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Abstract: Arboviruses are most prevalent in tropical and subtropical regions, where arthropods are
widespread. The World Health Organization (WHO) estimated that the mortality burden of arbovirus
diseases, such as yellow fever in Africa, was 84,000–170,000 severe cases and 29,000–60,000 deaths
in 2013. These epidemics emphasize the urgent need for integrated control and prevention of
arboviral diseases. Challenges in managing and controlling arboviral diseases in Africa are mainly
attributed to poor insect vector control, insecticide resistance, and poor sanitation and solid waste
management. The removal or reduction of mosquito populations amongst susceptible individuals
is identified as the most effective measure to control many vector-borne diseases. Current public
health needs call for efficient vector control programs and maintenance of adequate surveillance
systems through the availability of trained personnel and rapid diagnostic facilities, providing an
interdisciplinary response to control and mitigate the threats of emerging and re-emerging arboviruses.
Furthermore, research priorities should focus on understanding the factors responsible for adaptation
to other vectors, determinants of infection and transmission, and the development of high efficiency
antiviral molecules or candidate vaccines. Here, we explore and review our current understanding
of arboviruses of public health importance in Africa, with a focus on emerging arboviruses, their
arthropod vectors, and the epidemiology of major arboviruses. Finally, we appraise the role of
planetary health in addressing the threat of arboviruses and identify other priority areas of research
for effective control.
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1. Introduction

Globally, arboviruses are one of the persistent causes of human and animal diseases,
infecting millions of individuals and imposing significant social and economic burdens [1].
Approximately 73% of current emerging and re-emerging pathogenic agents have arbovi-
ral origins, and approximately 60% of the 1500 or more infectious microorganisms that
are known human pathogens are recognized as zoonotic [2]. Arboviruses are generally
transmitted by arthropod vectors, such as mosquitoes, ticks, sandflies, and midges, along
with other hematophagous arthropods [1,3–6]. Aedes mosquitoes are the most important
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arboviral vectors; the two main species of which, Ae. aegypti and Ae. albopictus, allow the
transmission of medically crucial viruses such as Chikungunya virus (CHIKV), Dengue
virus (DENV), and Yellow fever virus (YFV) [5]. Most of these arboviruses belong to
four virus families: Togaviridae (genus Alphavirus), Flaviviridae (genus Flavivirus), Bun-
yaviridae (genera Orthobunyavirus, Phlebovirus, and Nairovirus), and Reoviridae (genera
Coltivirus and Orbivirus) [5,7]. Human or animal infections can range from subclinical-
mild to encephalic or hemorrhagic with high fatality rates; however, arthropods infected
with arboviruses do not show detectable signs of infection, even though the arthropod can
harbor the virus for life [1,8]. This can partially be explained by the evolutionary biological
adaptations developed by arboviruses inside their arthropod vectors over the years, thereby
presenting a sort of symbiotic relationship on the one hand, and preventing morbidity and
mortality in arthropod vectors on the other hand, thus maintaining the propagation of
arboviruses in the environment [9].

The last few decades have witnessed dramatic epidemics of emerging and re-emerging
arboviral diseases, posing serious global public health risks [1,3,10]. The most common
risk factor of DENV is the co-circulation of multiple serotypes (hyperendemic), which
is associated with the emergence of the severe form of the disease, dengue hemorrhagic
fever/shock syndrome (DHF/DSS) [1]. The propagation of DENV is based on biological
transmission by mosquito vectors living in close association with humans, that is, relying
on the human host as the reservoir and implicating the host. CHIKV was recognized as the
etiologic cause of febrile disease epidemics in the 1950s and continues to be an important
pathogen in Southeast Asia in a strictly peridomestic mosquito cycle, unlike in Africa,
where there is evidence of a sylvatic cycle involving arboreal mosquitoes and nonhuman
primates. However, there was a re-emergence in 2005 in East Africa and the Southern
Indian Ocean Islands that led to a succession of massive outbreaks [10].

