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Abstract: Value engineering (VE) and function analysis (FA) are technological tools for the functional
enhancement and cost reduction of engineering projects. They also help to overcome mental inertia
by acknowledging the voice of the customer in complicated systems. Antenna engineering, providing
electromagnetic remote links, is an important area in engineering science, with a large number
of innovative concepts. However, managing innovative ideas to improve performance, reliability,
quality, safety, and reduce life cycle costs, is still a work in progress. This research was designed to
apply VE and FA as frameworks for innovative ideas in antenna systems, especially with regard
to imaging and radar systems. FA diagrams free a designers’ mind from tools to instead focus on
purpose, which can help them to obtain better ideas for solutions to problems. It was identified that
there were several options available for functionality enhancement and cost reduction. The required
functionalities of the components of antenna systems, and their advantages and limitations were
indicated. In addition, it was identified that some of the advantages and limitations appeared
for combinations of the components. Alternative methods for applications, such as polarization
conversion and the separation of outgoing and incoming electromagnetic waves, were studied.
Circular polarization (CP) is important for two-way communication, since left-handed circularly
polarized waves usually return with right-handed CP from targets. Therefore, various methods for
producing CP were discussed, such as metamaterial-based linear to circular polarization converters
and waveguide polarizers. Also, potential extra applications for these systems were explained.
Two examples were: (1) merging multiple systems with different operating frequencies using
multiband components; and (2) applying a feeding system for multiple reflectors using surfaces that
reflect half of the wave and transmit the other half. Consequently, it was identified that the clearance
of existing functions, prioritization of customers, identification of system bottlenecks requiring
innovative methods, and better communication between users and designers, were the key benefits
of VE and FA.

Keywords: function analysis; value engineering; inventive design; antenna systems; antenna design

1. Introduction

Engineering systems involve functionalities and objectives that should be obtained by particular
methodologies and procedures. Value engineering (VE) techniques study the cost and added value
of each part of a system and compare added values with required costs. Subsequently, VE provides
a method for reducing costs and improving value [1–4]. Function analysis (FA) techniques help us
understand the reasons for using each component of a system and how objectives can be achieved
by using these components. The performance of a system can be improved and the non-value-added
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activities can be reduced by using FA diagrams. In addition, innovative methods can help designers
when contradictions are observed between required objectives.

In the early 1950s, Altshuller collected 40 principles for innovation in engineering, which is known
as the theory of inventive problem solving (TRIZ) and has been developed extensively, in combination
with other methods [4–8]. Most new engineering inventions are intrinsically based on these principles.
A designer may use these principles even without explicitly referring to them; however, perceiving
these principles can improve and help reduce the time associated with implementing inventive design
ideas. Furthermore, it can assist the innovation capability of a wide range of engineers.

In this paper, an empirical framework is presented for accelerating the innovation process in
engineering systems. This framework also guides inventive methods toward more effective objectives.
The presented action research is based on experiments from several engineering projects [9], applying
VE to improve the speed and effectiveness of the acquisition of complicated engineering systems
and using FA diagrams in advanced engineering systems. FA diagrams are a valuable tool to place
inventive designs on the right path and accelerate system achievement. The purpose of this research
is to apply VE and FA as the frameworks for innovative ideas in antenna systems. Hence, allowing
designers to stop thinking about tools and, instead, ponder purpose, which leads to better ideas and
solutions. After referring to FA and VE tools, methods of applying them in antenna systems for radar
or imaging applications will be discussed. These antenna systems usually involve transmitted and
received electromagnetic waves.

A key method for distinguishing between transmitted and received waves in antenna systems
is to use circular polarization (CP). Furthermore, circularly polarized receivers are widely spread
across all radio wave applications, including radar systems, earth stations, scanners and satellite
systems. CP can be obtained by using circularly polarized antenna elements [10], employing regular
methods such as multi-layer probe-fed antennas [11], helical antennas [12–14], spiral antennas [15–17],
and aperture-coupled microstrip antennas [18]. Another method for obtaining CP is the sequential
rotation technique, which can produce CP from an array of linearly polarized antennas with unique
angular and phase arrangements [19–22]. Reflection-mode linear to circular polarization converters
(RMCPs) [23–25] and transmission-mode linear to circular polarization converters (TMCPs) [26–29]
based on metamaterials are alternative methods to produce CP from linearly polarized antennas.
In addition, a combination of waveguide polarizers and orthomode transducers (OMTs) can be used in
the antenna waveguide for producing both right-handed circularly polarized (RHCP) and left-handed
circularly polarized (LHCP) waves [30–32]. Moreover, septum polarizers can do the same job alone [33].

