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Abstract: Newborns defined as being of “low birth weight” (LBW) or “small for gestational age”
(SGA) are global health issues of concern because they are vulnerable to mortality and morbidity.
Prenatal exposures may contribute to LBW/SGA. In this review, we searched peer-reviewed scientific
literature to determine what location-based hazards have been linked with LBW/SGA in the
industrialized nations of Canada and the USA. After selecting studies based on inclusion/exclusion
criteria, we entered relevant details in to an evidence table. We classified and summarized 159 articles
based on type of environment (built = 108, natural = 10, and social = 41) and general category
of environmental variables studied (e.g., air pollution, chemical, water contamination, waste site,
agriculture, vegetation, race, SES, etc.). We linked the geographic study areas by province/state to
political boundaries in a GIS to map the distributions and frequencies of the studies. We compared
them to maps of LBW percentages and ubiquitous environmental hazards, including land use,
industrial activity and air pollution. More studies had been completed in USA states than Canadian
provinces, but the number has been increasing in both countries from 1992 to 2018. Our geographic
inquiry demonstrated a novel, spatially-focused review framework to promote understanding of the
human ‘habitat’ of shared environmental exposures that have been associated with LBW/SGA.

Keywords: environmental health; adverse birth outcomes; small for gestational age; low birth weight;
exposome; planetary health; Canada; USA

1. Introduction

An underlying premise of environmental health and epidemiology involves place—where one
lives and where one starts out in life, even during in utero development, ultimately determines lifelong
health [1,2]. The embryo and fetus are susceptible to toxicant exposure and other environmental
influences on the mother during crucial stages of pregnancy [3–6], which may lead to babies being
born too small, or too early. Because they are important markers of infant survival, development, and
future health, newborns that are too small are a serious source of emotional and economic stress on
society—hundreds of millions of dollars are spent on specialized equipment and treatments within the
first several years of life [7,8]. The Barker hypothesis [9] evolved from studies on low birth weight (as
well as premature birth and intrauterine growth restriction) that found significant associations with
adult hypertension, coronary heart disease, and non-insulin-dependent diabetes [10–12]. The suspected
exposures associated with these birth outcomes are widespread, thus heightening the importance of
early life health impacts.
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The World Health Organization identifies babies born too small as an issue of global health
concern, and one that is to be monitored under Sustainable Developmental Goal (SDG) 3 to
“ensure healthy lives and promote wellbeing for all at all ages” (www.who.int/sdg/targets).
The definitions include:

• Small for gestational age (SGA), which are infants born with a birth weight <10th percentile of a
reference population for sex-based gestational age (22 to 42 weeks gestation); and

• Low birth weight at term (LBWT), which are infants born with a birth weight <2500 g, and may
or may not be at full term (37–42 weeks gestation) [13–15]. Figure 1 graphically defines SGA and
LBW at term.
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psychosocial (e.g. socioeconomic status (SES) and stress), obstetric, antenatal care, and toxic 
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Globally, the rate of SGA in low- and middle-income countries is around 27% of all live births 
(varying between 1.2% to 41.5% in Sahelian countries of Africa and south Asia): in 2010, 32.4 million 
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Figure 1. The set of birth weight–for–gestational age standards below the 10th percentile birth weights
describes small for gestational age (SGA) in the purple curve; low birth weight at term (LBWT) is a
subset of SGA in the green shaded rectangle.

SGA and LBWT are not homogeneous pregnancy outcomes because they may consist of
both infants born too early (known as preterm birth) or too small, (typically due to fetal growth
restriction) [13,16]. The etiologies are multifactorial, where the most important maternal risk
factors are tobacco smoking, nutrition, pre-pregnancy weight, ethnic origin, short maternal stature,
and pre-existing health conditions [16–19]. Other risks include genetic and constitutional, demographic
and psychosocial (e.g., socioeconomic status (SES) and stress), obstetric, antenatal care, and
toxic exposures.

Globally, the rate of SGA in low- and middle-income countries is around 27% of all live births
(varying between 1.2% to 41.5% in Sahelian countries of Africa and south Asia): in 2010, 32.4 million
babies were SGA [20]. LBW (all gestational ages) occurred in 15% of all births, mostly in low- and
middle-income countries (mostly south Asia) [21]. Of 18 million low-birthweight babies, 10.6 million
were born at term. In the United States of America (USA) in 2005, SGA was 10% [22] and LBW was
8.2% [23]. In Canada in 2005, SGA was 8.4% [24] and LBW was 6.0% [25]. Although Canada is lower
than the world and U.S., disorders related to short gestation and low birth weight are consistently
ranked 2nd out of the 71 leading causes of infant death [26], and their prevalence has been increasing
since 2000 [24].

