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Abstract: The general theory of information (GTI) is a synthetic approach, which reveals 

the essence of information, organizing and encompassing all main directions in 

information theory. On the methodological level, it is formulated as system of principles 

explaining what information is and how to measure information. The goal of this paper is 

the further development of a mathematical stratum of the general theory of information 

based on category theory. Abstract categories allow us to construct flexible models for 

information and its flow. Now category theory is also used as unifying framework for 

physics, biology, topology, and logic, as well as for the whole mathematics, providing a 

base for analyzing physical and information systems and processes by means of categorical 

structures and methods. There are two types of representation of information dynamics, 

i.e., regularities of information processes, in categories: the categorical representation and 

functorial representation. Here we study the categorical representations of information 

dynamics, which preserve internal structures of information spaces associated with 

infological systems as their state/phase spaces. Various relations between information 

operators are introduced and studied in this paper. These relations describe intrinsic 

features of information, such as decomposition and complementarity of information, 

reflecting regularities of information processes. 

Keywords: information; information operator; category; functor; composition; knowledge; 

cognition; order 
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1. Introduction  

Modern science, and especially, physics, is extensively based on mathematics. Mathematical 

models give the most exact representation for diverse objects in nature and society. At the same time, 

when people try to describe complex natural phenomena or systems beyond perception by ordinary 

senses, such as vision or hearing, their descriptions become very vague, imprecise and sometimes 

misleading. That is why, in such cases, the best description and definition of a natural 

phenomenon/essence is its mathematical model. For instance, for a long time, people tried to answer 

the question of what an electron is by saying that it is a very small particle, which has a negative 

charge and several other properties. However, it was discovered that in many situations electrons 

behave as waves and not as particles. As a result, informal descriptions of the electron have become 

extremely vague. For instance, it is described as some entity in nature that is very small, sometimes 

behaves as a particle, while in other cases, it behaves as a wave. Whereas many other properties of 

electrons have been discovered, such descriptions have become too confusing because people have 

nothing of this kind in their everyday experience. In addition, these descriptions, which use natural 

languages and mundane images, are too inexact and as a result, physicists came to the conclusion that 

the best answer to the above question is the statement that the electron is an entity in nature that 

behaves according to the laws of quantum mechanics. 

To answer here the question of what information is, we simply imply that information is a 

phenomenon described by the theory of information. In the past, this answer was unsatisfactory 

because there were many theories of information, which gave different representations of this basic 

phenomenon. Researches have found shortcomings of all such directions and even started to believe 

that it is impossible to give a comprehensive definition of information, building a unified information 

theory. They argued this diversity of information uses formed an insurmountable obstacle to creation 

of a unified comprehensible information theory (cf. for example, [1-4]). Moreover, it has been argued, 

for example, by Gofman [5] and Gilligan [6], that the term information has been used in so many 

different and sometimes incommensurable ways, forms and contexts that it is not even worthwhile to 

elaborate a single conceptualization achieving general agreement.  

However, it has become possible to synthesize all directions and approaches in information studies 

and to find a solution to the important problem of understanding what information is. This was 

achieved by utilization of a new definition type in the general theory of information [7]. Namely, to 

overcome limitations of the conventional approaches and to solve the problem of information 

definition a parametric definition is used. 

The general theory of information has different directions: statistic, semantic, algorithmic, etc. Here 

we continue to develop the categorical direction in the general theory of information. In this direction, 

information is modeled by categorical and functorial information operators where each portion of 

information is represented by a categorical or functorial information operator. 

Abstract categories emerged in algebra, becoming one of the most popular and efficient tools of 

contemporary mathematics. Now category theory is also used as a unifying framework for physics (cf. 

for example, [8]), for biology ([9-11]), for computation ([12-19]), for topology, and logic ([20-23]), as 

well as for the whole mathematics ([24,22]). This provides a base for analyzing physical and 

information systems and processes by means of categorical structures and methods. Categories work 
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well as models of information spaces because categorical technology is sufficiently powerful and 

flexible for information dynamics modeling and exploration. 

Information is intrinsically related to transformations [25]. That is why portions of information are 

modeled by information operators in infological system representation spaces. There are two types of 

information dynamics depiction in categories: The categorical and functorial representations. The 

categorical representation of information dynamics, which describes regularities of information 

processes, preserves internal structures of information spaces associated with infological systems as 

their state or phase spaces. In it, portions of information are modeled by categorical information 

operators. The functorial representation of information dynamics preserves external structures of 

information spaces associated with infological systems as their state or phase spaces. In it, portions of 

information are modeled by functorial information operators. Here we study categorical representation 

of information dynamics.  

Section 2 provides the reader with knowledge on categories that is necessary for understanding 

results obtained in this work. Section 3 gives a compressed description of the phenomenological 

stratum of the general theory of information. In Section 4, we study decompositions of categorical 

information operators and relations between categorical information operators, such as 

complementarity of categorical information operators. Section 5 contains open problems in the 

mathematical theory of information. 

2. Elements of Category Theory 

There are two approaches to the mathematical structure called a category. One approach treats 

categories in the framework of the general set-theoretical mathematics. Another approach establishes 

categories independently of sets and uses them as a foundation of mathematics different from set 

theory. It is possible to build the whole mathematics in the framework of categories. For instance, such 

a basic mathematical concept as a binary relation is frequently studied in categories (cf. for  

example, [26]). Toposes allow one to reconstruct set theory as a subtheory of category theory (cf. for 

example, [24]). According to the first approach, we have the following definition of a category.  

Definition 2.1. A category C consists of two collections: Ob C, the objects of C, and Hom C, the 

morphisms (also called arrows) of C that satisfy the following three axioms:  

A1. For every pair A, B of objects, there is a set HomC(A, B), also denoted by HC(A, B) or  

MorC(A, B), called morphisms from A to B in C. When f is a morphism from A to B, it is denoted by 

f: A  B. The object A is called the domain of f and object B is called the codomain of f. 

A2. For every three objects A, B and C from Ob C, there is a binary partial operation, which is a 

partial function from pairs of morphisms that belong to the direct product HomC(A, B)  HomC(B, C) 

to morphisms in HomC(A, C) . In other words, when f: A  B and g: B  C, there is a morphism  

g ○ f: A  C called the composition of morphisms g and f in C, and also denoted by gf. This 

composition is associative, that is, if f: A  B, g: B  C and h: C  D, then h ○ (g ○ f) = (h ○ g) ○ f. 

A3. For every object A, there is a morphism 1A in HomC(A, A), called the identity on A, for which if 

f: A  B, then 1B ○ f = f and f ○ 1A = f.  

If f: A  B is a morphism from C, then B = Im f and A = Dom f. 
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Example 2.1. The category of sets SET: objects are arbitrary sets and morphisms are mappings of 

these sets. 

Example 2.2. The category of groups GRP: objects are arbitrary groups and morphisms are 

homomorphisms of these groups. 

