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Abstract: We introduce a three-parameter generalized normal distribution, which belongs 

to the Kotz type distribution family, to study the generalized entropy type measures of 

information. For this generalized normal, the Kullback-Leibler information is evaluated, 

which extends the well known result for the normal distribution, and plays an important 

role for the introduced generalized information measure. These generalized entropy type 

measures of information are also evaluated and presented. 

Keywords: entropy power; information measures; Kotz type distribution; Kullback-Leibler 

information 

 

1. Introduction 

The aim of this paper is to study the new entropy type information measures introduced by Kitsos 

and Tavoularis [1] and the multivariate hyper normal distribution defined by them. These information 

measures are defined, adopting a parameter  , as the  -moment of the score function (see Section 2), 

where   is an integer, while in principle 2  . One of the merits of this generalized normal 

distribution is that it belongs to the Kotz-type distribution family [2], i.e., it is an elliptically contoured 

distribution (see Section 3). Therefore it has all the characteristics and applications discussed in 

Baringhaus and Henze [3], Liang et al. [4] and Nadarajah [5]. The parameter information measures 

related to the entropy, are often crucial to the optimal design theory applications, see [6]. Moreover, it 

is proved that the defined generalized normal distribution provides equality to a new generalized 
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information inequality (Kitsos and Tavoularis [1,7]) regarding the generalized information measure as 

well as the generalized Shannon entropy power (see Section 3). 

In principle, the information measures are divided into three main categories: parametric (a typical 

example is Fisher’s information [8]), non parametric (with Shannon’s information measure being the 

most well known) and entropy type [9]. 

The new generalized entropy type measure of information ( )XJ , defined by Kitsos and  

Tavoularis [1], is a function of density, as: 

 ( ) ( ) ln ( )

p

X f x f x dx


  J  (1) 

From (1), we obtain that ( )XJ  equals: 

  
1( )

( ) ( ) ( ) ( )
( )

 p p

f x
X f x dx f x f x dx

f x



 



 
   

 
 J  (2) 

For 2  , the measure of information 2( )XJ  is the Fisher’s information measure: 

  
2

2( )
( ) ( ) 4 ( )

( )p p

f x
X f x dx f x dx

f x

 
   

 
 J

 

 (3) 

i.e., 2( ) ( )X XJ J . That is, ( )XJ  is a generalized Fisher’s entropy type information measure, and as 

the entropy, it is a function of density. 

 

Proposition 1.1. When   is a location parameter, then ( ) ( )   J J .  

 

Proof. Considering the parameter   as a location parameter and transforming the family of 

densities to  ( ; ) ( )f x f x   , the differentiation with respect to  is equivalent to the 

differentiation with respect to x . Therefore we can prove that ( ) ( )X  J J . Indeed, from (1)  

we have: 

    ( ) ( ) ln ( ) ( ) ln ( ) ( )

 p p

X f x f x dx f x f x dx
 

          J J  

and the proposition has been proved.  

Recall that the score function is defined as: 

 
( ; )

ln ( ; )
( ; )

f X
U f X

f X










    (4) 

with ( ) 0E U   and 2( ) ( )E U  J  under some regularity conditions, see Schervish [10] for details. It 

can be easily shown that when ,  1a  , then ( ) ( )a X E UJ . Therefore ( )XJ  behaves as the  

 -moment of the score function of ( ; )f X  . The generalized power is still the power of the white 

Gaussian noise with the same entropy, see [11], considering the entropy power of a random variable.  

Recall that the Shannon entropy ( )XH is defined as ( ) ( )ln ( )pX f x f x dx H , see [9]. The 

entropy power ( )XN  is defined through ( )XH  as: 
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2 H( )1

( )
2

p
X

X e
e

N  (5) 

The definition of the entropy power of a random variable X  was introduced by Shannon  

in 1948 [11] as the independent and identically distributed components of a p-dimensional white 

Gaussian random variable with entropy ( )XH . 