Figure 2 shows the geographic distribution of LBW by Canadian province and U.S. state for the
years 2005 and 2016 (values for SGA unavailable). The above nationwide 2005 statistics are relevant
for Figure 2a, where it can be observed that Alberta (AB), Ontario (ON), and Nunavut (NU) are higher
than Canada overall, and the majority of the southern and eastern states (n = 27) are higher than
USA overall.
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Given that many areas are close to or exceeding the overall national percentages, and are increasing
over time as indicated by the higher number of provinces and states above 6.4 % in Figure 2, it is
valuable from a public health perspective to understand the patterns and processes involved in being
born too small.

SGA/LBW and their association with the environment necessitate an interdisciplinary research
approach with integration of knowledge from medicine and geography. Medical geography is a holistic
investigation of health using concepts and methodologies from geography, which also encompasses
the social, physical, and biological sciences [27].

Informed by the earlier work of May—who stated that to understand disease as a biological
expression of maladjustment, an ecological (i.e., ecosystem-based) study must involve the environment,
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the host, and the culture [28]—Meade proposed the triangle of human ecology as the framework for
the state of human health [27,29]. Meade’s vertices are therefore anchored to:

• Habitat—the natural, social, and built environments where people live.
• Population—people (hosts) as biological organisms structured by age, gender, and genetics.
• Behavior—visible part of culture including beliefs, social organization, and technology.

These three points influence each other and the state of health, as can be seen when modelling and
summarizing what is known about neonatal outcomes and maternal exposure to outdoor pollution
(Figure 3). The primary population consists of pregnant mothers and their defining individual
characteristics of varied ages, pre-existing health conditions and genetic makeup, with the location
of where they live and work depending on their social and economic behaviors (i.e., nutritional
status, access to quality health services). More research is needed that focuses on the lesser-studied
habitat vertex, more specifically, the outdoor environment, since much less attention has been given
to integrating ecological factors for understanding disease [27]. The location aspect of habitat (i.e.,
geography)—where mothers live, where industry and services are situated, where demographic
groups congregate, and for many scales—is important to clinicians and specialists in environmental
health, and to exposure assessment, epidemiologists, biostatisticians, and health analysts.
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Geography and environmental health are inextricably linked. Environmental health, as defined
by the World Health Organization, “comprises those aspects of human health and disease that
are determined by factors in the environment, and includes both the direct pathological effects
of chemicals, radiation and some biological agents, and the effects (often indirect) on health and
wellbeing of the broad physical, psychological, social and aesthetic environment, which includes
housing, urban development, land use and transport” [30]. Environmental human health is implicit
in the all-encompassing planetary health, “formally defined by the invivo Planetary Health network
as the interdependent vitality of all natural and anthropogenic ecosystems (social, political and
otherwise)” [31,32]. These concepts are not new—Hippocrates, the father of medicine, c. 460–c. 370 BC,
understood the important interconnections of environment and health, in his “Airs, Waters, and
Places” [33]. Hazards in those airs, waters, and places comprise the chemical, physical, and biological



Challenges 2019, 10, 11 5 of 29

aspects that insult human health [27]. Many hazards have been known for centuries (e.g., lead,
radiation, microorganisms), but they are only effective in altering health if an individual is exposed
to them.

Exposure is the occurrence of a person coming into contact (via air, water, or skin) with a dose
(requisite amount) of a toxicant (substance that produces a health effect) and may be isolated, repeated,
or continual [34]. The health outcome can only occur if a person is exposed to the integral dose of a
hazard for the crucial amount of time. These ideas are directly applicable to being born too small; the
system can be simplified as follows:

Hazard (environment) → Exposure (prenatal) → Outcome (SGA/LBW)

The measure of the total environmental exposures of an individual in a lifetime, and how those
exposures relate to health, contribute to the human exposome. Evaluating the impact of the exposome
is a concept of planetary health, and illuminating the exposures may contribute to understanding
disease prevention [32]. This interdependence between human health and place brings us full-circle to
early-life location-based exposures on pregnant mothers that may lead to really small newborns.

Mechanisms that trigger adverse birth outcomes, such as being born too small, among
mothers exposed to hazards and pollutants are not well understood, but are suspected to include
inflammation, direct toxic effects on the placenta and the fetus, interruption of oxygen-hemoglobin
interaction, and damage to DNA [35–37]. Environmental associations differ among SGA and LBW,
enhanced by temporal variations in exposures, personal characteristics (mothers’ health, nutrition,
and demographics) and external factors such as region and socioeconomic status (SES), [3,4,38].

Reviewing the published literature allows us to identify where information gaps exist, and
also to determine whether the prevalence of the problem matches the number of existing published
studies. This review serves to highlight environmental hazards, specifically, the shared exposures of
the outdoor environment that have been associated with LBW and/or SGA newborns in Canada and
the USA. Mapping the results will characterize where and how much LBW/SGA has been studied
in the majority of industrialized North America and what and where the environmental factors are
found to be important. The interested reader may use the maps as guides to what and where potential
research gaps warrant further medical geographic inquiry.