Example 2.3. The category of topological spaces TOP: objects are arbitrary topological spaces and 

morphisms are continuous mappings of these topological spaces.  

Remark 2.1. In the case when a category C has a set of objects, it may be treated as a graph where 

objects are vertices and morphisms are edges. 

Definition 2.2. A morphism f: A  B from the category C is called: 

a) A monomorphism if for all morphisms h and k in C such that the compositions f○h and f○k exist 

and are equal, it follows that h = k. 

b) An epimorphism if for all morphisms h and k in C such that the compositions h○f and k○f exist 

and are equal, it follows that h = k. 

c) A bimorphism if it is both a monomorphism and epimorphism. 

d) A section if there is a morphism g: B  A from the category C such that g ○ f = 1A. 

e) A retraction if there is a morphism g: B  A from the category C such that f ○ g = 1B. 

f) An isomorphism if it is both a section and retraction. 

g) A constant morphism if for any morphisms g: C  A and h: C  A from the category C, we 

have f ○ g = f ○ h. 

h) A co-constant morphism if for any morphisms g: B  D and h: B  D from the category C, we 

have g ○ f = h ○ f. 

i) A zero morphism if it is a constant and co-constant morphism.  

An initial object also called a coterminal object of a category C is an object I in C such that for 

every object X in C, there exists a single morphism I → X. A terminal object also called a final object 

of a category C is an object T in C such that for every object X in C there exists a single morphism  

X → T. Initial objects and terminal objects are dual concepts. 

A zero object in a category C is an object 0 that is both an initial object and a terminal object. 

Mapping of categories that preserve their structure are called functors. There are functors of two 

types: covariant functors and contravariant functors. 

Definition 2.3. A covariant functor F: C  K, also called a functor, from a category C to a 

category K is a mapping that is stratified into two related mappings FObC : Ob C  Ob K and FMorC : 

Mor C  Mor K , i.e., FObC associates an object F(A) from the category K to each object A from the 

category C and FMorC associates a morphism F(f): F(A)  F(B) from the category K to each morphism 

f: A  B from the category C. In addition, F satisfies the following two conditions: 

1. F(1A) = 1F(A) for every object A from the category C; 

2. F(f○g) = F(f)○F(g) for all morphisms f and g from the category C when their composition 

 f○g exists. 

That is, functors preserve identity morphisms and composition of morphisms. 

Definition 2.4. A contravariant functor F: C  K from a category C to a category K consists of 

two mappings FObC : Ob C  Ob K and FMorC : Mor C  Mor K, i.e., FObC associates an object F(A) 
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from the category K to each object A from the category C and FMorC associates a morphism  

F(f): F(A)  F(B) from the category K to each morphism f: A  B from the category C, that satisfy 

the following two conditions: 

1. F(1A) = 1F(A) for every object A from the category C; 

2. F(f○g) = F(g)○F(f) for all morphisms f and g from the category C when their composition 

 f○g exists. 

It is possible to define a contravariant functor as a covariant functor on the dual category Cop.  

In what follows, we consider only covariant functors.  

Definition 2.5. A functor F: C  K is called: 

a) embedding if FMorC : Mor C  Mor K is an embedding; 

b) dense, or representative, if for each object A  Ob K, there is some object B  Ob C such that 

F(B) is isomorphic to A; 

c) full if each Hom-set restriction F|Hom(A,B)
Hom(F(A),F(B)) of F is surjective. 

d) faithful if each Hom-set restriction F|Hom(A,B)
Hom(F(A),F(B)) of F is injective. 

It is possible to read more about categories, functors and their properties, for example, in [24,27].  

3. The Phenomenological Stratum of the General Theory of Information  

The general theory of information is constructed as an axiomatic theory and has three levels: 

Conceptual, methodological (also called meta-theoretical) and theoretical. 

On the conceptual level, the essence of information as a dynamic object playing a pivotal role in all 

walks of reality is explicated. This allows clarifying a quantity of misconceptions, fallacies  

and illusions. 

Methodological (meta-theoretical) level is based on two classes of principles and their relations. 

The first class contains ontological principles, which bring to light general properties and regularities 

of information and its functioning. Principles from the second class explain how to measure 

information and are called axiological principles. 

On the theoretical level, axioms of theoretical structures and axioms reflecting features of 

information are introduced and utilized for building models of information and related phenomena, 

e.g., information flow or information processing. These models are employed in studies of information 

and various related systems and phenomena, e.g., information flow in society or information 

processing systems, such as computers and networks. 

To clarify the concept of information, we consider here the basic ontological principles. The first of 

them separates local and global approaches to information definition, i.e., in what context information  

is defined. 

 

Ontological Principle O1 (the Locality Principle). It is necessary to separate information in 

general from information (or a portion of information) for a system R. 

In other words, empirically, it is possible to speak only about information (or a portion of 

information) for a system. In the mathematical model studied in this paper, portions of information are 

formalized as information operators in infological system representation spaces. 
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Definition 3.1. The system R with respect to which some information is considered is called the 

receiver, receptor or recipient of this information. 

Such a receiver/recipient can be a person, community, class of students, audience in a theater, 

animal, bird, fish, computer, network, database and so on.  

The Locality Principle explicates an important property of information, but does not answer the 

question “What is information?” The essence of information is described by the second ontological 

principle, which has several forms.  

 

Ontological Principle O2 (the General Transformation Principle). In a broad sense, information 

for a system R is a capacity to cause changes in the system R.  

Thus, we may understand information in a broad sense as a capacity (ability or potency) of things, 

both material and abstract, to change other things. Information exists in the form of portions of 

information. Informally, a portion of information is such information that can be separated from other 

information. Information is, as a rule, about something. What information is about is called the object 

of this information. 

The Ontological Principle O2 has several consequences. First, it demonstrates that information is 

closely connected to transformation. Namely, it means that information and transformation are 

functionally similar because they both point to changes in a system. At the same time, they are 

different because information is potency for (or in some sense, cause of) change, while transformation 

is the change itself, or in other words, transformation is an operation, while information is what 

induces this operation. 

Second, the Ontological Principle O2 explains why information influences society and individuals 

all the time, as well as why this influence grows with the development of society. Namely, reception of 

information by individuals and social groups induces transformation. In this sense, information is 

similar to energy. Moreover, according to the Ontological Principle O2, energy is a kind of 

information in a broad sense. This well correlates with the von Weizsäcker's idea (cf. [3]) that energy 

might in the end turn out to be information.  

Third, the Ontological Principle O2 makes it possible to separate different kinds of information. For 

instance, people, as well as any computer, have many kinds of memory. It is even supposed that each 

part of the brain has several types of memory agencies that work in somewhat different ways to suit 

particular purposes [28]. Thus, it is possible to consider each of these memory agencies as a separate 

system and to study differences between information that changes each type of memory. This might 

help to understand the interplay between stability and flexibility of mind, in general, and memory,  

in particular. 