Arboviruses associated with human and animal diseases are most prevalent in tropical
and subtropical regions, where arthropods are widespread; nonetheless, many arboviruses
circulate among wildlife species in temperate regions of the world [1]. Excluding the global
distribution of viruses such as West Nile virus (WNV), DENV, and CHIKV, the majority of
arboviruses are endemic but limited to specific regions of the world, although dispersal to
distant locations may occur through vector mitigation [8].

Furthermore, there will be significant concentrations of susceptible human hosts when
humans are exposed to arboviruses through anthropogenic activities impacting global
warming and deforestation associated with urbanization. Climate change will have a
significant impact on human and animal movement as a result of changes in land use and
housing designs—which can further add to the complexity of arboviral emergence [11].
Contact between humans and vectors has increased owing to deforestation associated with
urbanization. Urban expansion has led to high concentrations of susceptible human hosts
living in socioeconomic conditions favorable to the expansion of vector populations. This
facilitates viral transmission and outbreaks of epidemics [12]. These examples generally
enhance human-vector contact, promoting viral transmission and epidemic outbreaks.
The greatest risks faced by humans are due to the ability of some arboviruses to adopt
urban transmission cycles that involve highly efficient and anthropophilic vectors, such as
Ae. aegypti and Ae. albopictus, or peridomestic enzootic cycles [12].

The recent emergence and transmission of the Chikungunya virus in East Africa, as
well as the Dengue virus in some parts of the tropics and subtropics, have re-emphasized
the need for immediate action against emerging and re-emerging arboviruses [10,13,14].
These epidemics emphasize the urgency and dire need for integrated control and pre-
vention of arboviral diseases, especially those transmitted by Aedes mosquitoes in urban
areas [10,15,16]. Moreover, the re-emergence of Yellow fever virus has been continuously
reported in tropical countries such as Brazil, despite vaccine the availability and administra-
tion of vaccines [17,18]. Furthermore, prevention and control strategies focused on vector
control, which involves the use of insecticides, environmental management, and social
mobilization, have not been effective in practice [10]. It is evident that viral tropism in
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different hosts and arthropod species indicates that no single strategy can fully handle the
issue of arbovirus emergence and re-emergence. For instance, the use of insecticides and
long-lasting treated nets has its limitations in that arboviruses have developed resistance
to insecticides and pyrethroids used in long-lasting treated nets (LLTNs). Understanding
the various factors that contribute to the (re)emergence of arboviruses will help to address
these challenges, coupled with a holistic approach.

In this review, we discuss our current understanding of arboviruses of public health
significance in Africa. The article is divided into five major sections. In Section 1, which is
the introduction, we provide an overview of arboviruses in Africa. Section 2 deals with
emerging arboviruses and their arthropod vectors. In this section, we highlight various
vectors of arboviruses and the socio-ecological and biological risk factors contributing to
their prevalence and infectivity rate. In Section 3 of the article, we explore the epidemiology
of major arboviruses in Africa, including Dengue, Zika, Chikungunya, and Yellow fever
viruses, coupled with ongoing management and control strategies to bring them under
control and the challenges involved. The second objective of the article is to examine the
potential role of a planetary health approach in addressing the public health threat of
arboviruses and we suggest priority research areas to achieve effective control, which are
discussed in Sections 4 and 5, respectively.

2. Emerging Arboviruses in Africa and Their Arthropod Vectors

Arboviruses are known to have a variety of arthropod species capable of infecting the
predominant host species, such as mosquitoes and ticks, in addition to different mecha-
nisms of disease emergence [19]. More than 300 mosquito species can transmit arboviruses,
among which Aedes and Culex are the most common species associated with the trans-
mission of arboviruses [20]. Approximately 116 different species of tick are also vectors
that transmit arboviruses. Additionally, 25 midge species have been shown to transmit
arboviruses, including Culicoides (24 subspecies) and Lasiohelea. Other vectors, such as
mites, lice, sandflies, bed bugs, stinkbugs, gadflies, and blackflies, have also been reported
to transmit arboviruses [12]. This diversity of species, along with the wide distribution
of vectors, explains why arboviruses can spread successfully worldwide and particularly
in temperate regions such as Africa, where arthropod breeding conditions are favorable.
Table 1 highlights various emerging arboviruses in Africa, their distribution, hosts, and
arthropod vectors [21].