2. Methods

2.1. Data Sources

Following the methodology proposed by Arksey and O’Malley [39], we searched bibliographic
databases (PubMed, Web of Science, Scopus, Google Scholar, Taylor and Francis, and environmental
health journal websites) to identify English-language, peer-reviewed, original research articles on
outdoor environment and really small newborns. The Venn diagram in Figure 4 displays the search
keywords that were used for the health outcome: (low) birth weight, small for gestational age;
environmental variable: air pollution, agriculture (herbicide, pesticide, fertilizer), lead, mine, natural
gas, road, traffic, (power) transmission, waste, water (contamination), socioeconomic, greenness;
and any geographic extent within Canada or the USA (we read titles, abstracts and methods sections
to ascertain the study country). We limited the study years to between 1990 (geographic-type analyses
were rare prior) and 2018 (current year).
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Figure 4. The keywords used in the literature search for studies associating outdoor environment and
really small newborns are grouped by topic: health outcome (top), environmental variable (left), and
geographic extent (right).

2.2. Study Selection and Data Extraction

We entered the articles with abstracts including both ABO and any environmental variable
keywords in to Mendeley reference manager (www.mendeley.com), and tagged to identify 1 = North
American and 2 = ABO. We read full articles that met the inclusion/exclusion criteria—must be
Canada/USA, LBW/birth weight/SGA, and outdoor environment—and extracted the following data
to a spreadsheet, formatted as the evidence table: year; study identifier; health outcome; detailed
variable(s); and geography. To aid in mapping, we standardized the geography to the province or state
level using the abbreviations shown in Appendix A (Table A1), regardless of whether the study was in
a city, county/region, or larger administrative unit. We classified the variables in to general categories
similar to the keywords, and then further generalized the environment as built, social, natural, or none.
We summarized frequency statistics for the various studies. Then, we replicated records where there
was more than one state or province involved in the study (e.g., a study on BC, Alberta, Manitoba,
and Ontario [40] was copied to four rows in the table, one for each province) and generated a pivot
table for each category or environment so that we could reliably map these for all locations.

2.3. Mapping

Using ArcGIS 10.6 [41], we joined the pivot table to the map of political boundaries provided
by the Commission for Environmental Cooperation (CEC) [42] and created choropleth maps using
four categories for the number of studies from all the selected articles—1, 2, 3, and 4 or more—labeled
hereafter as frequency maps. We also mapped land use, pollution release transfer reporting (PRTR)
industrial facilities [42], and satellite-based particulate matter [43]. To identify future research
opportunities, these maps are compared with the 2005 and 2016 LBW percentages in Figure 2. Similarly,
we visualized the frequency of studies on the built, natural, social environment, as well as those for
studies related to air pollution, agriculture, chemical, vegetation, and individual factors.

3. Results and Discussion

The number of articles we selected for inclusion are documented in Figure 5. From the 159
included studies, associations were examined for built (n = 108), natural (n = 10), and social (n = 41)
environmental variables.

www.mendeley.com
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Figure 5. Flow diagram documenting the selection of published studies within Canada and the USA,
between 1990 and 2018, for examining associations of the outdoor environment with low birth weight
(LBW), birth weight (BW), and small for gestational age (SGA).

3.1. Outcomes and Variables

Table A2 lists all 159 studies selected for inclusion. The environmental hazards were identified
as the following general categories of variables (from most-to-least frequent): air pollution (n = 53),
SES (n = 17), chemical (n = 16), race (n = 11), individual (n = 10), water contamination (n = 9), waste site
(n = 8), vegetation (n = 8), agriculture (n = 6), roads (n = 3), urban-rural (n = 3), food (n = 2), mining
(n = 2), neighborhood (n = 2), weather (n = 2), immigration (n = 2), alcohol (n = 1), noise (n = 1), power
(n = 1), transmission lines (n = 1), health care (n = 1). Note that we also included articles that studied
birth weight (BW; n = 38) and intrauterine growth restriction (IUGR; n = 4) because they are interrelated
with LBW (n = 72) and SGA (n = 27). There were also studies on both LBW and SGA (n = 18). Figure 6
shows how published research has increased over time from 1992 to 2018, with a peak in the year 2012.
Individual states (n = 110) had more studies than Canadian provinces (n = 32), while all of USA (n = 8)
and all of Canada (n = 8) were equal, with one study that included both countries.
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3.2. Spatial Associations

The following maps summarize findings from the included studies. Figure 7 maps locations
and frequencies of the selected studies across North America; the distribution shows that LBW/SGA
research has been conducted in six provinces and 41 states. Upon visually comparing Figure 7 with
Figure 2 percentages, we observe that, despite the efforts, there are many regions with LBW and very
low numbers of studies on the topic.Challenges 2019, 10 FOR PEER REVIEW  8 

 

Figure 7. Geographic distribution and number of studies in provinces/states for the 159 candidate 
studies across Canada and the USA. Frequency classes standardized across all maps to intuit where 
the health issue is of interest (1), emerging (2), concern (3), or potential problem (4 or more). 