In essence, we can see that all kinds and types of information are encompassed by the Ontological 

Principle O2. In the most concise form, it is demonstrated in [7]. 

However, the common usage of the word information does not imply such wide generalizations as 

the Ontological Principle O2 implies. Thus, we need a more restricted theoretical meaning because an 

adequate theory, whether of information or of anything else, must be in significant accord with our 

common ways of thinking and talking about what the theory is about, else there is the danger that 

theory is not about what it purports to be about.  
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Information in a proper sense is defined based on the concept of structural infological systems. In 

essence, any subsystem of a system may be considered as its infological system. However, information 

in a proper sense acts on structural infological systems. An infological system is structural if all its 

elements are structures. For example, systems of knowledge, which are paradigmatic infological 

systems, are structural because their elements are structures. Other examples of structural infological 

systems are: systems of beliefs, systems of values, systems of goals, and systems of ideas.  

To achieve precision in the information definition, we do two conceptual steps. At first, we make 

the concept of information relative to the chosen infological system IF(R) of the system R and then we 

select a specific class of infological systems to specify information in the strict sense. That is why it is 

impossible and, as well as, counterproductive to give an exact and thus, too rigid and restricted 

definition of an infological system. Indeed, information is a very rich and widespread phenomenon to 

be reflected by a restricted rigid definition (cf. for example, [2,7,29,30]). 

Infological system plays the role of a free parameter in the general theory of information, providing 

for representation of different kinds and types of information in this theory. That is why the concept of 

infological system, in general, should not be limited by boundaries of exact definitions. A free 

parameter must really be free. Identifying an infological system IF(R) of a system R, we can define 

information relative to this system. This definition is expressed in the following principle. 

 

Ontological Principle O2g (the Relativized Transformation Principle). Information for a system 

R relative to the infological system IF(R) is a capacity to cause changes in the system IF(R). 

As a model example of an infological system IF(R) of an intelligent system R, we take the system of 

knowledge of R. In cybernetics, it is called the thesaurus Th(R) of the system R. Another example of 

an infological system is the memory of a computer. Such a memory is a place in which data and 

programs are stored and is a complex system of diverse components and processes. 

Elements from IF(R) are called infological elements.  

There is no exact definition of infological elements although there are various entities that are 

naturally considered as infological elements as they allow one to build theories of information that 

inherit conventional meanings of the word information. For instance, knowledge, data, images, ideas, 

algorithms, procedures, scenarios, schemas, values, goals, ideals, fantasies, abstractions, beliefs, and 

similar objects are standard examples of infological elements.  

When we take a physical system D as the infological system and allow only for physical changes, 

information with respect to D coincides with energy.  

Taking a mental system B as the infological system and considering only mental changes, we see 

that information with respect to B coincides with mental energy.  

These ideas are crystallized in the following principle. 

 

Ontological Principle O2a (the Special Transformation Principle). Information in the strict sense 

or proper information or, simply, information for a system R, is a capacity to change structural 

infological elements from an infological system IF(R) of the system R.  

To better understand how infological systems can help explicating the concept of information in the 

strict (conventional) sense, we consider cognitive infological systems. 
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An infological system IF(R) of the system R is called cognitive if IF(R) contains (stores) elements 

or constituents of cognition, such as knowledge, data, ideas, fantasies, abstractions, beliefs, etc.  

A cognitive infological system of a system R is denoted by CIF(R) and is related to  

cognitive information.  

In this case, it looks like it is possible to give an exact definition of a cognitive infological system. 

However, now cognitive sciences do not know all structural elements involved in cognition. A 

straightforward definition specifies cognition as an activity (process) that gives knowledge. At the 

same time, we know that knowledge, as a rule, comes through data and with data. So, data are also 

involved in cognition and thus, have to be included in cognitive infological systems. Besides, cognitive 

processes utilize such structures as ideas, algorithms, procedures, scenarios, images, beliefs, values, 

measures, problems, tasks, etc. Thus, to comprehensively represent cognitive information, it is 

imperative to include all such objects in cognitive infological systems. 

For those who prefer to have an exact definition contrary to a broader perspective, it is possible to 

define a cognitive infological system as the system of knowledge. This approach was used by [31,32]. 

Cognitive infological systems are standard examples of infological systems, while their elements, 

such as knowledge, data, images, ideas, fantasies, abstractions, and beliefs, are standard examples of 

infological elements. Cognitive infological systems are very important, especially, for intelligent 

systems as the majority of researchers believe that information is intrinsically connected to knowledge.  

 

Ontological Principle O2c (the Cognitive Transformation Principle). Cognitive information for a 

system R, is a capacity to cause changes in the cognitive infological system CIF(R) of the system R.  

As the cognitive infological system contains knowledge of the system it belongs to, cognitive 

information is the source of knowledge changes.   

It is useful to understand that in the definition of cognitive information, as well as of other types of 

information in the strict sense, it is assumed that an infological system IF(R) of the system R is a part 

(subsystem) of the system R. However, people have always tried to extend their cognitive tools using 

different things from their environment. In ancient times, people made marks on stones and sticks. 

Then they used paper. Now they use computers and computer networks. 

There are two ways to take this peculiarity into consideration. In one approach, it is suggested to 

consider extended infological systems that do not completely belong to the primary system R that 

receives information. For instance, taking an individual A, it is possible to include in the extended 

cognitive infological system IF(A) of A not only the mind of A but also memory of the computer that A 

uses, books that A reads and cognitive objects used by A. 

Another approach extends the primary system R as a cognitive object, including all objects used for 

cognitive purposes. In this case, when we regard an individual A as a cognitive system R, we have to 

include (in R) all cognitive tools used by A. The second approach does not demand to consider 

extended infological systems. In this case, all infological systems of R are parts (subsystems) of the 

primary system R. 

As a result, we come to the situation where the concept of information is considered on three basic 

levels of generality: 

1. Information in a broad sense is considered when there are no restrictions on the infological 

system (cf. Ontological Principle O2). 
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2. Information in the strict sense is considered when the infological system consists of structural 

elements (cf. Ontological Principle O2a). 

3. Cognitive information is considered when the infological system consists of cognitive structures, 

such as knowledge, beliefs, ideas, images, etc. (cf. Ontological Principle O2c).  

As a result, we come to three levels of information understanding: 

1. Information in a broad sense for a system R is a capability (potential) to change (transform) this 

system in any way. 

2. Information in the strict sense for a system R is a capability (potential) to change (transform) 

structural components of this system, e.g., cognitive information changes knowledge of the system, 

affective information changes the state of the system, while effective information changes system 

orientation [7]. 

3. Cognitive information for a system R is a capability (potential) to change (transform) the 

cognitive subsystem of this system. 

Let us explicate other properties of information, taking into consideration a portion I of information 

for a system R. 

 

Ontological Principle O3 (the Embodiment Principle). For any portion of information I, there is 

always a carrier C of this portion of information for a system R.  