The generalized entropy power ( )XN  is of the form; 

 
2 H( )

( ) p
X

X M e N  (6) 

with the normalizing factor being the appropriate generalization of 1(2 )e  , i.e., 

 
 

 
2

1
2

1

11
π ( )

1

a

p p

p

aM M
e p




 













   
   
   
 

  (7) 

is still the power of the white Gaussian noise with the same entropy. Trivially, with 2  , the 

definition in (6) is reduced to the entropy power, i.e., 2( ) ( )X XN N . In turn, the quantity:  

 
 

 
2

1

1

1

p

p

p
 






 

 

  

appears very often when we define various normalizing factors, under this line of thought. 

Theorem 1.1. Generalizing the Information Inequality (Kitsos-Tavoularis [1]). For the variance of 

X , Var( )X  and the generalizing Fisher’s entropy type information measure ( )XJ , it holds: 

 
1 2 1

2π 1Var( ) ( ) 1e
p p

X M X


 
       J  

with M  as in (7). 

 

Corollary 1.1. When 2   then 2
2Var( ) ( )X X pJ , and the Gramer-Rao inequality ([9],  

Th. 11.10.1) holds. 

 

Proof. Indeed, as 1
2 (2π )M e  . 

 

For the above introduced generalized entropy measures of information we need a distribution to 

play the "role of normal", as in the Fisher's information measure and Shannon entropy. In Kitsos and 

Tavoularis [12] extend the normal distribution in the light of the introduced generalized information 

measures and the optimal function satisfying the extension of the LSI. We form the following  

general definition for an extension of the multivariate normal distribution, the  -order generalized  

normal, as follows: 
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Definition 1.1. The p -dimensional random variable X  follows the  -order generalized Normal, 

with mean   and covariance matrix  , when the density function is of the form: 

 2( 1)
1 2 1

( , ) ( , ) det exp{ ( ) }pKT C p Q X




 
  

 
     (8) 

with 1( ) ( ) , ( )tQ X X X      , where ,tu v   is the inner product of , pu v ) and t pu   is 

the transpose of u . We shall write ( , )pX KT   . The normality factor ( , )C p   is defined as: 

 

1

2 1
( , )

p

p pC p








  





  
  

 
 

Notice that for 22,   ( , )pKT    is the well known multivariate distribution. 

 

Recall that the symmetric Kotz type multivariate distribution [2] has density: 

 
1 2 1

, , ( , ) ( , , ) det exp{ }m s

m r sKotz K m r s Q rQ
      (9) 

where 0,  0,   2 2r s m n     and the normalizing constant ( , , )K m r s  is given by: 

 
(2 2) 2

2
2 22

2

( )
( , , )

( )

m p s

m pp

s

s r
K m r s



 

 






p

 

see also [1] and [12]. 

Therefore, it can be shown that the distribution ( ,Σ)pKT   follows from the symmetric Kotz type 

multivariate distribution for 1m  , 1r 

  and 2( 1)s 

  , i.e., 1,( 1) , 2( 1)( , ) ( , )pKT Kotz         . 

Also note that for the normal distribution it holds 1,1 2,22( , ) ( , ) ( , )pN KT Kotz       , while the 

normalizing factor is 1

2( 1)( , ) (1, , )C p K  
  

 . 

2. The Kullback-Leibler Information for  –Order Generalized Normal Distribution 

Recall that the Kullback-Leibler (K-L) Information for two p -variate density functions ,  f g  is 

defined as [13]: 

 
( )

KLI( , ) ( )log
( )p

f x
f g f x dx

g x
 


  

The following Lemma provides a generalization of the Kullback-Leibler information measure for 

the introduced generalized Normal distribution.  