The distributions of the types of environment (built, natural, and social) are shown in Figure 8. 
Figure 9 displays the most frequently studied categories. 

   
(a) (b) (c) 

Figure 8. Geographic distribution of published studies by environment: (a) built; (b) natural; and (c) 
social. Frequency classes standardized across all maps to intuit where the health issue is of interest 
(1), emerging (2), concern (3), or potential problem (4 or more). 

  
(a) (b) 

Figure 7. Geographic distribution and number of studies in provinces/states for the 159 candidate
studies across Canada and the USA. Frequency classes standardized across all maps to intuit where the
health issue is of interest (1), emerging (2), concern (3), or potential problem (4 or more).

The distributions of the types of environment (built, natural, and social) are shown in Figure 8.
Figure 9 displays the most frequently studied categories.
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Figure 9. Geographic distribution of the most frequently published categories of (a) air pollution;
(b) chemical; (c) agriculture; (d) vegetation; (e) waste site; (f) water contamination; (g) race; and (h)
SES. Frequency classes standardized across all maps to intuit where the health issue is of interest (1),
emerging (2), concern (3), or potential problem (4 or more).

For comparison purposes, the major land use classes, industrial facilities, and particulate matter
distributions are mapped in Figure 10. Visual assessment highlights that the states and provinces
having higher percentages of LBW in Figure 2 coincide with the same areas having relatively more
proportions of urban, agriculture, industry, and PM2.5. Inspection of the distribution of studies in
Figure 7 through Figure 10 with Figure 4 shows there are clearly areas requiring future research,
especially Canada’s northern territories and the states bordering the Mississippi River.

3.3. Environmental Variables

The cumulative evidence suggested associations among outdoor environmental hazards and
LBW/SGA in Canada and the USA. Most of the studies found that LBW/SGA varied with air
pollution gases and/or particles depending on the trimester/gestation. Anthropogenic air pollution
originates from industrial/traffic emissions and includes gaseous components—sulfur dioxide (SO2),
carbon monoxide (CO), nitrogen oxide (NO), nitrogen dioxide (NO2), ozone (O3)—and particulate
matter (PM)—PM2.5 particles with aerodynamic diameter ≤ 2.5 µm and PM10 particles ≤ 10 µm.
Electromagnetic frequencies from powerlines was not found to be important, nor was proximity to gas
stations, but proximity to roads and waste sites were. The strength of association in the studies varied
greatly and had limitations due to sampling, spatial resolution, availability of confounding factors,
and inability to quantify duration and intensity of exposures.

Many of the previous studies linked individual or small subsets of factors; however, all factors can
be modelled as vertices of the triangle of human ecology, synthesizing the complex disease ecology and
advancing hypotheses [27]. As Table A2 exemplifies, the majority of air pollutants under investigation
consisted of traffic-related air contaminants. A handful of studies targeted agricultural activities, heavy
metals and/or industrial activities. More research is needed on assessing the spatial relationships
of the actual chemicals involved in those industrial activities, especially the known or suspected
developmental toxicants. Similarly, the combined effect of multipollutant exposures are still relatively
unknown. Water contamination was another challenging variable, and King et al. [44] stressed the
importance of household rather than distribution system sampling, making it difficult to efficiently
study at a population level. Socioeconomic inequalities in LBW showed strong associations, and was
larger in the United States than Canada, likely due to differing health care systems [45].
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Figure 10. Selected environmental variables of interest in the SGA/LBW studies for Canada and
USA of: (a) land use classes; (b) industrial facilities in pollutant release transfer reporting (PRTR); (c)
common air pollutant – particulate matter particles with aerodynamic diameter ≤ 2.5 µm, (PM2.5) for
2005; and (d) PM2.5 for 2016.