People get information from books, magazines, TV and radio sets, computers, and from other 

people. To store information people use their brains, paper, tapes, and computer disks. All these 

entities are carriers of information. 

For adherents of the materialistic approach, the Ontological Principle O3 must be changed to its 

stronger version.  

 

Ontological Principle OM3 (the Material Embodiment Principle). For any portion of information 

I, there is some substance C that contains I.  

The substance (material object) C that is a carrier of the portion of information I is called the 

physical, or material, carrier of I. 

 

Ontological Principle O4 (the Representability Principle). For any portion of information I, there 

is always a representation C of this portion of information for a system R.  

As any information representation is, in some sense, its carrier, the Ontological Principle O4 

implies the Ontological Principle O3. 

The first four ontological principles ((O1)-(O4) or (O1)-(OM4)) imply that information connects 

the carrier C with the system R and thus, information I is a component of the following fundamental  

triad [7],  

                                                                (C, I, R)                             

People empirically observed that for information to become available, the carrier must interact with 

a receptor that was capable of detecting information the carrier contained. This empirical fact is 

represented by the following principle. 
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Ontological Principle O5 (the Interaction Principle). A transaction/transition/transmission of 

information goes on only in some interaction of C with R. 

However, being necessary, interaction is not sufficient for information transmission. Thus, we need 

one more principle. 

Ontological Principle O6 (the Actuality Principle). A system R accepts a portion of information I 

only if the transaction/transition/transmission causes corresponding transformations. 

For instance, if after reading this paper, your knowledge remains the same, you do not accept 

cognitive information from this text. In a general case, when the recipient's knowledge structure was 

not changed, there is no cognitive information reception. 

 

Ontological Principle O7 (the Multiplicity Principle). One and the same carrier C can contain 

different portions of information for one and the same system R.  

Thus, all ontological principles form three groups: 

- Ontological Principles O1 and O2 reflect intrinsic substantial properties of information. 

- Ontological Principles O3, O4 and O7 reflect representation properties of information. 

- Ontological Principles O5 and O6 reflect dynamic properties of information. 

4. Categorical Representation of Information Dynamics  

To build a categorical representation of information dynamics, i.e., of regularities of information 

processes, we start with constructing a categorical representation of the information receptor/receiver 

R because according to the Principles O1 and O2, information is determined by its action on the 

information receptor/receiver. When we are interested in information in the strict sense, we consider 

only an infological system IF(R) of R. 

Let us take a category C. Objects from the category C can represent different infological systems 

IF, the same infological system IF in different states or different infological systems IF, the same 

infological system IF in different states. In all cases, the category C is called a categorical information 

space. 

Definition 4.1. a) A categorical representation of the infological system IF(R) (or R) assigns 

objects from C to the states of IF(R) (correspondingly, R) and morphisms from C to transformations of 

IF(R) (or R). 

b) A categorical representation of the infological system IF(R) (or R) is called complete if all states 

of IF(R) (correspondingly, R) are represented and each object in Ob C is a representation of some state 

of IF(R) (or R). 

c) The category C is called a categorical information state space for the infological system IF(R) 

(for the system R). 
In this case, MorIF(R) C (MorR C) denotes the set of all morphisms from C representing 

transformations of IF(R) (correspondingly, R) and if A, B  Ob C, then HomIF(R)(A, B) = MorIF(R) C  

HomC(A, B) (HomR (A, B) = MorR C  HomC(A, B)).  

In what follows, we consider only complete representations. 

Example 4.1. Objects of the category C are linear spaces, while morphisms are linear mappings 

(linear operators) of these spaces. 
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Example 4.2. Objects of the category C are sets, e.g., sets of knowledge items, such as considered  

in [31], or of propositions, such as in [33,34], while morphisms are mappings (transformations) of  

these sets. 

Example 4.3. Words, or more generally, texts are information carriers, as well as information 

representations. Thus, it is natural to take words (texts) as objects of the category C. Then morphisms 

of this category are computations that transform one word (system of words) into another one. These 

computations may be restricted to computations of some class of abstract automata, such as finite 

automata, Turing machines, inductive Turing machines or neural networks (cf. e.g., [35]. It is possible 

to consider information automata in the sense of Cooper [36] as devices that perform computations. 

Example 4.4. Thesaurus is a natural infological system [7,32]. An efficient representation of a 

thesaurus is a set of words, or more generally, of texts in some languages, which are information 

representations, as well as information carriers when these texts are in a material form, e.g., strings of 

symbols on paper or states of a computer memory [32]. Thus, it is natural to take sets of words (or 

texts) as objects of the category C. Then morphisms of this category are multiple computations ([37]) 

performed by systems/automata from some class, e.g., Turing machines, inductive Turing machines or 

finite automata.  

Example 4.5. Classifications, which are also infological systems used in a variety of areas, and their 

infomorphisms in the sense of [38] form a category in which classifications are objects and 

infomorphism are morphisms. 

Informally, a portion of information I is a potency to cause changes in (infological) systems, i.e., to 

change the state of this system. Assuming that all systems involved in such changes are represented in 

a category C, we see that a change in a system may by represented by a morphism from this category. 

This gives us a transformation of the system that receives information. As a result, the portion of 

information I is represented by a categorical information operator Op(I). When it does not cause 

misunderstanding, it is possible to denote the information portion I and the information operator Op(I) 

by the same letter I.  

Definition 4.2. a) A pure categorical representation of a collection IF = { IF(Ri); i  I } of 

infological systems assigns objects from C to the infological systems IF(Ri) and morphisms from C to 

transformations of one infological system into another.  

b) A pure categorical representation of the collection IF is called complete if all systems from IF 

are represented and each object in Ob C is a representation of some system from IF. 

c) The category C is called a pure categorical information system space for the collection IF. 
In this case, MorIF C denotes the set of all morphisms from C represent transformations of systems 

from IF and if A, B  Ob C, then HomIF(A, B) = MorIF C  HomC(A, B).  

In what follows we consider only complete representations. 

Example 4.6. Information operators can represent information that changes DNA molecules to 

RNA molecules and RNA molecules to proteins. 

Definition 4.3. a) An enriched categorical representation of the collection IF = { IF(Ri); i  I) of 

marked infological systems assigns objects from C to the states of infological systems IF(Ri) and 
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morphisms from C to transformations of one infological system in some state into another infological 

system in some state.  

b) An enriched categorical representation of the collection IF is called complete if all systems from 

IF and all their states are represented and each object in Ob C is a representation of some system from 

IF and its state. 

c) The category C is called an enriched categorical information extended system space for the 

collection IF. 

Definitions 4.1 and 4.2 describe particular cases of categorical representations from the  

Definition 4.3 because a categorical representation of IF(R) is an enriched categorical representation of 

one infological system, while a pure categorical representation of a collection IF is enriched 

categorical representation of IF assuming that each infological system from IF has only one state. 