The background of VE and FA applications will be introduced in the next section. FA diagrams
for the antenna systems of radar or imaging applications will be illustrated and discussed in Section 3.
In addition, alternatives and potential improvements of these systems will be discussed in Section 4.
VE and FA are helpful tools for understanding systems and the purposes of their components.

2. VE and FA Applications

The objectives and functionalities of engineering systems can be realized using particular methods
and procedures. VE is an important technique for improving the values of an engineering system,
including cost reduction, quality improvement, and time reduction. Design to value is therefore a
combination of design to cost, design to quality, and design to time. In addition, value is defined as the
function to cost ratio in VE. Hence, VE studies the costs and values of each component of the system
and evaluates if the added values are comparable with the imposed costs. Moreover, it provides
methods for reducing costs and improving values, which is still a developing area in engineering
fields. For example, a three-phase evaluation model including fuzzy theory, VE and a multi-criterion
method was introduced by Wang et al. [34] to find optimal strategies for product configuration change,
using a genetic algorithm to select suitable combinations of part suppliers. Another example is the
automotive company product development process using VE and target-costing in cost management
that was suggested by Ibusuki and Kaminski [35]. In addition, Tang and Bittner [36] investigated the
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development of creative design solutions using VE for marine construction projects. VE was also used
for a major infrastructure project to obtain an appropriate alternative in [37].

Improvement of the function–cost ratio (value–cost ratio) is usually obtained using mathematical
optimization of output parameters as the functions of the inputs for components of engineering
systems. However, this optimization requires time and cost information, as indicated in Figure 1.
Therefore, the system designer decides how much to spend on each component for the optimization.
FA diagrams can be used to perceive the reasons for using each component in a system and the
methods for them. These diagrams are helpful for improving system performance and reducing
non-value-added components using VE methods. On the other hand, inventive methods can be useful
for designers when contradictions are observed between required objectives.
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VE can result in project cost reduction, quality improvement and acquisition-time reduction,
during a three-stage job plan. These three stages are pre-study (data collection), value study and
post-study (improvement and presentation), which are expounded in [9] based on experiments in the
automobile industry. Some ideas are also obtained using these experiments to enrich the effectiveness
of VE, by means of 6Sigma workshops. A key outcome is to accelerate the overcoming of mental
inertia and to find inventive methods, with an emphasis on the voice of the customer (VOC). In an
engineering project, the customer can be a supplier for higher order customers. In other words, a chain
of designers and customers may exist in a system, which should communicate with the VOC.

3. Antenna Systems and FA Diagrams

An important area in engineering fields, with a large number of inventive concepts, is antenna
engineering, which provides electromagnetic remote links. In this section, applications of VE and
FA in antenna systems, especially for imaging and radar systems, will be discussed. Moreover, FA
diagrams of these systems will be presented and opportunities for functionality enhancement and cost
reduction will be discussed.

For long-distance remote communication, high-gain antennas are required, which usually involve
large reflectors or arrays. A typical schematic of reflectors or space-fed arrays is illustrated in Figure 2.
This is, in fact, applicable for a one-way communication transmitter or receiver. However, for two-way
communication, one can use two such antenna systems or two feeds for the system. The latter leads to
phase error and the former is a more costly and bulky method. For radar and imaging applications
that require two-way communication, the antennas should be circularly polarized, which can be
a challenge for antenna designers. The reason for this is that a linearly polarized wave with, say,
vertical polarization returns with vertical polarization from the target and cannot be separated from
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the transmitted wave. However, this is not so for CP and the transmitted LHCP wave returns with
right-handed CP. Therefore, it can be distinguished from the transmitted wave, explicitly.Challenges 2018, 9, x  4 of 14 
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Linearly polarized feed antennas can be used for both transmitting and receiving waves, in
addition to polarization converters and filters for producing CP and separating transmitted and
received waves. The most common types of feed antennas are rectangular or circular horn antennas
with reduced sidelobe levels to improve efficiency [38,39]. Schematics of reflectors or space fed arrays
for RHCP receivers and LHCP transmitters with polarization converters and filters are indicated in
Figure 3a,b, which can be used in radar or imaging systems [40–42]. Polarization conversion can
be achieved using TMCP or RMCP, while the transmitting feed is horizontally polarized and the
receiving feed is vertically polarized. The polarization filter consisting of horizontal wires passes the
vertically polarized wave and reflects the horizontally polarized wave. The horizontally polarized
wave is converted to the LHCP wave with the TMCP or RMCP, and the incident RHCP wave is
converted to the vertically polarized wave with the TMCP or RMCP. Therefore, separation between
the transmitted wave and received waves is obtained using a linear polarization (LP) filter, linear to
circular polarization converters, and the fact that the LHCP wave usually returns with right-handed
CP from its target.