3.4. Exposure Assessment

Note that only English-language, peer-reviewed journal articles were selected; other literature
sources have not been included here. Missing publications in other languages causes a conceptual
bias, as they contribute to the overall understanding of birth weight and the environment; here,
the geographic attention provides an up-to-date review on the predominantly English-publishing
countries of Canada and the USA. The focus on shared sources of exposures from the outdoor
environment allowed the researchers to incorporate spatial methods (i.e., GIS) in their studies, which
was advantageous, especially because they facilitated several steps in exposure assessment [46].
GIS can define epidemiologic study populations, identify source and potential routes of exposure,
estimate environmental levels of target contaminants, and estimate personal exposure. The studies
reviewed here applied the spatial methods of coincidence, proximity, and surface predictions to
identify and estimate exposures at different scales. Postal code/zip code and county-level geography
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was helpful for understanding broad population patterns, but it will be worthwhile for future studies
to analyze all scales with greater detail. Woodruff et al. [47] hypothesized that geographic scale
was important in adverse birth outcome studies, proposing that smaller scales are useful to better
understand biological mechanisms and apply to local policies, and larger scales are useful to look at
population-level factors and apply to regional policy. For many of the studies, the proximity measures
would benefit from increased resolution as well. An increasing number of studies are incorporating
land-use regression modelling, a promising method for advancing the knowledge of exposures
assessment. Analyses should also more fully integrate the socioeconomic and maternal/paternal
factors, improve methods for quantifying duration and intensity of exposure, and adjust for residential
mobility [35,48–50]. As previous non-spatial reviews have also stated, biological mechanisms still
remain to be fully understood.

3.5. Protective Variables

Overall, the studies contribute to the evolving evidence that maternal exposure during pregnancy
to varying levels of ambient air pollutants is associated with LBW/SGA. An interesting finding is
the increase in studies on protective exposures, such as greenness—natural environments promote
resiliency and prevent disease, further supporting the concept of planetary health.

4. Conclusions

We compiled previous spatial research on the outdoor environment and really small newborns,
and through the use of maps, we presented the parameters that help with understanding how
important the ambient environment is and the correspondingly valuable question of location. Such
a spatially-focused review, to our knowledge, has not been seen in the literature, and we hope we
have provided a useful framework for other countries to better understand environmental associations
with the important global health issue of LBW and SGA newborns. North American researchers may
consult these maps to aid in understanding their particular study areas.

It is hoped that our review and maps may assist healthcare professionals, in Hippocrates-style,
by providing them with what location-based variables may be associated with their patients’ health
issues, as well as informing the public that where they live is as important to their current and future
family health as what they eat and do. Our focus on environmental associations was not able to
account for nutrition, maternal health, or occupation, but those studies conversely rarely accounted
for outdoor exposures. Each contributes pieces to the exposome puzzle. Medical researchers are
provided with more motivation for studying which components of outdoor environmental exposures
may cause reduction in neonatal weight, a condition that, if prevented, will diminish future adverse
health, such as adult cardiac disease, diabetes, and other non-communicable diseases that require a
strong healthy start in life. Policy makers and planners (health, urban, transportation, industrial) may
use this information for mitigating developments to reduce environmental effects on places where
pregnant mothers (and everyone else) live. For example, existing land use may need to be altered over
time depending on the proximity of industrial activities and residential areas.

May this research add to the many needed arguments for reducing the most widespread source
of hazardous exposures—outdoor environmental pollution—in the places where one lives and starts
out in life, to promote a more positive state of planetary health for all.
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Appendix A

Table A1. Abbreviations for Canadian provinces and USA states.

Country Province/State Abbreviation

Canada

Alberta AB

British Columbia BC

Manitoba MB

New Brunswick NB

Newfoundland and Labrador NL

Northwest Territories NT

Nova Scotia NS

Nunavut NU

Ontario ON

Prince Edward Island PE

Quebec QC

Saskatchewan SK

Yukon Territory YT

USA

Alabama AL

Alaska AK

Arizona AZ

Arkansas AR

California CA

Colorado CO

Connecticut CT

Delaware DE

District of Columbia DC

Florida FL

Georgia GA

Hawaii HI

Idaho ID

Illinois IL

Indiana IN

Iowa IA

Kansas KS

Kentucky KY

Louisiana LA

Maine ME

Maryland MD

Massachusetts MA

Michigan MI

Minnesota MN

Mississippi MS

Missouri MO

Montana MT

Nebraska NE

Nevada NV

New Hampshire NH

New Jersey NJ

New Mexico NM

New York NY

North Carolina NC

North Dakota ND

Ohio OH

Oklahoma OK

Oregon OR

Pennsylvania PA

Rhode Island RI

South Carolina SC

South Dakota SD
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Table A1. Cont.

Country Province/State Abbreviation

Tennessee TN

Texas TX

Utah UT

Vermont VT

Virginia VA

Washington WA

West Virginia WV

Wisconsin WI

Wyoming WY
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Appendix B

Table A2. List of 159 identified studies examining birth outcomes and the environment.