 

Lemma 2.1. The K-L information KLI p
  of the generalized normals 2

1 1( , )p
pKT   I  and 

2
0 0( , )p

pKT   I  is equal to: 

 1 1 1

2
( ) ( ) ( )0

1 02

1 1

( , )
KLI log ( ) ( )

2
  p p p

q x q x q xp

p

C p p
e dx e q x dx e q x dx

 

 

  
  

    
   

    

where   11 1( ) ,  ,   0,1p
i i iq x x x i




        . 
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Proof. We have consecutively: 

  

 

2( 1)

2( 1)

2( 1)

1 1

1 1 0 0 1 1

0 0

1

1

11

1
1

1
0

0

( , )( )
KLI KLI( ( , ), ( , )) ( , )( ) log

( , )( )

( , )
exp{ ( ) }

det( , )
exp{ ( ) } log

( , )det exp{ ( ) }
det

( , )

det





p

p

p
KT x

KT KT KT x dx
KT x

C p
Q x

C p
Q x dx

C p
Q x

C p















   















  
























     






  
 









2( 1) 2( 1) 2( 1)1 1 10
1 1 0

11

1 det
exp{ ( ) } log ( ) ( )

2 det
 p

Q x Q x Q x dx
  

    

  
    

 
    

 


 

and thus 

2( 1) 2( 1) 2( 1)

2( 1) 2( 1)

1 1 10
1 1 1

11

1 1

1 0

( , ) 1 det
KLI log exp{ ( ) } exp{ ( ) } ( )

2 detdet

exp{ ( ) } ( )

 



p p

p

p C p
Q x dx Q x Q x dx

Q x Q x dx

  

  

 

 

  

   

 

 


  

 

  

 

 
      


 



 



 

For 2
1 1Σ p I  and 2

0 0 p  I , we finally obtain: 

 1 1 1

2
( ) ( ) ( )0

1 02

1 1

( , ) 1
KLI log ( ) ( )

2
  p p p

p
q x q x q xp

p p

C p
e dx e q x dx e q x dx

 

 

  
  

    
   

    

where 2( 1)1( ) ( ) ,  ,   0,1p
i iq x Q x x i






   . 

Notice that the quadratic forms 1
1 1( ) ( ) , ( ) ,   0,1t

i iQ x x x i       can be written in the form of 

22
1( ) ,   0,1i iQ x x i     respectively, and thus the lemma has been proved. 

 

Recall now the well known multivariate K-L information measure between two multivariate normal 

distributions with 1 0   is: 

 

22 2
1 00 1

2 2 2 2

1 0 0

KLI I log 1
2

p p p

p

  

  

  
      

   

 

which, for the univariate case, is: 

2 2 2
1 1 0 1 1 0
2 2 2 2

1 0 0

1 ( )
KLI I log 1

2

   

  

   
      

  
 

In what follows, an investigation of the K-L information measure is presented and discussed, 

concerning the introduced generalized normal. New results are provided that generalize the notion of 

K-L information. In fact, the following Theorem 2.1 generalizes 2Ι  ( KLI )p p  for the  -order 

generalized Normal, assuming that 1 0  . Various “sequences” of the K-L information measures 
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KLI p
  are discussed in Corollary 2.1, while the generalized Fisher’s information of the generalized 

Normal (0, )p
pKT I  is provided in Theorem 2.2. 

Theorem 2.1. For 1 0   the K-L information KLI p
  is equal to: 

 
12

0 1

2

1 0

1
KLI log 1

2

p p
p







  

  

           
     

 (10) 

 

Proof. We write the result from the previous Lemma 2.1 in the form of: 

 
2

0
1 2 32

1 1

( , )
KLI log

2

p

p

C p p
I I I

 

 

  
    

  
 (11) 

where: 

   1
1

1

1

1 exp{ }
p

x
I dx





 


 


,    1 1
1 1

1 1

1 1

2 exp{ }
p

x x
I dx

 

   

   

   
 


 

     11
01

1 0

1 1

3 exp{ }
p

xx
I dx



  

   

  
 


 

We can calculate the above integrals by writing them as: 