In this case, objects from C represent pairs (IF(R), r) where r is a state of the infological system 
IF(R). MorIF(R) C (MorR C) denotes the set of all morphisms from C represent transformations of  

IF(R) (correspondingly, R) and if A, B  Ob C, then HomIF(R)(A, B) = MorIF(R) C  HomC(A, B)  

(HomR (A, B) = MorR C  HomC(A, B)). 

Note that two different states of a system may be considered as different systems. This allows us to 

reduce categorical representations from Definitions 4.1 and 4.3 to categorical representations from 

Definition 4.2. At the same time, it is also possible (at least formally) to consider different systems as 

the states of one universal system. This allows us to reduce categorical representations from 

Definitions 4.2 and 4.3 to categorical representations from Definition 4.1. It means that although 

Definition 4.3 looks as the most general, on the abstract level, it is possible to reduce it to any of the 

other two definitions. 

In what follows we consider only complete representations. 

Let us consider a categorical information space C. 

Definition 4.4. A categorical information operator Op(I) over the categorical information space C 

is a mapping Op(I): Ob C  Mor C such that for any A  Ob C, its image Op(I)(A)  HomIF(R) (A, X) 

for some X  Ob C. The morphism Op(I)(A) is called the component of the categorical information 

operator Op(I) at A. 

Informally, a categorical information operator shows how each object (infological system) changes 

when a portion of information is received. 

Categorical operators can be total or partial. 

Note that it is possible that X coincides with the same object A. When Op(I)(A) = 1A , it means that 

the information portion I does not change A or the state of A. 

Example 4.7. Taking the category C from the Example 4.1, in which objects of the category C are 

linear spaces and morphisms are linear operators in these spaces, we can build categorical information 

operators. These operators assign a linear operator to each linear space from C. Such operators 

represent, for example, information extraction by measurement in physics (cf. for example, [39]).  

Example 4.8. Taking the category C from the Example 4.3, in which words (or texts) are objects 

and morphisms are computations performed by automata from some class, e.g., Turing machines, 
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inductive Turing machines or finite automata, we obtain computational information operators. These 

operators assign a computation to each word (text) where this word (text) is the input. 

Example 4.9. Taking the category C from the Example 4.4, in which an object is a thesaurus,  

e.g., represented by systems of words (or texts), and morphisms are transformations of these 

thesauruses, we obtain a cognitive information operator, which assigns to each thesaurus its 

transformation. There are different types of cognitive information operators: 

1. computational cognitive information operators; 

2. analytical cognitive information operators; 

3. matrix cognitive information operators; 

4. set-theoretical cognitive information operators; 

5. named-set-theoretical cognitive information operators. 

For instance, transformations of knowledge states studied by Mizzaro [31] form set-theoretical 

cognitive information operators, while infomorphisms studied by Barwise and Seligman [38] shape 

named-set-theoretical cognitive information operators and transformations studied by Shreider [32] 

bring into being analytical cognitive information operators. 

Information is often connected to meaning. Some researchers even cannot imagine information 

without meaning, understanding meaning in the conventional sense (cf. for example, [40]). However, it 

was demonstrated that meaning is not a necessary attribute of information (cf. for example, [41]). For 

instance, Shannon’s information theory is very useful although it ignores meaning  

However, as the general theory of information (GTI) encompasses all other approaches in 

information theory, it also includes semantic theories of information (cf. [7]). As a result, the GTI 

allows us to reflect meaning of information by the following model. In a formal context, meaning is 

represented by formal structures, e.g., it is possible to represent meaning by propositions, by semantic 

networks or by frames. There are also other formal representations of meaning, such as the Universal 

grammar of Montague, Discourse Representation Semantics, and File Change Semantics. Formal 

structures that represent meaning for a given system R constitute a semantic system M. It is possible to 

take this semantic system M as the infological system of the system R. This incorporates semantic 

approach to information into the GTI framework. 

In this formal context, acceptance of meaningful information I changes the semantic system M by 

integrating the meaning of I into M. When we employ a categorical model, representing states of the 

semantic system M by objects of a category C, information is naturally represented by a categorical 

operator, which changes the states of M, reflecting adaptation of the meaning of I. 

There are different operations with categorical information operators. One of the most important is 

sequential composition. 

Definition 4.5. The sequential composition (often called simply composition) of categorical 

information operators O1 and O2 is a mapping O2 ○ O1: Ob C  Mor C such that for any A  Ob C, if 

O1(A)  HomC(A, B), then [O2 ○ O1](A) = O2(B) ○ O1(A). 

By definition, the (sequential) composition of categorical information operators also is a categorical 

information operator. It models sequential reception of information by systems. 
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We do not use the shorter name composition instead of the name sequential composition because 

there other types of compositions of categorical information operators, for example, parallel 

composition of categorical information operators or concurrent composition of categorical information 

operators. 

Let us consider some relations between categorical information operators. 

Definition 4.6. a) If O1 and O2 are categorical information operators, then O1 ≼ O2 (we say, O1 is an 

information suboperator of O2) if for any object A from C, we have 

                                            O2(A) = f ○ O1(A) for some morphism f  

This condition is equivalent to the following commutative diagram:  

                                                                     A             
                                                                          O2(A)   
                                                    O1(A)                                                                (4.1) 

                                                                     B                  C 

                                                                             f 

b) If O1 and O2 are categorical information operators and K is a class (type) of morphisms, e.g.,  

K consists of all monomorphisms, then O1 is a K-uniform information suboperator of O2 (O1 ≼K O2) if 

for any object A from C, we have 

                                            O2(A) = f ○ O1(A) for some morphism f from K 

c) If O1 and O2 are categorical information operators, then O1 is an information net suboperator of 

O2 (O1 ⊆ O2) if for any object A from C, we have 

                     O2(A) = O3(Im A) ○ O1(A) for some categorical information operator O3 

d) If O1 and O2 are categorical information operators, then O1 ≍ O2 (we say, O1 is a equivalent to 

O2) if O1 ≼K O2 and O2 ≼K O1. 

e) If O1 and O2 are categorical information operators and K is a class (type) of morphisms, then  

O1 ≍K O2 (we say, O1 is a K-uniformly equivalent to O2) if O1 ≼K O2 and O2 ≼K O1 . 

f) If O1 and O2 are categorical information operators, then O1 ≡ O2 (we say, O1 is a net equivalent to 

O2) if O1 ⊆ O2 and O2 ⊆ O1. 

The concept of a information suboperator models the situation when one portion of information can 

be converted to another portion of information by transformations in the information space, i.e.,  

O1 ≼ O2 means that information represented by the information operator O1 can be converted to 

information represented by the information operator O2. 

The concept of a uniform information suboperator models the situation when one portion of 

information can be converted to another portion of information by transformations in the information 

space that belong to a given class of transformations, i.e., O1 ≼K O2 means that information 

represented by the information operator O1 can be converted to information represented by the 

information operator O2 by transformations that belong to the class K. 

