in a 3D cloud
corresponding to the model. Compliance is based on the implementation of the structural
coherence criterion. Efficiency is achieved due to the construction of limited shells in 3D
space, within which the search for points associated with the model is carried out. This
method of searching for points firstly reduces the likelihood of erroneous comparisons,
and secondly reduces the amount of checks and associated computations. The experiments
carried out (on two types of scenes) confirmed the efficiency of the proposed method
for underwater inspection with an acceptable navigation accuracy and a relatively low
computational complexity. Using the technique of the regular binding of the AUV to the CS
of an SPS object enabled the elimination of the accumulated visual odometry error during
movement, and the planning of the trajectory in the space of the scene with predictable
accuracy, which is necessary for the reliable implementation of inspection missions with an
autonomous robot.

Of course, as many researchers note, in a real underwater environment, the negative
influence of the external environment (low illumination, turbidity of water, currents) limits
the effectiveness of visual methods of navigation and object recognition. However, it is
possible to reduce this negative impact through special techniques; in particular, methods
based on data filtering. For example, in [40], the authors proposed an approach that allows
satisfactory visual navigation in an environment when visibility conditions are far from
ideal. The method discussed in our work is based on processing a 3D point cloud obtained
in a standard way using the SURF detector. Therefore, we believe that the more thorough
filtering of data can improve the quality of the initial 3D data and accordingly keep the
efficiency of the method at an acceptable level. It is also possible to take into account the
influence of currents in the method due to the corresponding correction. These issues will
be addressed in future work.

4. Conclusions

The paper presents a new approach to ensuring accurate AUV navigation in the SPS
coordinate space when performing underwater inspection based on processing stereo
images. Its distinctive features are as follows:

1. The object recognition algorithm uses a predetermined 3D point model of the object,
in which there are a limited number of characteristic points with known absolute
coordinates;

2. The method uses a structural coherence criterion when comparing the 3D points of
an object with a model;



J. Mar. Sci. Eng. 2021, 9, 1038 17 of 18

3. The method references the AUV coordinate matrix to the object using the matched
points;

4. High accuracy during the continuous movement of an AUV in SPS space is ensured
by regular referencing to the SPS object coordinate system.

The experiments carried out on the model scenes and the local experiment performed
with the real data in principle confirmed the appropriateness of the suggested method
and its potential effectiveness for SPS applications. The method can also be applied when
inspecting other artificial objects for which there is an a priori model.

The further development of this work will involve conducting underwater experi-
ments to study the effect of ocean currents and water turbidity on navigation accuracy.
It is also planned to improve the algorithmic base by: (a) including the visible edges of
the object in the object model; (b) using the semi-automatic formation of the object model
derived from the images of the preliminary AUV trajectory, and (c) taking into account the
“loop closing problem”.
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