 
1 1

1 1

1 1 1exp{ ( ) }
p

I x dx


 



 

 
    

  


, 

1

1 1

1

1 1 1

2 1 1

11

exp{ ( ) }
( )p

x
I x dx






 














 





 



 



 
     

    
 




 

 

1

1 1

1

1 1 1

3 1 1

01

exp{ ( ) }
( )p

x
I x dx






 














 





 



 



 
     

    
 




 

and then we substitute 
1

1 1
1 1( ) ( )z x




  


   . Thus, we get respectively: 

 
1

1

1 11
( ) exp{ }

p

p pI z dz
 

 









 



, 
1

1 1

2 11( ) exp{ }
p

p pI z z dz
 
 

 


 

 


 

and: 

 

11

1

1

1

1

1

1

1

1 1 01

3 11

01

1 1 0
11

0
01

( )

( ) exp{ }
( )

( ) exp{ }
( )





p

p

p p

p p

z

I z dz

z z dz







 

 









 

 






















  




  


 



























 
 

 
   

 
 


 





  (12) 

Using the known integrals: 
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2
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e dz














 and (13) 

 

2

2

2

2 π ( )

( )p p
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z z

p

pp
e z dz e dz

  

 

 


 
 

 

 (14) 

1I  and 2I  can be calculated as: 

 
1

12

1 11

1 2

2π ( )
( )

( )

p
p p

p

p
I







 

 
















 and (15) 

 
1

12

1

2 1 11 2

1 2

2 π ( )
( )

( ) ( )

p
p p

p

p p
I p I







  

 















 


 

respectively. Thus, (11) can be written as:  

 
2

0
1 32

1 1 1

( , ) 1 1 ( , )
KLI log

2

p

p p

C p C p
pI I

   

   

   
    

  
 

and by substitution of 1I  from (15) and ( , )C p   from definition 1.1, we get: 

 

11 2 2
10

32

1 11 2

2 ( ) 1 1 π
KLI log ( )

2( )

p p
p p p

p p

p p
I



  
   



 
 

  

  




    
    

   
  (16) 

Assuming 1 0  , from (12), 3I  is equal to: 

 

1
1

1 11
3 11

0

( ) exp{ }
p

p pI z z dz




  

  











 



 
  

 



 

and using the known integral (14), we have: 

 

1
1

12
2 1

3 11

0 2

2 π ( )
( )

( )

p
p p

p

p p
I










 
















 
  

 
 

Thus, (16) finally takes the form: 

 

1

1

1 12
1 1 20 1

2

1 01 2 2

1 2
2 1 10 1

1 2

1 01 2

2 ( ) ( )1
KLI log 2 ( )

2( ) ( )

2 ( 1) ( ) 1
log

2( ) ( 1)

p p p

p p

p

p

p p p
p

p p

p









 

   

   





  

  

 

 
 

 

 

 





 

 





 





    
       

     

      
     
        

 

However, 2 2 2( 1) ( )p p p     and 1( 1)p 

   1 1( )p p 

 
  , and so (10) has been proved. 

For 1 0   and for 2   from (16) we obtain: 

 
2 2

0
2 32

1 1

(2π)
KLI log 1

2

p
p

p

p
I



 

  
    

  
  (17) 

where, from (12): 
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 2 2

2
22 211 1 0 1

3 1 1 1 02

0 00

2 exp{ } 2 exp{ } 2
2

 

p p

p p

p
pI z z dz z z dz

   
   

 


         (18) 

For 2   we have the only case in which 1 *

  , and therefore, the integral of 3I  in (12) can be 

simplified. Specifically, by setting 1( ) p p
i iz z   , 0

0 1( )p p
i i     and 1

1 1( ) p p
i i    , from (18) 

we have consecutively: 

 

2

2 2

1

2

22 21 1 01
3 1 1 1 02

10

2
2 2 2 211 1

1 02 2

0 0

1
2 2 1 01
1 12

10

2 exp{ } 2 2 2 ( )

2 exp{ } 2 exp{ }

2 exp{ ... } ( ) ...