Another application of CP is to receive linearly polarized incident waves with unknown
polarization angles. In this example, only one receiver feed exists. Schematics of circularly polarized
Cassegrain antennas are indicated in Figure 4 for receiving low-level remote signals [43,44]. The feed
can be deigned initially for CP; however, linearly polarized antennas are of more convenience for
designers, since they usually have wider bandwidths and simpler structures. Therefore, CP can be
obtained using a TMCP or an RMCP, as indicated in Figure 4.

A FA diagram of radar or imaging antenna systems is indicated in Figure 5. It is actually an
innovation accelerator diagram (IAD) that provides the reasons for each subsystem and methods of
obtaining each objective. Each part can be improved, accelerated and reduced by using innovative
ideas and inventive design methods. Examples of available alternatives and innovative ideas will be
explained in the next section. In addition, the objectives of these systems can be enhanced by using
innovative ideas.
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Figure 3. Schematics of reflectors, lenses or space fed arrays for right-handed circularly polarized
(RHCP) receiving and left-handed circularly polarized (LHCP) transmitting waves by use of (a) the
transmission-mode linear to circular polarization converter (TMCP) and (b) the reflection-mode linear
to circular polarization converter (RMCP).
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4. Innovative Ideas for Antenna Systems

Innovative ideas are usually obtained based on a ‘what if’ context, in contrast with common
engineering methods based on an ‘if then’ context [45]. This is actually obtained by ‘river-jumping’
and violating limitations of the previously introduced methods in a controlled manner. Innovative
ideas and their outcomes will be discussed in this section for antenna systems.

In the beginning, options for circularly polarized Cassegrain antennas were studied, as indicated
in Figure 3, for receiving low-level remote signals. As explained previously, the use of TMCP and
RMCP instead of circularly polarized antennas is the first option. Secondly, the polarization angle
of the feeding antenna can be situated in any direction; however, feasible angles are 0◦, 45◦ and 90◦.
For each angle, some issues should be considered. These issues will be explained here for the RMCP
and should be considered for the TMCP, similarly. For the polarization angles, 0◦ and 90◦, the RMCP
should be oriented in a 45◦ direction. On the other hand, for a 45◦ polarization angle, the RMCP
can be oriented in 0◦ or 90◦ directions; however, if the system has trackers, such as the monopulse
system [21,46], correct directions should be considered for angle errors. For example, if the total feed
is rotated 45◦, as indicated in Figure 6a, elevation and azimuth angles are not really elevation and
azimuth angles, and they should be considered with a 45◦ rotation. However, if the antenna elements
are rotated 45◦, then elevation and azimuth angles are at correct angles, as indicated in Figure 6b.
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The next alternative in this system is the type of parabolic reflector and hyperbolic sub-reflector.
These can be replaced by planar reflectors with artificial parabolic and hyperbolic phase distributions.
However, main reflectors are too large and replacements may be infeasible, while sub-reflectors can
be replaced, explicitly. Another choice is the total arrangement of the system, which can be changed
to an offset Cassegrain antenna or other structures [47,48]. Furthermore, additional applications can
be added to the system, such as dual-band operation by replacing the sub-reflector with polarization
filters and using two antennas with perpendicular polarization angles, as was in Figure 3.

In addition, many degrees of freedom exist in the antenna system in Figure 4. The first is the
choice of using TMCP or RMCP as the polarizer. Secondly, if a space fed array is used instead of a
reflector, the transmission-mode space fed array (lens array) can be replaced by the reflection-mode
space fed array (reflect-array) [26]. Another option is to use multiple reflectors instead of one reflector;
the Cassegrain antenna has been explained briefly as an example of this. Moreover, the polarization
of the transmitting antenna and the receiving antenna can be substituted and consequently their
positions should be replaced, otherwise the polarization filter should be changed from horizontal
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wires to vertical wires. Furthermore, the feeds can be oriented with arbitrary polarizations, only the
polarization difference should be 90◦. However, the polarization filter should be at the same angle,
with the polarization of the transmitter. In addition, the components of these systems often have
multiple choices initially. As an example, an improvement for RMCPs can be found in [49].