Table 1. Emerging Arboviruses in Africa and their Arthropod Vectors [21].

Arboviruses Families Disease (s) Vector Vertebrate Host Distributions

Ilesha Virus (ILEV) Bunyaviridae Ilesha viral disease Anopheles gambiae Humans Cameroon, Ghana, Niger, Nigeria,
Senegal, Uganda, Madagascar

Bouboui (BOUV) Flaviridae Boubouii disease Aedes africanus Unknown Central Africa

Dengue Virus (DENV1) Flaviridae Dengue fever Aedes aegypti Human and Non-human
primates

Angola, Benin, Burkina Faso,
Cameroon, Cape Verde, Nigeria,

Uganda, Zambia, and Togo.

Uganda S (UGSV) Flaviridae Uganda S disease Aedes longipalpis unknown Uganda

West Nile Virus (WNV) Flaviridae West Nile Virus disease (Can event to
Encephalitis or Meningitis) Mosquito Birds, horse West Nile District of Uganda

Yellow Fever Virus (YFV) Flaviridae Yellow Fever Aedes aegypti, A. africanus. Monkeys, Chimpazees,
Baboons, Humans

Angola, Benin, Burkina Faso,
Cameroon, Central African Republic,

Ethiopia, Gabon, Gambia, Ghana,
Kenya, Liberia, Mali, Nigeria

Zika Virus (ZIKV) Flaviridae Zika Fever or Zika Virus Disease Aedes aegypti Monkeys Zika forest in Uganga, Tanzania

Chikungunya Virus (CHIKV) Flaviridae Chikungunya Fever Aedes Mosquitoes especially Aedes
aegypti and Aedes albbopictus Human East/Central/South Africa (ECSA)

Rift Valley Fever Virus (RVFV) Flaviridae Rift Valley Fever Aedes aegypti, A. cumminsii Cattle, Sheep, Goats, Humans

Angola, Botswana, Burkina Faso,
Cameroon, Chad, Congo, Egypt,

Gabon, Gambia, Guinea, Namibia,
Niger, Nigeria, Senegal, South Africa,

South Sudan, Tanzania, Uganda

Mossuril Virus (MOSV) Rhabdoviridae Mossuril Viral disease Culex sp. unknown Mozambique, South Africa

African Horse Sickness Virus (AHSV) Reoviridae African Horse Sickness Culicoides species; Culicoides
imicola and C. obsoletus Horse Southern Africa
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Risk Factors Contributing to the Emergence of Arboviruses

The trilogy of viral pathogen, mosquito/tick vector, and susceptible virus-replicating
host (humans and animals) are entities necessary for the transmission of arboviral diseases.
Therefore, the assessment of possible risk factors associated with these entities is essential
for a comprehensive assessment of arboviral prevalence. The risk factors highlighted
in several studies include the human population, viral mutation, vector adaptation and
diversity, climate change, and anthropogenic activities [21–24].

In 2012, the global human population reached 7 billion people and it is estimated to
reach 9.6 billion by 2050 [25]. This increase in population size has the propensity to drive
urbanization, which is an important factor that can facilitate the migration of vectors and
accessibility to host species, and consequently, the disease transmission rate will increase
due to frequent human interactions with vectors from habitats previously destroyed for
settlement or industrialization. Additionally, the increasing population will result in a
corresponding increase in the disposal of waste products in the environment, resulting in
more breeding sites for vectors such as Aedes and Culex [21].