 



p

p

p p

p p

p

p

pp

i i i

i

p p

pp

p i i i p

i

I z z z dz

z z dz z dz

z z t dz dz


     



 
 

 


 
















 
       

 

    

 
    

 



 



 

Due to the known integrals (13) and (14), which for 2   are reduced respectively to: 

 2
2

exp{ } π
p

p

z dz 


 and 2
2 2

2exp{ } π
p

p

pz z dz 


 

we obtain: 

 

1

2 2 2

1

2 2

2

2 1
2 1 0 2 21 1 1

3 1 0 1 1 12 2 2
10 0 0

1
22 1 0 2 21 1

1 1 02 2
1 10 0

(2π) (2π) 2 exp{ } ... exp{ }
2 2

1
(2π) 2 exp{ } ( )

2 2

(2π)

 



p p p

p p

p

pp p p

i i p p p

i

ppp p

i i i i

i i

p
I z z dz z z dz

p z d z

  
   

  

 
    

 





 





 

 
        

 

  
       

  

  

 

 
1

2

1
22 1 0 21 1

1 1 02 2
1 10 0

1
2 lim exp{ }

2 2

p

i

ppp p

i i ip z
i i

p z




 
    

 





 

  
          

  
 

 

i.e., 

  
1

2

1
22 2 1 01 1

3 1 1 02 2
10 0  times

(2π) 2 0 0 ... 0
2


p

pp p
p

i i

i p

I p
 

    
 






 
        

 
  

and hence: 

  22 21
3 1 1 02

0

(2π)
2

p
pI p


  


    

Finally, using the above relationship for 3I , (17) implies: 

  
22 2 2

22 1 00 0 1
2 1 1 02 2 2 2 2

1 0 1 0 0

1
KLI log 1 log 1

2 2 2 2 2

p p p p
p

   
  

    

       
              

      
 

and the theorem has been proved. 

 

Corollary 2.1. For the Kullback-Leibler information 2KLI p  it holds: 

(i) Provided that 0 1  , 2KLI p  has a strict ascending order as dimension *p  rises, i.e.,  
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 1 2

2 2 2KLI KLI ... KLI ...p     

(ii) Provided that 0 1   and 1 0  , and for a given  , we have: 

 1 2KLI KLI ... KLI ...p

       

(iii) For KLIp
  in KLI KLIp p




 , we obtain 1 2KLI KLI ... KLI ...p
       

(iv) Given ,p  0 1   and 1 0  , the K-L information KLI p
  has a strict descending order as 

{1}    rises, i.e., 2 3KLI KLI ... KLI ...p p p
     

(v) KLIp
  is a lower bound of all KLI p

  for 2,3,...   

 

Proof. From Theorem 2.1 2KLI p  is a linear expression of *p , i.e., 

 

2

1 0

2 2

0

KLI
2

p p
 





   

with a non-negative slope:  

 
2 2

0 1

2 2

1 0

1
log 1 0

2

 


 

  
     

  
 

This is because, from applying the known logarithmic inequality *log 1,   x x x     (where 

equality holds only for 1x  ) to 2 2
1 0  , we obtain: 

 
2 2 2 2

1 1 0 1

2 2 2 2

0 0 1 0

log 1  log 1
   

   

   
        

  
 

and hence 0  , where the equality holds respectively only for 2 2
1 0 1   , i.e., only for 0 1  . 

Thus, as the dimension *p  rises: 

 

2

1 0

2 2

0

KLI
2

p p
 





   

also rises. 