Year Study Outcome 1 Environment Category Variable(s) Geography 2

2000 Xiang et al. 2000 [51] LBW built agriculture crops CO

2010 Fenster et al. 2010 [52] LBW, BW built agriculture agricultural occupation CA

2010 Sathyanarayana et al. 2010 [53] LBW built agriculture pesticides NC

2013 Gemmill et al. 2013 [54] BW built agriculture methyl bromide CA

2014 Almberg et al. 2014 [55] LBW built agriculture crops MO

2017 Larsen et al. 2017 [56] BW built agriculture pesticides CA

1999 Ritz et al. 1999 [57] LBW built air pollution CO CA

2000 Rogers et al. 2000 [58] LBW built air pollution SO2, TSP GA, SC

2001 Maisonet et al. 2001 [59] LBW built air pollution CO, SO2, PM10 CT, MA, PA, DC

2001 Vassilev et al. 2001 [60] SGA built air pollution polycyclic organic matter NJ

2003 Liu et al. 2003 [61] LBW, IUGR built air pollution CO, NO2, SO2, O3, PM10 Canada

2004 Basu et al. 2004 [62] BW built air pollution PM2.5 CA

2004 Lederman et al. 2004 [63] BW built air pollution urban disaster NY

2005 Salam et al. 2005 [64] LBW, IUGR built air pollution CO, NO2, O3, PM10 CA

2006 Dugandzic et al. 2006 [65] LBW built air pollution PM10, SO2, O3 NS

2007 Bell et al. 2007 [66] BW built air pollution CO, NO2, SO2, PM10, PM2.5 CT, MA

2007 Liu et al. 2007 [67] IUGR built air pollution CO, NO2, SO2, O3, PM2.5 AB, QC

2007 Williams et al. 2007 [68] BW built air pollution Pb, SO2 TN

2008 Brauer et al. 2008 [69] LBW, SGA built air pollution traffic BC

2008 Choi et al. 2008 [70] SGA built air pollution PAHs NY

2009 Currie et al. 2009 [71] LBW built air pollution industrial releases USA

2010 Morello-Frosch et al. 2010 [72] BW built air pollution CO, NO2, SO2, O3, PM10, PM2.5 CA

2011 Darrow et al. 2011 [73] BW built air pollution CO, NO2, SO2, O3, PM10, PM2.5 GA

2012 Berrocal et al. 2012 [74] BW built air pollution PM2.5 NC

2012 Ebisu et al. 2012 [75] LBW built air pollution PM2.5
CT, DE, MD, MA, NH, NJ, NY,

PA, RI, VT, VI, DC, WV

2012 Geer et al. 2012 [76] BW built air pollution CO, NO2, SO2, O3, PM10, PM2.5 TX

2012 Ghosh et al. 2012 [77] LBW built air pollution traffic CA

2012 Holstius et al. 2012 [78] BW built air pollution wildfires CA

2012 Kloog et al. 2012 [79] BW built air pollution PM2.5 MA

2012 Kumar et al. 2012 [80] LBW built air pollution CO, NO2, SO2, O3, PM10, PM2.5 IL

2012 Le et al. 2012 [81] SGA built air pollution CO, NO2, SO2, O3, PM10 MI

2012 Padula et al. 2012 [82] LBW built air pollution traffic CA

2012 Sathyanarayana et al. 2012 [83] SGA built air pollution NO2, PM2.5 WA
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Table A2. Cont.

Year Study Outcome 1 Environment Category Variable(s) Geography 2

2012 Wilhelm et al. 2012 [84] LBW built air pollution PM2.5, NO, NO2, PAHs CA

2013 Lee et al. 2013 [85] SGA built air pollution PM10, PM2.5, O3 PA

2013 Meng et al. 2013 [86] LBW built air pollution traffic ON

2013 Trasande et al. 2013 [87] LBW built air pollution CO, NO2, SO2, PM10, PM2.5, Pb, VOCs USA

2013 Warren et al. 2013 [88] LBW built air pollution O3 TX

2014 Basu et al. 2014 [89] LBW built air pollution PM2.5 CA

2014 Gray et al. 2014 [90] BW built air pollution PM10, PM2.5 NC

2014 Ha et al. 2014 [91] LBW built air pollution PM2.5, O3 FL

2014 Harris et al. 2014 [92] LBW built air pollution PM2.5 CT, ME, MN, NJ, NY, UT, WI

2014 Hyder et al. 2014 [93] LBW, SGA built air pollution PM2.5 CT, MA

2014 Porter et al. 2014 [94] LBW built air pollution industrial releases AL

2014 Vinikoor-Imler et al. 2014 [95] LBW, SGA built air pollution PM2.5, O3 NC

2015 Coker et al. 2015 [96] LBW built air pollution PM2.5 CA

2015 Poirier et al. 2015 [97] LBW built air pollution SO2, NO2, benzene, toluene, PM10,
PM2.5

NS

2016 Coker et al. 2016 [98] LBW built air pollution NO, NO2, PM2.5 CA

2016 Erickson et al. 2016 [99] BW built air pollution PM2.5, social BC

2016 Laurent et al. 2016 [100] LBW built air pollution PM10, PM2.5 CA

2016 Lavigne et al. 2016 [101] LBW, SGA built air pollution PM2.5, NO2, O3 ON

2016 Stieb et al. 2016 [102] LBW, SGA, BW built air pollution NO2, PM2.5 Canada

2016 Tu et al. 2016 [103] BW built air pollution O3, PM2.5 GA

2016 Twum et al. 2016 [104] LBW built air pollution PM2.5 GA

2017 Ha et al. 2017 [105] LBW, SGA built air pollution 11 criteria air contaminants and PM CA, DC, DE, FL, UT, IL, IN,
MA, MD, NY, OH, TX