Another highlighted risk factor is the ability of the causative virus to mutate. These
mutations (minor or major) could give rise to pathogens with increased virulence, transmis-
sibility, and pathogenicity. Such mutations are facilitated by the simultaneous infection of
mosquitoes with two viruses, possibly due to interrupted feeding or infected intermittent
blood meals [21]. For example, a mutation of the Chikungunya virus envelope glyco-
protein E1 may have led to enhanced viral replication and subsequent transmission by
Ae. albopictus, resulting in the spread of the disease to Asian regions [26,27]. Similar to
viruses, disease vectors are also capable of mutations to better adapt to their environment.
A typical example is Ae. aegypti, which was historically a forest-dwelling species. This
vector is presently known to be highly anthropophilic and well- adapted to urban environ-
ments. Consequently, diseases transmitted by this vector have spread to several tropical
and subtropical parts of the world [21].

It is important to note that most arboviral vectors have short life spans. For example,
the Ae. aegypti mosquito has four developmental stages, which include the egg, larva,
pupa, and adult. However, this process takes approximately 8–10 days, depending on
factors such as larval density, food availability, and temperature [28]. The reproductive
capacity of female mosquitoes only requires a single sperm dose to produce a batch of
eggs. Under favorable conditions, the female may lay approximately 100 eggs at a time
in a capful of water, enough for the eggs to lay and hatch into the adult stage within one
week [1]. The high durability and adaptability of the aquatic egg stage facilitate its survival
in desiccated areas for long periods of more than one year [29]. While male mosquitoes
are not blood feeders, female Ae. aegypti have a strong preference for human blood, while
Ae. albopictus are less discriminate and can feed on both animals and humans [30]. An
estimated 3–4 µL blood can be ingested by Ae. aegypti and the vector may become infected
by arboviruses after feeding on (viremic) human blood, infecting the mosquito throughout
its lifespan. In a single feeding episode, female Ae. aegypti have the ability to transmit
more than one arbovirus and consume multiple blood meals to complete their gonotrophic
cycle, which usually takes 2–8 days from the blood meals to the egg laying process [30].
Female Ae. aegypti rarely migrate beyond 30–40 m from households where they develop as
larvae and grow into the adult stage for urban transmission; however, they can disperse
40–80 m for the rest of their lifetime [31,32]. Flying to new areas has been shown to
increase the ability of invasive Ae. aegypti to replace the resident mosquito population
through competitive exclusion, and this can improve infectivity rates and propagation of
arbovirus infection [33].

Furthermore, climate change has been observed to influence the emergence of arboviral
diseases, and this can be attributed to the effects of climate change on the distribution
(geographic and temporal) and life cycles of vectors, pathogen dispersal patterns, viral
mutations, and viral transmission. Such variations can lead to the emergence of arboviral
diseases [24,34]. Anthropogenic activities, such as trade, tourism, and migration, have also
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been implicated in several arboviral disease outbreaks. A classic example is Yellow fever
virus, which was reportedly transmitted from Africa to other parts of the world during
slave trading in the 1650s [24,35].

3. Epidemiology of Major Arboviruses in Africa

Escalating global warming, population mobility due to wars or urbanization, insecti-
cide resistance, and increased vector breeding sites due to poor sanitary conditions have
contributed immensely to the emergence and re-emergence of Dengue, Zika, Chikungunya,
and Yellow fever arboviral infections throughout different geographical locations, espe-
cially in tropical, subtropical, and developing African countries [36,37]. This is discussed in
detail in the following sections.