In the general p -variate case, KLI p
  is a linear expression of *p , i.e., KLI p p  , provided 

that 1 0  , with a non-negative slope: 

 
12

0 1

2

1 0

1 1
log 1 0

2





  


  

           
     

 

Indeed, 0   as: 

 

1 11

0 1 1

1 0 0

log log 1
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and since 1 1
   , we get:  

 
1 12 2

0 1 0 1

2 2

1 0 1 0

1 1
log 1   log 1

2( 1) 2

 

 

     

     

                        
         

 

which implies that 0  . The equality holds respectively only for 2 2
1 0 1   , i.e., only for 0 1  . 

Thus, as the dimension *p  rises, KLI p
  also rises, i.e., 1 2KLI KLI ...   , and so 

1 2KLI KLI ...   , provided that 1 0   (see Figure 1). 

Now, for given ,p  0 1   and 1 0  , if we choose 1 2  , we have 1 2

1 21 1

 
    or 1 2

1 2

1 1 
 
  . 

Thus, 

1 2 1 2
1 1 1 11 2 1 2

1 1 1 1

0 0 0 0

   1 1  

   

   

   

   

          
            

       
 

1 2
1 11 2

1 1 2 1

1 0 2 0

1 1
1 1

 

 

   

   

    
            

      
   

 

i.e., 
1 2

KLI KLIp p
  . Consequently, 2 3KLI KLI ...p p   and so KLI KLI ,  2,3,...p p

    (see Figure 2). 

Figure 1. The graphs of the KLIp
 , for dimensions 1,2,...,20p  , as functions of the 

quotient 0 1   (provided that 0 1  ), where we can see that 1 2KLI KLI ...    

 

Figure 2. The graphs of the trivariate 3KLI , for 2,3,...  , and 3KLI , as functions of the 

quotient 0 1   (provided that 0 1  ), where we can see that 2 3KLI KLI ...p p   and 

KLI KLI ,  2,3,...p p
    . 
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The Shannon entropy of a random variable X  which follows the generalized normal ( , )pKT    is: 

 

1 2
det 1

( ( , )) log
( , )

pKT p
C p






 

 
  H  (19) 

This is due to the entropy of the symmetric Kotz type distribution (9) and it has been calculated  

(see [7]) for 1m  , 2( 1)s 
  , 1r 


 . 

 

Theorem 2.2. The generalized Fisher’s information of the generalized Normal (0, )p
pKT I  is: 

  
( 1)

1

1

( )
( (0, ))

(1 )

p

p

pKT p
p

 



 

 

   




 








 
J I  (20) 

 

Proof.  From: 

  
12 2 221 (1 ) 21 1( )f f f f f

  

 


      

implies:  

 
1 11( )f f f

   



    

Therefore, from (2), ( )XJ  equals eventually:  

 ( (0, )) ( , )p

pKT C p 

   J I   1 111 exp{ }
p

x x dx


 
 

 
 

  

Switching to hyperspherical coordinates and taking into account the value of ( , )C p   we have the 

result (see [7] for details).  

 

Corollary 2.2. Due to Theorem 2.2, it holds that ( (0, ))p
pKT p  J I  and ( (0, )) 1p

pKT  N I . 

 

Proof. Indeed, from (20), ( (0, ))p
pKT p  J I  and the fact that ( ) ( )X X p  J N  (which has  

been extensively studied under the Logarithmic Sobolev Inequalities, see [1] for details and [14]),  

Corollary 2.2 holds.  

Notice that, also from (20): 

 
1( (0, ))p

p aKT p 

N JI  

and therefore, ( (0, )) 1p
pKT  N I . 

3. Discussion and Further Analysis  

We examine the behavior of the multivariate  -order generalized Normal distribution. Using 

Mathematica, we proceed to the following helpful calculations to analyze further the above theoretical 

results, see also [12]. 
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Figure 3 represents the univariate  -order generalized Normal distribution for various values of  : 

2   (normal distribution), 5  , 10  , 100  , while Figure 4, represents the bivariate 10-order 

generalized Normal 2
10 2(0, )KT I  with mean 0 and covariance matrix 2  I . 