2017 Jedrychowski et al. 2017 [106] BW built air pollution PM2.5, PAH NY

2017 Ng et al. 2017 [107] LBW built air pollution PM2.5 CA

2017 Nielsen et al. 2017 [108] LBW, SGA built air pollution industrial releases, built AB

2018 Gong et al. 2018 [109] LBW built air pollution industrial releases TX

2018 Seabrook et al. 2018 [110] LBW built alcohol alcohol ON

1992 Shaw et al. 1992 [111] BW built chemical chemical CA

1997 Philion et al. 1997 [112] SGA, IUGR built chemical lead BC

2004 Lawson et al. 2004 [113] BW built chemical occupational TCDD NJ, MO

2005 Perera et al. 2005 [114] BW built chemical ETS, PAH, pesticides NY

2008 Wolff et al. 2008 [115] BW built chemical phenols, phthalates NY

2010 Hamm et al. 2010 [116] BW built chemical perfluorinated acids AB

2010 Zhu et al. 2010 [117] BW built chemical metals: Pb NY
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Table A2. Cont.

Year Study Outcome 1 Environment Category Variable(s) Geography 2

2012 Aelion et al. 2012 [118] BW built chemical metals: As, Pb SC

2012 Rauch et al. 2012 [119] BW built chemical pesticides OH

2014 Mckenzie et al. 2014 [120] LBW built chemical natural gas CO
2015 Stacy et al. 2015 [121] SGA, BW built chemical natural gas PA

2015 Thomas et al. 2015 [122] SGA built chemical metals: Pb, Hg, Cd, As Canada

2016 Casey et al. 2016 [123] SGA, BW built chemical natural gas PA

2017 Whitworth et al. 2017 [124] SGA, BW built chemical natural gas TX

2018 Ashley-Martin et al. 2018 [125] BW built chemical metals: Mn QC

2018 Hill et al. 2018 [126] SGA built chemical natural gas PA

2008 Lane et al. 2008 [127] LBW built food food, social NY

2016 Ma et al. 2016 [128] LBW, BW built food food SC

2011 Ahern et al. 2011 [129] LBW built mining coal WV

2017 Ferdosi et al. 2017 [130] SGA built mining coal KY, TN, VA, WV

2011 Vinikoor-Imler et al. 2011 [131] LBW built neighborhood neighborhood NC

2012 Miranda et al. 2012 [132] LBW, SGA built neighborhood neighborhood NC

2014 Gehring et al. 2014 [133] LBW, BW built noise noise, traffic BC

2015 Ha et al. 2015 [134] LBW built power power plants FL

2003 Wilhelm et al. 2003 [135] LBW built roads roads CA

2008 Généreux et al. 2008 [136] LBW, SGA built roads roads, social QC

2012 Miranda et al. 2012 [137] LBW, SGA built roads roads NC

2011 Auger et al. 2011 [138] LBW, SGA built transmission lines transmission lines QC

1997 Larson et al. 1997 [139] LBW built urban-rural urban USA

2009 Auger et al. 2009 [140] LBW, SGA built urban-rural urban, social QC

2013 Kent et al. 2013 [141] LBW built urban-rural urban, social AL

1994 Sosniak et al. 1994 [142] LBW built waste site waste site USA

1995 Goldberg et al. 1995 [143] LBW, SGA built waste site waste site QC

1997 Berry et al. 1997 [144] BW built waste site waste site NJ

2003 Baibergenova et al. 2003 [145] LBW built waste site waste site NY

2006 Gilbreath et al. 2006 [146] LBW, IUGR built waste site waste site AK

2011 Austin et al. 2011 [147] LBW built waste site waste site NY

2014 Thompson et al. 2014 [148] LBW built waste site waste site TX

2016 Claus et al. Henn et al. 2016 [149] BW built waste site waste site OK

1997 Munger et al. 1997 [150] IUGR built water contamination herbicides IA

1998 Gallagher et al. 1998 [151] LBW built water contamination trihalmethanes CO

2005 Hinckley et al. 2005 [152] LBW, IUGR built water contamination trihalomethane, haloacetic acid AZ

2008 Aschengrau et al. 2008 [153] BW built water contamination tetrachloroethylene MA
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Table A2. Cont.