3.1. Dengue Virus

In Africa, epidemics of Dengue virus (DENV) were documented in Zanzibar (1823,
1870), Burkina Faso (1925), Egypt (1887, 1927), South Africa (1926–1927), and Senegal
(1927–1928) in the late 19th and early 20th centuries [38,39]. The first epidemics in the
Americas were documented in the French West Indies in 1635 and Panama in 1699, both of
which were likely caused by DENV [40]. Between 60 and 140 million clinically evident cases
of dengue fever/hemorrhagic fever/shock syndrome have been reported each year due to
the virus [14]. Dengue fever affects approximately 400 million people worldwide each year,
resulting in 22,000 deaths [41]. According to the WHO estimate, approximately 1.6 million
dengue cases were reported in North and South America in 2010, with 49,000 severe cases.

3.2. Zika Virus

Zika virus is spread by non-human primates and sylvatic mosquitoes such as
Aedes africanus [42]. As the number of cases of congenital Zika virus increased in babies
born in Brazil, the World Health Organization in 2016 declared Zika (ZIKV) a ‘Public
Health Emergency of International Concern’ [9]. The discovery of neutralizing antibodies
in human serum from East Africa in 1952 provided the first indication of human infection.
In 2008, a ZIKV outbreak erupted on Yap Island in the Federated States of Micronesia.
ZIKV is still a threat to human health around the world today [37]. ZIKV has been reported
in 26 African nations.

3.3. Chikungunya Virus

Chikungunya fever virus (CHIKV) resurfaced on the east coast of Africa in 2004–2005,
as well as on the east African islands of Lamu and Madagascar [37]. Compared to DENV
and ZIKV, CHIKV is believed to generate a higher rate of symptomatic infections [31]. The
virus is common in rural regions and results in sporadic infections. The virus has resulted
in major outbreaks in metropolitan areas, infecting a large percentage of the population
in a matter of weeks. Multiple outbreaks of CHIKV have been reported throughout
Africa [31]. In the period from the first CHIKV outbreak in Tanzania in 1952–1953 to
today, evidence of CHIKV infection and serological evidence of previous exposure have
been reported in 33 African countries [37]. Some of these countries include Angola, Benin,
Burundi, Cameroon, Central African Republic, Cote d’Ivoire, the Democratic Republic of the
Congo, Djibouti, Guinea, Kenya, Madagascar, Malawi, Mauritius, Mayotte, Mozambique,
and Nigeria.

3.4. Yellow Fever Virus

Sporadic cases of Yellow fever virus (YFV) and brief epidemics have been reported
in West Africa since the end of the 15th century [37]. The disease was non-existent in East
and South Africa at that time due to the lack of an adequate vector [31]. YFV outbreaks
were also documented in Central and West Africa during the 1960s and 1980s [43]. YFV
epidemics were reported in Ethiopia between 1960 and 1962, resulting in 100,000 cases
and 30,000 deaths [44]. A YFV outbreak was also reported in Nigeria between 1984 and
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1990, resulting in 21,299 deaths [45]. As recently documented in Angola and the Republic
of Congo, yellow fever epidemics can quickly spread in highly populated metropolitan
areas [12]. The mortality rate of YFV has been estimated to be approximately 20–60% [46].