The concept of a net information suboperator models the situation when one portion of information 

can be converted to (complemented by) another portion of information by some information operator. 
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As it is usual in mathematics, all three relations generate corresponding equivalence relations: 

equivalence of information operators ≍, uniform equivalence of information operators ≍K and net 

equivalence of information operators ≡.  

Example 4.10. Objects of the category C are sets of well formed formulas of a logical calculus, 

e.g., sets of of propositions, such as considered in [33,34], while morphisms are finite deductions, 

which add deduced formulas to the initial set. It means that reception of information initiates some  

deductive process. 

Let us assume that O1 and O2 are categorical information operators in C, while O1 ≼ O2. In this 

interpretation, the set B = Im O1(A) of well formed formulas is less than or equal to the set C = Im 

O2(A) of well formed formulas. It means that if O1 ≼ O2, then the categorical information operator 

O1(A) adds less formulas than the categorical information operator O1(A) does. This is true for all 

objects A from C, giving the meaning of the relation ≼. 

Example 4.11. Objects of the category C are sets of knowledge items, such as considered in [31] or 

in [7], while morphisms are transformations of these sets that only add new knowledge items but never 

delete them. 

Let us assume that O1 and O2 are categorical information operators in C, while O1 ≼ O2. In this 

interpretation, the set B = Im O1(A) of knowledge items is less than or equal to the set C = Im O2(A) of 

knowledge items. It means that if O1 ≼ O2, then the categorical information operator O1(A) adds less 

knowledge items than the categorical information operator O1(A) does. This is true for all objects A 

from C, giving the meaning of the relation ≼. 

Lemma 4.1. The relation ⊆ is stronger than the relation ≼, i.e., O1 ⊆ O2 implies O1 ≼ O2 for any 

categorical information operators O1 and O2.  

Corllary 4.1. The relation ≡ is stronger than the relation ≍, i.e., O1 ≡ O2 implies O1 ≍ O2 for any 

categorical information operators O1 and O2.  

Lemma 4.2. If the class K is closed with respect to all identity morphisms1A form Mor C, then the 

relation ≼K is reflexive. 

Indeed, for any categorical information operator O, we have O ≼K O because for any object A from 

C, O(A) = 1B ○ O(A) where B = Im A (cf. Diagram (4.1)). 

Lemma 4.3. If the class K is closed with respect to composition of morphisms, then the relation ≼K 

is transitive. 

Proof. Let us consider categorical information operators O1, O2 and O3. If O1 ≼K O2 and O2 ≼K O3, 

then O2(A) = f ○ O1(A) for some morphism f from K and O3(A) = g ○ O2(A) for some morphism g  

form K.  
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These conditions are equivalent to the following commutative diagram:  

                                                                A             
                                                                                  O3(A)   
                                                    O1(A)     O2(A)                                             (4.2) 

                                                                     B                  C          D 

                                                                             f                g 

Consequently, we have 

               O3(A) = g ○ O2(A) = g ○ ( f ○ O1(A)) = (g ○ f ) ○ O1(A) = h ○ O1(A) 

where h = g ○ f belongs to K. Consequently, O1 ≼K O3. 

Lemma is proved. 

Lemmas 4.2 and 4.3 imply the following result. 

Proposition 4.1. If the class K is closed with respect to composition of morphisms and all identity 

morphisms1A form Mor C, then the relation ≼K is a preorder on the class of all information operators, 

i.e., the relation ≼K is reflexive and transitive. 

As the relation ≼ is a particular case of the relation ≼K when K = Mor C and the class Mor C is 

closed with respect to composition of morphisms, Proposition 4.1 implies the following result.  

Corollary 4.2. The relation ≼ is a preorder on the class of all information operators, i.e., the 

relation ≼ is reflexive and transitive. 

Proposition 4.2. If the class K is closed with respect to composition of morphisms and all identity 

morphisms1A form Mor C, then the relation ≍K is an equivalence on the class of all information 

operators, i.e., the relation ≍K is reflexive, symmetric and transitive. 

Indeed, by definition, the relation ≍K is symmetric and by Proposition 4.1, it is reflexive  

and transitive. 

As the relation ≍ is a particular case of the relation ≍K when K = Mor C and the class Mor C is 

closed with respect to composition of morphisms, Proposition 4.1 implies the following result.  

Corollary 4.3. The relation ≍ is an equivalence relation on the class of all information operators, 

i.e., the relation ≍ is reflexive, symmetric and transitive. 

Let us consider the class ISO of all isomorphisms of the category C. 

Proposition 4.3. The relation ≼ISO is an equivalence relation on the class of all information 

operators, i.e., the relation ≼ISO is reflexive, symmetric and transitive. 

Proof. By Proposition 4.1, the relation ≼ISO is a preorder on the class of all information operators 

because any identity morphism 1X is an isomorphism and composition of two isomorphisms is also an 

isomorphism [27]. So, it is necessary to show that the relation ≼ISO is symmetric.  

Let us consider two categorical information operators O1 and O2 such that O1 ≼ISO O2. By 

Definition 4.6, it means that there is a commutative Diagram (4.1) in which f is an isomorphism. As f 

is an isomorphism, there is a morphism g: C  B, such that g ○ f = 1B.  

Thus, for A is an arbitrary object from the category C, the relation O1 ≼ISO O2 implies O2(A) = f ○ 

O1(A), which in turn, implies the following sequence of equalities:  

                     g ○ O2(A) = g ○ (f ○ O1(A)) = (g ○ f ) ○ O1(A) = 1B ○ O1(A) = O1(A) 
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As A is an arbitrary object from the category C, it means that O2 ≼ISO O1, i.e., the relation ≼ISO  

is symmetric.  

Proposition is proved. 

Proposition 4.4. The relation ⊆ is a preorder on the class of all information operators, i.e., the 

relation is reflexive and transitive. 

Proof. (a) For any categorical information operator O, we have O ⊆ O because there is the identity 

categorical information operator Id such that Id(A) = 1A for any object A from C and O1(A) = 1B ○ 

O1(A) = Id(B) ○ O(A) where B = Im O(A) (cf. Diagram (4.1)). 

(b) Let us consider categorical information operators O1, O2 and O3 . If O1 ⊆ O2 and O2 ⊆ O3 , then 

O2(A) = O4(Im O1(A)) ○ O1(A) for some categorical information operators O4 and O3(A) = O5(Im 

O2(A)) ○ O2(A) for some categorical information operators O5 . 

These conditions are equivalent to the following commutative diagram:  

                                                                  A             
                                                                                     O3(A)   
                                                   O1(A)    O2(A)                                                                                    (4.3) 

                                                                   B                      C                      D 

                                                                  O4(Im O1(A))  O5(Im O2(A))                

As Im O4(Im O1(A)) = Im O2(A), we have 

              O3(A) = O5(Im O2(A)) ○ O2(A) = O5(Im O2(A)) ○ (O4(Im O1(A)) ○ O1(A)) =  

                                      (O5(Im O2(A)) ○ O4(Im O1(A))) ○ O1(A) =  

                      (O5(Im O4(Im O1(A)))) ○ O4(Im O1(A))) ○ O1(A) = h ○ O1(A) 

where h = (O5(Im O4(Im O1(A)))) ○ O4(Im O1(A))). Consequently, O1 ⊆ O3. 