Figure 3. The univariate  -order generalized Normals 1(0,1)KT  for 2,5,10,100  . 

 

Figure 4. The bivariate 10-order generalized normal 2
10(0,1)KT . 

 

Figure 5 provides the behavior of the generalized information measure for the bivariate generalized 

normal distribution, i.e., 2( (0, ))KT J I , where ( , ) [2,20] [2,10]    . 

Figure 5. 5
10 5( (0, )),   1 20KT a  J I . 
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For the introduced generalized information measure of the generalized Normal distribution it  

holds that: 

 

.    

( (0, )) ,     

,     

p

p

p for

KT p for

p for

 

 

 

 

 

 
 

J I    

For 2   and 2  , it is the typical entropy power for the normal distribution. 

The greater the number of variables involved at the multivariate  -order generalized normal, the 

larger the generalized information 2( (0, ))pKT J I , i.e., 1 2

1 2
( (0, )) ( (0, ))p p

p pKT KT   J JI I  for 1 2p p . 

In other words, the generalized information measure of the multivariate generalized Normal 

distribution is an increasing function of the number of the involved variables.  

Let us consider   and p  to be constants. If we let   vary, then the generalized information of the 

multivariate  -order generalized Normal is a decreasing function of  , i.e., for 1 2   we have 

1 2
( (0, )) ( (0, ))p p

p pKT KT  J JI I  except for 1p  . 

 

Proposition 3.1. The lower bound of ( (0, ))p
pKT J I  is the Fisher’s entropy type information. 

 

Proof. Letting   vary and excluding the case 1p  , the generalized information of the multivariate 

generalized normal distribution is an increasing function of  , i.e., 
1 2
( (0, )) ( (0, ))p p

p pKT KT   J JI I  

for 1 2a a . That is the Fisher’s information 2( (0, ))p
pKTJ I  is smaller than the generalized information 

measure ( (0, ))p
pKT J I  for all 2  , provided that 1p  . 

 

When   , the more variables involved at the multivariate generalized Normal distribution the 

larger the generalized entropy power ( (0, ))p
pKT Ν I , i.e., 1

1
( (0, ))p

pKT  Ν I 2

2
( (0, ))p

pKT Ν I  for 

1 2p p . The dual occurs when   . That is, when    the number of involved variables defines 

an increasing generalized entropy power, while for    the generalized entropy power is a 

decreasing function of the number of involved variables. Let us consider   and   to be constants and 

let p  vary. When    the generalized entropy power of the multivariate generalized Normal 

distribution ( (0, ))p
pKT Ν I  is increasing in p . 

When   , the generalized entropy power of the multivariate generalized Normal distribution 

( (0, ))p
pKT Ν I  is decreasing in p . If we let   vary and let 1 2 1    then, for the generalized 

entropy power of the multivariate generalized Normal distribution, we have 

1 2
( (0, )) ( (0, ))p p

p pKT KT  Ν ΝI I  for certain   and p , i.e., the generalized entropy power of the 

multivariate generalized Normal distribution is an increasing function of  . 

Now, letting  vary, ( (0, ))p
pKT Ν I  is a decreasing function of  , i.e., 

1
( (0, ))p

pKT  Ν I  

2
( (0, ))p

pKT Ν I  provided that 1 2  . The well known entropy power ( (0, ))p
pKT Ν I  provides  

an upper bound for the generalized entropy power, i.e., 20 ( (0, )) ( (0, ))p p
p pKT KT   Ν ΝI I , for  

given   and p . 
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4. Conclusions 

In this paper new information measures were defined, discussed and analyzed. The introduced  

 -order generalized Normal acts on these measures as the well known normal distribution does on the 

Fisher’s information measure for the well known cases. The provided computations offer an insight 

analysis of these new measures, which can also be considered as the  -moments of the score function. 

For the  -order generalized Normal distribution, the Kullback-Leibler information measure was 

evaluated, providing evidence that the generalization “behaves well”. 
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