3.5. Ongoing Management and Control Strategies for Arboviral Disease in Africa

The challenges in managing and controlling arboviral diseases are mainly attributed
to poor insect vector control, insecticide resistance, poor sanitation and solid waste man-
agement, as well as inadequate household water supply and disposal. Prevention is always
considered better than cure, and the main control method for arboviruses has relied on
chemical insecticides such as pyrethroids, organochloride, and organophosphorus, which
primarily act as neurotoxins affecting the vector’s nervous system [47]. The use of a biolog-
ical agent, such as the bacteria Bacillus thuringiensis subsp. israelensis (Bti) isolated in 1976,
was found to be toxic to mosquito larvae [48]. Bacillus sphaericus has also been found to have
a similar potency against mosquitoes [49]. Numerous biological measures, such as the use
of fungi, plants, and fish, have also been employed to control the growth and propagation
of the mosquito population [49]. Reduction of breeding sites and limiting vector-host
contact (that is, the use of barrier protection, such as bed nets, removal of all objects, storage
of unwanted water collection, waste disposal on the streets, and proper maintenance of
sewage systems and canals) have been in used as control strategies for ages [50]. There
is no vaccine alternative for the vast majority of arboviruses; exceptions to this include
the 17D Yellow fever virus (YFV) vaccine and the newly approved Dengue virus vaccine
(DENV), Dengvaxia [51]. Therefore, additional and alternative control strategies need to
be developed in Africa and other countries due to increasing resistance to insecticides,
coupled with the toxic effects of organophosphorus compounds on human and animal
health, and the risk of sporadic spread of infectious arthropods to new areas [52]. Trans-
mission blocking vaccines (TBVs) are attractive tools currently used to decrease arboviral
transmission, especially in the absence of specific antiviral treatments to prevent severe
infection in high-risk populations, such as the elderly and pregnant women [53]. TBV
works by targeting the transmission capacity of the vector, which prevents the pathogen
from completing its life cycle in the arthropod vector, and thus halts transmission to hu-
man hosts [54]. According to a study conducted by Londono-Renteria and colleagues in
2016 [53], a vaccine formulation that combined both pathogen and arthropod key target
molecules could increase the efficiency of TBVs. However, care must be taken to avoid
cross-reactivity or autoimmune diseases in humans. TBVs have been found to have the
potential to decrease infection among certain populations while increasing herd immunity,
making them an attractive tool to combat pathogen transmission and proliferation. Thus,
more research is needed for the development of vaccines that are safe and affordable.

3.6. Challenges in Addressing the Risk of Arboviruses in Africa

Although several interventions, such as vector control via insecticides and vaccine use
(17D vaccine and Dengyaxia), have been applied to control arboviral diseases in Africa,
continued disease incidence and outbreaks expose the challenges in implementing these
interventions [55]. One of these challenges is the increasing resistance of mosquitoes
(Aedes) to insecticides such as DDT (dichlorodiphenyltrichloroethane), organophosphate
adulticides, pyrethroids, and carbamates in several African countries, including Cameroon,
Central African Republic, Gabon, Ghana, Nigeria, Senegal, Sudan, and Tanzania, thus
limiting their long-term use and efficiency in Africa [55,56]. Accompanying this challenge
is a lack of surveillance data on vector species populations in Africa, which makes it difficult
to identify regions in need of swift intervention regarding vector population control [57].

Another challenge is the production of vaccines and their use. Although several
resources have been invested in vaccine development for arboviral diseases, most viruses
(including Zika and Chikungunya) are still without an approved vaccine for effective
prevention. Moreover, the public’s disposition towards approved vaccines is not favorable
for effective control, which is largely facilitated by public concerns about the side effects and
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efficacy of these vaccines [8,10]. Furthermore, the absence of an integrated and functional
surveillance system for arboviral diseases in most African countries has contributed to the
difficulties in accurately tracking the prevalence of these diseases. This challenge, coupled
with several cases of misdiagnosis (attributed to the similarity of disease symptoms with
other common infectious diseases such as malaria), has affected proper treatment and
hence, appropriate measures for outbreak prevention, especially in resource-limited African
countries such as Cameroon, Kenya, and Tanzania [55].

Moreover, some African countries, such as Sudan, Kenya, and Uganda, are plagued
by limited diagnostic capacity. These countries lack highly advanced sensitive diagnostics
capable of early detection of the disease, which has affected the response to disease out-
breaks [37,58–60]. Another major challenge is the lack of awareness of arboviral diseases
amongst the general populace, especially livestock farmers, which is quite common in
several African countries, including Kenya, South Africa, and Nigeria. This health promo-
tion deficit has resulted in poor knowledge, attitude, and practices amongst the general
populace in affected countries. In addition, the lack of public trust in the appropriate
treatment options offered by healthcare services has contributed to the spread of arboviral
diseases in Africa [61–64].