Proposition is proved. 

Proposition 4.5. The relation ≡ is an equivalence relation on the class of all information operators, 

i.e., the relation ≡ is reflexive, symmetric and transitive. 

Indeed, by definition, the relation ≡ is symmetric and by Proposition 4.4, it is reflexive and 

transitive. 

Proposition 4.6. The following conditions are equivalent: 

                                                 (a) O1 ≼ISO O2 ; 

                                                 (b) O2 ≼ISO O1 ; 

                                                 (c) O1 ≍ISO O2 ; 

Proof. Let us consider two categorical information operators O1 and O2 such that O1 ≼ISO O2. By 

Definition 4.6, it means that there is a commutative Diagram (4.1) in which f is an isomorphism. As f 

is an isomorphism, there is a morphism g: C  B, such that g ○ f = 1B.  

Thus, for A is an arbitrary object from the category C, the relation O1 ≼ISO O2 implies  

O2(A) = f ○ O1(A), which in turn, implies the following sequence of equalities:  

                g ○ O2(A) = g ○ (f ○ O1(A)) = (g ○ f ) ○ O1(A) = 1B  ○ O1(A) = O1(A) 

As A is an arbitrary object from the category C, it means that O2 ≼ISO O1.  
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In a similar way, O2 ≼ISO O1 implies O1 ≼ISO O2 . 

Consequently, each of the relations O1 ≼ISO O2 or O2 ≼ISO O1 implies O1 ≍ISO O2. 

Proposition is proved. 

Let us consider the class SEC of all sections and the class RET of all retractions of the category C. 

Proposition 4.7. O1 ≼SEC O2 if and only if O2 ≼RET O1. 

Proof. Necessity. Let us consider two categorical information operators O1 and O2 such that  

O1 ≼SEC O2. By Definition 4.6, it means that there is a commutative Diagram (4.1) in which f: B  C 

is a section. As f is a section (cf. Section 2), there is a morphism g: C  B, such that g ○ f = 1B. By 

Definition 2.2, g is a retraction. 

Thus, since an arbitrary object A from the category C, the relation O1 ≼SEC O2 implies  

O2(A) = f ○ O1(A), which in turn, implies the following sequence of equalities:  

                g ○ O2(A) = g ○ (f ○ O1(A)) = (g ○ f ) ○ O1(A) = 1B  ○ O1(A) = O1(A) 

As A is an arbitrary object from the category C and g is a retraction, it means that O2 ≼RET O1.  

Sufficiency. In a similar way, O2 ≼RET O1 implies O1 ≼SEC O2. 

Proposition is proved. 

Definition 4.7. a) If A and B are objects from the category C and O is a categorical information 

operator, then A O B (we say, an object A is less than or equal to an object B with respect to a 

categorical information operator O) if for any object C from C, there is a morphism f such that the 

following diagram is commutative: 

                                                                   A             
                                                                        O(A)   
                                                           f                                                               (4.4) 

                                                                   B                  C 

                                                                       O(B) 

i.e., O(A) = O(B) ○ f .  

b) an object A is O-equivalent to an object B ( A O B ) if for any object C from C, there is an 

isomorphism f such that the diagram (4.4) is commutative. 

Relations O and O are called O-relative order and O-relative equivalence, respectively. 

Lemma 4.4. For any categorical information operator O, the relation O is a partial preorder on the 

class of all objects in the category C. 

Proof. (a) For any categorical information operator O and any object A from the category C, we 

have A O A because for any object A from C, O(A) = O(A) ○ 1A (cf. Diagram (4.5)). 

                                                                     A             
                                                                          O(A)   
                                                         1A                                                               (4.5) 

                                                                    A                  C 

                                                                          O(A) 

(b) If A O B and B O D, then O(A) = O(B) ○ f for some morphism f and O(B) = O(D) ○ g for some 

morphism g . This gives the following commutative diagram  
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                                                            A 
                                                                                  
                                                              f              O(A)   
                                                                    O(B)                                                   (4.6) 
                                                                      B               C 

                                                                                    
                                                            g              O(D)                           

                                                                      D                 
                                                                           

Consequently, we have 

                                               O(A) = O(B) ○ f = O(D) ○ g ○ f = O(D) ○ h 

where h = g ○ f. Consequently, A O B. 

Lemma is proved.  

Proposition 4.8. The relation O is an equivalence on the class Ob C of all objects from C,  

i.e., the relation O is idempotent, symmetric and transitive. 

Proof is similar to the proof of Proposition 4.1. 

Definition 4.7 and Proposition 6.13 from [27] imply the following result. 

Proposition 4.9. If A O B and O(A) is an epimorphism, then O(B) is also an epimorphism.  

Definition 4.7 and Proposition 5.11 from [27] imply the following result. 

Proposition 4.10. If A O B and O(A) is a retraction, then O(B) is also a retraction. 

There are different types of categorical information operators.  

Definition 4.8. A categorical information operator Op(I) is called: 

a) Monoperator if all morphisms Op(I)(A) with A  Ob C are monomorphisms. 

b) Epoperator if all morphisms Op(I)(A) with A  Ob C are epimorphisms. 

c) Bimoperator if all morphisms Op(I)(A) with A  Ob C are bimorphisms. 

d) Secoperator if all morphisms Op(I)(A) with A  Ob C are sections. 

e) Retroperator if all morphisms Op(I)(A) with A  Ob C are retractions. 

f) Isoperator if all morphisms Op(I)(A) with A  Ob C are isomorphisms.  

g) A constant operator if all morphisms Op(I)(A) with A  Ob C are constants. 

h) A co-constant operator if all morphisms Op(I)(A) with A  Ob C are co-constants. 

i) A zero operator if all morphisms Op(I)(A) with A  Ob C are zeroes. 

Informally, we have the following interpretation of the introduced types of information operators:  

Information monoperators preserve distinctions between previously accepted information portions. 

Information epoperators preserve distinctions between next coming information portions.  

Information bimoperators are both information monoperators and information epoperators. 

Information retroperators represent such information portions I the impact of which can be erased 

from system state by another information impact, i.e., there is another information portions J that 

moves the infological system IF(R) back to the previous state. 

Information secoperators represent such information portions I that act like an eraser of some 

previously received information. 
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Information isooperators are both information retroperators and information secoperators. 

Information zero operators represent such information portions I that erases all existed information 

reducing it to minimum. 

Information constant operators represent such information portions I that equalize all previously 

received information. 

Information co-constant operators represent such information portions I that equalize all  

further information. 