Year Study Outcome 1 Environment Category Variable(s) Geography 2

2009 Ochoa-Acuña et al. 2009 [154] SGA built water contamination herbicides IA

2012 Forand et al. 2012 [155] LBW built water contamination tetrachloroethylene and
trichloroethylene NY

2012 Savitz et al. 2012 [156] LBW, SGA built water contamination perfluorooctanoic acid OH

2013 Darrow et al. 2013 [157] LBW, BW built water contamination perfluorooctanoic acid and
perfluorooctane sulfonate OH

2015 Ileka-Priouzeau et al. 2015 [158] SGA built water contamination haloacetaldehydes, haloacetonitriles QC

2011 Donovan et al. 2011 [159] SGA natural vegetation greenness OR

2013 Laurent et al. 2013 [160] BW natural vegetation greenness CA

2014 Hystad et al. 2014 [161] SGA, BW natural vegetation greenness BC

2016 Ebisu et al. 2016 [162] LBW, SGA, BW natural vegetation greenness, built: urban CT

2017 Abelt et al. 2017 [163] LBW, SGA, BW natural vegetation greenness, blue space NY

2017 Cusack et al. 2017 [164] SGA, BW natural vegetation greenness TX

2017 Cusack et al. 2017 [165] BW natural vegetation greenness OR, TX

2018 Cusack et al. 2018 [40] BW natural vegetation greenness BC, AB, MB, ON

2012 Lin et al. 2012 [166] BW natural weather extreme weather USA

2014 Thayer et al. 2014 [167] LBW natural weather UV-vitamin D, social: race USA

2016 Savard et al. 2016 [168] SGA social health care health care QC

2010 Urquia et al. 2010 [169] BW social immigration immigration ON

2011 Janevic et al. 2011 [170] SGA social immigration immigration NY

1995 Mclafferty et al. 1995 [171] LBW social individual social NY

2001 Tough et al. 2001 [172] LBW social individual maternal health AB

2003 English et al. 2003 [173] LBW social individual maternal health CA

2005 Lasker et al. 2005 [18] LBW social individual maternal health PA

2008 Grady et al. 2008 [174] LBW social individual maternal health NY

2013 Heaman et al. 2013 [175] SGA social individual maternal health Canada

2014 Aris et al. 2014 [176] LBW, IUGR social individual endometriosis QC

2015 Chen et al. 2015 [177] LBW, SGA social individual interpregnancy interval AB

2016 Shapiro et al. 2016 [178] SGA social individual individual Canada

2018 Jain et al. 2018 [179] SGA social individual maternal health NS

1999 Gorman et al. 1999 [180] LBW social race race USA

2004 Wenman et al. 2004 [181] LBW social race race AB

2008 Vinikoor et al. 2008 [182] LBW social race race NC

2009 Reichman et al. 2009 [183] BW social race race
CA, TX, MD, MI, NJ, PA, VA,
IN, WI, NY, MA, TN, IL, FL,

OH, NM

2010 Grady et al. 2010 [184] IUGR social race race MI
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Table A2. Cont.

Year Study Outcome 1 Environment Category Variable(s) Geography 2

2010 Nepomnyaschy et al. 2010 [185] LBW social race race USA

2011 Anthopolos et al. 2011 [186] LBW, BW social race race NC

2011 Kirby et al. 2011 [187] LBW social race race GA, SC

2013 Wallace et al. 2013 [188] LBW social race race LA

2016 Oster et al. 2016 [189] LBW social race race AB

2018 Shapiro et al. 2018 [190] SGA social race race Canada

1993 Kieffer et al. 1993 [191] LBW social SES SES HI

2003 Krieger et al. 2003 [192] LBW social SES SES, blood Pb MA, RI

2006 Farley et al. 2006 [193] IUGR social SES SES LA

2007 Masi et al. 2007 [194] BW social SES SES, built IL

2008 Zeka et al. 2008 [195] SGA, BW social SES SES, built MA

2010 Young et al. 2010 [196] BW social SES SES MA

2012 Tu et al. 2012 [197] BW social SES SES GA

2013 Auger et al. 2013 [198] SGA social SES SES QC

2013 Legerski et al. 2013 [199] LBW social SES SES KS

2013 Meng et al. 2013 [200] LBW social SES SES ON

2015 Chan et al. 2015 [201] LBW, SGA social SES SES Canada

2015 Shmool et al. 2015 [202] BW social SES SES, NO2 NY

2016 Martinson et al. 2016 [45] LBW social SES SES Canada, USA

2017 Bushnik et al. 2017 [203] SGA social SES SES Canada

2017 MacQuillan et al. 2017 [204] LBW social SES SES MI

2018 Campbell et al. 2018 [205] LBW social SES SES ON

2018 McRae et al. 2018 [206] SGA social SES SES BC

1 Outcomes included low birth weight (LBW), small for gestational age (SGA), birth weight (BW), and intrauterine growth restriction (IUGR). 2 Geography abbreviations are detailed in
Table A1.
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