4. Planetary Health and Arboviruses

The increased circulation of arboviruses driven by anthropogenic activities such as
urbanization, land use change, and deforestation, which have led to climate change and loss
of biodiversity, provides a favorable avenue for arthropod vectors and their viruses to thrive
and can only be effectively addressed through a planetary health approach [65,66]. As
defined by the Rockefeller Foundation-Lancet Commission on Planetary Health, “Planetary
Health is the achievement of the highest attainable standard of health, wellbeing, and equity world-
wide through judicious attention to the human systems—political, economic, and social—that shape
the future of humanity and Earth’s natural systems that define the safe environmental limits within
which humanity can flourish”. The flourishing of humanity and planet Earth will require
dealing with inter-related threats to planetary health, including arbovirus infections [67].
Climate change is an important factor that facilitates the geographical distribution of
vectors and the viruses they carry, including the susceptibility of reservoir hosts to viral
infection [65,66]. Properly understanding host-pathogen interactions in an ever-changing
climate requires a focus on the Stockholm Paradigm—which is a newly emerging con-
cept viewed under the planetary health lens. The Stockholm Paradigm addresses the
climate-related health threat of infectious diseases, leveraged on ecological fittings, the
geographical mosaic of co-evolution, taxon pulses, and the oscillation hypothesis. The
application of both a planetary health approach and the Stockholm paradigm in tackling the
profound threat of arboviral diseases in Africa can be achieved through the implementation
of well-established and coordinated entomological surveillance coupled with adequate
monitoring of arthropod vectors to allow for early detection and response [68]. Since the
planetary health approach advocates for intersectoral collaboration and global partner-
ship, this will allow for cost-resource and knowledge sharing across related translational
fields within the concerned stakeholders in response to the arboviral threat at human and
environmental interfaces.

5. Conclusions

Presently, arboviruses have a well-known history of emergence and a tendency to re-
occur in the future. Many unidentified arboviruses exist and high mutation rates contribute
to the concern that emerging epidemic strains might be anticipated in the coming years.
The world is in dire need of a continuous international and interdisciplinary response
to improve the ability to anticipate, control, and mitigate the threats of emerging and
re-emerging arboviruses.

Research priorities should be placed on surveillance systems and understanding the
factors responsible for vectorial competency, determinants of host infection, and trans-
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mission cycles, as well as the development of antiviral molecules or candidate vaccines.
Similarities in the characteristics of these viruses could stimulate common research themes
for the development of antiviral therapies and vaccines. Additionally, evaluating the avail-
able and developing vector control tools is needed to identify the most effective techniques
to use in conjunction with these vaccines.

Presently, the best approaches for controlling the majority of vector-borne diseases rely
on reducing human-vector contact, and the most effective and efficient method to achieve
this goal remains the removal or reduction of mosquito populations amongst susceptible
individuals. The implementation of localized arthropod control measures during epidemics
in urban and rural areas can play an important role in reducing the impact of arboviruses on
humans and animals, provided that these efforts are supported by re-assessed and improved
surveillance systems. In addition, the socioeconomic and environmental factors driving
the proliferation of vectors, particularly in rural and under-served communities, should be
mitigated through integrated research programs and educational awareness programs.

Furthermore, it is important to identify and understand viral genetics, antigenic prop-
erties, virulence patterns, vector associations, and maintenance mechanisms in order to
control future arboviral outbreaks. Current public health needs include better communica-
tion about vector-borne diseases to the population and physicians, guarantees of vector
control programs, and maintenance of adequate surveillance systems by ensuring the
availability of trained personnel, rapid diagnostic facilities, and appropriate therapeutics.

Finally, adopting a holistic approach, such as ‘planetary health,’ that encompasses
multisystem and multilateral strategies aimed at involving governments, academics, hu-
mans, animals, and environmental health partners at national and global levels, as well
as international health organizations, could improve knowledge translation between local
communities and strengthen control and research programs on arboviral infections through
multidisciplinary efforts, while maintaining the ecological balance of our environment.
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