Furthermore, for dual-band operation, separated feeds can be used by employing frequency
selective surfaces (FSSs) to provide reflection in one frequency range and transmission in another
frequency range [50]. Moreover, another type of FSS can be used for two array systems with a single
feed antenna, as indicated in Figure 7. This type of FSS reflects half of the linearly polarized wave and
transmits the other half with CP [51]. Other examples of this are dual-band RMCPs, which can be used
to combine two separated systems with two different operating frequencies [44,49].Challenges 2018, 9, x  8 of 14 
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feed antenna.

The two antennas and the LP filter in Figure 3 can be replaced by OMTs and a single antenna [30,52].
It can produce both vertical and horizontal polarizations by employing an antenna, as indicated in
Figure 8. This is obtained by the orthogonal connection of waveguides to a square or circular waveguide
and then to the antenna. This provides good isolation between the receiver and transmitter; however,
small deviations in polarization angles can reduce the isolation significantly.
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Figure 8. Feed systems using orthomode transducers (OMTs) instead of linear polarization (LP) filters
for producing both vertical and horizontal polarizations from an antenna.

On the other hand, CP can be obtained using the circularly polarized antenna elements using
regular methods or the sequential rotation technique, which can produce CP from an array of linearly
polarized antennas with unique angular and phase arrangements. Metamaterial-based RMCPs and
TMCPs are alternative methods to produce CP from linearly polarized antennas, as indicated in
Figure 3. In addition, a waveguide circular polarizer can be used after the OMT with a 45◦ rotation to
convert the horizontally polarized wave in the waveguide to LHCP and the vertically polarized wave
to RHCP [31,32], as indicated in Figure 9. The waveguide polarizer usually causes mismatching and
therefore reduces the isolation.
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Septum polarizers are the best choice for circularly polarized antenna systems with a single feed
for receiving and transmitting waves, as indicated in Figure 10. It can be observed that the outgoing
linearly polarized wave is converted directly to a LHCP wave from one port and to a RHCP wave from
the other [33,53]. However, the bandwidth of septum polarizers is fundamentally limited. In addition,
using an antenna for both receiving and transmitting waves leads to system limitations, such as the
use of trackers and multiband operations.
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The use of polarization converters in antenna systems for radar and imaging purposes has some
advantages over previous methods. The first advantage of this method is that the complexity of the
antenna system does not have any effect on polarization. For example, for a circularly polarized
antenna system with long feed-lines, the radiation of the feed-lines may destroy the CP; however,
the linearly polarized antenna system may receive fewer effects from the feed-lines. In addition,
the cross-polarity of a linearly polarized antenna can be omitted using a polarization filter, which
is a simple wire gird. Another advantage is that the bandwidths of RMCPs and linearly polarized
antennas are usually higher than the bandwidths of directional circularly polarized antennas. Therefore,
the bandwidth of the total antenna system can be improved using RMCPs. Furthermore, an RMCP
can be used for multiple antennas with different frequencies and directions. RMCPs can provide
separation between transmitted and received waves in radar or imaging systems by converting the
wave with vertical polarization to RHCP and the wave with horizontal polarization to a LHCP wave.

In both of the described systems (Figures 1 and 2) and many other electromagnetic systems,
the main limitation of the bandwidth is on the 3 dB axial ratio (AR). In addition, the AR is the main
limitation for multiband operation. This is actually associated with the system designer, who is the
customer for the designers of each part of the system. Thus, by hearing the VOC, it can be concluded
that wideband or multiband linear to circular polarization converters can improve the performance of
these systems, significantly. In addition, RMCPs or TMCPs can be used as a ‘common platform’ for
electromagnetic systems, such as those previously described [54,55].

A summary of the demanded functionalities from the described components, their advantages
and their limitations are expressed in Table 1. Additionally, there are some limitations that appear
with the combinations of components, as indicated in Figure 1. For example, the RMCP reflects the
incoming wave in other directions than the propagation angle of the incident wave and, therefore,
it has only a small effect on the reflection coefficients of the feed antennas and even the isolations.
The TMCP should transmit the wave completely; however, a small reflection returns exactly in the
direction of the incident wave and reduces performance significantly. Similar effects occur for the
waveguide linear to the circular polarizers when situated after the OMTs. Another example is the
effect of the dimensions of the feeding system on the blockage loss for the reflector antennas. This is all
while there is no blockage loss for lens antennas or slanted reflector antennas.
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Table 1. Required functionalities from the components, their advantages and limitations.

Functionality Available
from Components Component Advantages Limitations

1 Propagating
electromagnetic waves

Antennas with LP
Easy to design, high

performance (bandwidth,
gain, efficiency, etc.)

Cannot be used as the
transmitter and receiver

simultaneously, only receives
incoming waves with similar

polarizations

Circularly
polarized antennas

Receives incoming waves with
all direction of linear

polarizations

Cannot be used as the
transmitter and receiver

simultaneously, complicated
design, limited performance

(bandwidth, gain,
efficiency, etc.)

2

Converting linearly
polarized waves to CP and
vice versa (converting, for

example, vertically
polarized waves to RHCP
and horizontally polarized

waves to LHCP)

Metamaterial-based
TMCPs

Situated at right angle to the
propagation angle of the
incident wave, additional

functionalities can be obtained

Limited performance
(bandwidth, transmission loss,
etc.), increased reflections for

the antennas, bulky,
requires standings

Metamaterial-based
RMCPs

High performance
(bandwidth, transmission loss,
etc.), reduced reflections in the
direction of incoming waves,
additional functionalities can

be obtained

Tilting required, bulky,
requires standings

Waveguide linear
to circular
polarizers

Reduced dimensions, can be
integrated with the antenna

High sensitivity, limited
bandwidth, difficult for

additional functionalities of the
feed such as trackers, etc.

3
Separating the

cross-polarity of the waves
with LP

LP filters Simple structure, wideband,
low cost Bulky, requires standings

OMTs Reduced dimensions, can be
integrated with the antenna

Encountered difficulties for
additional functionalities of the

feed such as trackers, etc.

4

2 and 3 (converting first
input to RHCP wave and
the second one to LHCP
and vice versa, directly)

Septum circular
polarizers

Very reduced dimensions, can
be integrated with the antenna

High sensitivity, limited
bandwidth, difficult for

additional functionalities of the
feed such as trackers, etc.

5 Increasing gain and
reducing the beamwidth

Reflectors with
physical shapes

Reduced costs (usually), easily
understandable structure

Required physical movement
for changing the beam direction,

difficult for additional
functionalities

Lens with physical
shapes

Easily understandable
structure, no blockage loss

Weighty, costly, requires
physical movement for

changing the beam direction,
difficult for additional

functionalities

Reflect arrays

Weight can be reduced, can be
used for electrically

controlling the wave (without
physical movements)

Advanced expertise is required
for design, usually used for

passive arrays

Lens arrays

Weight can be reduced, can be
used for electrically

controlling the wave (without
physical movements), no

blockage loss

Advanced expertise is required
for design

5. Conclusions

In this paper, we showed that VE, supported by FA diagrams, can aid understanding of the
value of each part of a system, reduce total costs, and guide designers toward more innovative
ideas and improvements in system performance. After introducing the background of VE and FA
applications, a sketch of how to use VE, FA diagrams and functionality tables as the frameworks for
inventive methods in antenna engineering was explained. FA diagrams of radar and imaging systems
were illustrated as a case study and the reasons and methods for each component were discussed.
A summary of the required functionalities of the components of these antenna systems, and their
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advantages and limitations were presented. In addition, it was indicated that some advantages and
limitations appeared in combination with the components. In particular, methods for producing CP for
antenna systems were studied to provide simultaneous receiving and transmitting waves. Examples
of these methods were RMCPs and TMCPs based on metamaterials, and combinations of waveguide
polarizers with OMTs and septum polarizers. The purpose of this research was to present a framework
for guiding and improving innovative ideas in this field using VE and FA. These methods can provide
better insight into systems and can improve the success of engineering projects, in combination with
the comprehensive efforts of designers in engineering fields. Consequently, the benefits of VE and FA
are (1) the clearance of existing functions, (2) prioritizing the customers, (3) finding system bottlenecks
which require inventive methods, and (4) better communication between users and designers.
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