Example 4.12. Taking a category C from Example 4.2 where objects are sets of propositions, or 

more generally, of knowledge items, and morphisms are transformations of these sets, we define the 

categorical information operator O so that for each set A of propositions, the corresponding morphism 

O(A) is a deduction in a monotone logic. As we know, deduction in a monotone logic only adds new 

propositions (knowledge items) to the initial set. Thus, O is a categorical information monoperator. 

Example 4.13. Let us take a category C where objects are collections of books that some library L 

has at different periods of time and morphisms are transformations of these collections that go from 

time to time. Assuming that this library never discards books, we see that any categorical information 

operator O in C is a categorical information monoperator. 

Example 4.14. Let us take a category C where objects are collections of software systems that some 

software depositary L has at different periods of time and morphisms are transformations of these 

collections that go from time to time. We define the categorical information operator O in the 

following way. For each set A of software systems, the corresponding morphism O(A) is validation of 

software systems from A, exclusion of invalid systems and elimination of copies of the same system. 

As software systems are never added by morphisms O(A), we see that any categorical information 

operator O in C  is a categorical information epoperator. 

Proposition 4.12. If O2 is a categorical information monoperator and O1 ≼ O2, then O1 is also a 

categorical information monoperator. 

Proof. Let us take an object A from the category C and two morphisms h: D  A and g: D  A 

such that O1(A) ○ h = O1(A) ○ g (cf. Diagram (4.7)). 

                                                      h 

                                             D                      A             
                                                     g                   O2(A)   
                                                    O1(A)                                                                (4.7) 

                                                                    C                B                    
                                                                             f                   

Then we have 

                          O2(A) ○ h = f ○ O1(A) ○ h = f ○ O1(A) ○ g = O2(A) ○ g 

As O2 is a categorical information monoperator, O2(A) is a monomorphism. Consequently, h = g. 

Proposition is proved because A is an arbitrary object from the category C and g and h are arbitrary 

morphisms into A. 
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Corollary 4.4. If O2 is a categorical information monoperator and O1 ⊆ O2, then O1 is also a 

categorical information monoperator. 

Corollary 4.5. A categorical information operator equivalent to a categorical information 

monoperator is itself a categorical information monoperator. 

Definition 4.6 and Proposition 5.5 from [27] imply the following result. 

Proposition 4.13. If O2 is a categorical information secoperator and O1 ≼ O2, then O1 is also a 

categorical information secoperator. 

Proposition 4.14. If O1 is a categorical information epoperator and O1 ≼ISO O2, then O2 is also a 

categorical information epoperator. 

Proof. Let us take an object A from the category C and two morphisms h: B  D and g: B  D 

such that O2(A): A  B,  h ○ O2(A) = g ○ O2(A) (cf. Diagram (4.8)). 

                                                                     A             
                                                                        O2(A)   
                                                    O1(A)                            h                                  (4.8) 

                                                                    C                B                   D 

                                                                          f                  g 

Then we have 

                          h ○ O2(A) = h ○ f ○ O1(A) = g ○ f ○ O1(A) = g ○ O2(A)  

As O1 is a categorical information epoperator, O1(A) is an epimorphism. Consequently, h ○ f = g ○ 

f. As f is an isomorphism, there is a morphism t: B  C such that f ○ r = 1B. Consequently,  

                                h = h ○ 1B = h ○ f ○ r = g ○ f ○ r = g ○ 1B = g  

As g and h are arbitrary morphisms from B, O2(A) is an epimorphism. 

Proposition is proved because A is an arbitrary object from the category C and g and h are arbitrary 

morphisms from B. 

Corollary 4.6. If O1 is a categorical information epoperator, O2 is a categorical information 

monoperator and O1 ≼ISO O2, then both O1 and O2 are categorical information bimoperators. 

Corollary 4.7. A categorical information operator ISO-equivalent to a categorical information 

epoperator is itself a categorical information epoperator. 

Corollary 4.8. A categorical information operator ISO-equivalent to a categorical information 

bimoperator is itself a categorical information bimoperator. 

Proposition 4.15. If O1 is a constant categorical information operator and O1 ≼ O2, then O2 is also 

a constant categorical information operator. 

Proof. Let us take an object A from the category C and two morphisms h: C  A and g: C  A (cf. 

Diagram (4.9)). 
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      h 

                                             D                      A             
                                                     g                   O2(A)   
                                                    O1(A)                                                                (4.9) 

                                                                    C                B                    
                                                                             f                   

As O1 is a constant categorical information operator, we have 

                                                           O1(A) ○ h = O1(A) ○ g 

Consequently, we have 

                          O2(A) ○ h = f ○ O1(A) ○ h = f ○ O1(A) ○ g = O2(A) ○ g 

O2 is also a constant categorical information operator because A is an arbitrary object from the 

category C and g and h are arbitrary morphisms into A. 

Proposition is proved. 

Corollary 4.9. If O1 is a constant categorical information operator and O1 ⊆ O2 , then O2 is also a 

constant categorical information operator. 

Corollary 4.10. A categorical information operator equivalent to a constant categorical information 

operator is itself a constant categorical information operator. 

Proposition 4.16. If O1 is a co-constant categorical information operator and O1 ≼ISO O2, then O2 is 

also a co-constant categorical information operator. 

Proof. Let us take an object A from the category C and two morphisms h: B  D and g: B  D 

such that O2(A): A  B. As O1 ≼ISO O2, we have O2(A) = f ○ O1(A) for an isomorphism f (cf.  

Diagram (4.10)). 

                                                                     A             
                                                                          O2(A)   
                                                    O1(A)                            h                                 (4.10) 

                                                                    C                B                   D 

                                                                             f                  g 

As O1 is a co-constant categorical information operator, we have 

                                                     h ○ f ○ O1(A) = g ○ f ○ O1(A) 

Thus, we obtain 

                          h ○ O2(A) = h ○ f ○ O1(A) = g ○ f ○ O1(A) = g ○ O2(A)  

O2 is a co-constant categorical information operator because A is an arbitrary object from the 

category C and g and h are arbitrary morphisms from B. 

Proposition is proved. 

Corollary 4.11. An information suboperator of a zero categorical information operator is itself a 

zero categorical information operator.  
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Corollary 4.12. An information operator equivalent to a zero categorical information operator is 

itself a zero categorical information operator. 

Corollary 4.13. An information operator equivalent to a co-constant categorical information 

operator is itself a co-constant categorical information operator. 

Corollary 4.14. If O1 is a constant (co-constant) categorical information operator and O1 ⊆ O2, then 

O2 is also a constant (co-constant) categorical information operator. 

Information is a dynamic essence and its processing involves different operations with information 

and its representations and carriers. In the mathematical setting of categories, operations with 

information are represented by operations with information operators. One of the most important 

information operations is the (sequential) composition of categorical information operators. 

Let us find some properties of the (sequential) composition of categorical information operators. 

Proposition 4.17. The (sequential) composition of total categorical information operators is a total 

categorical information operator. 

Proposition 4.18. If O3 is a categorical information secoperator, then O3 ○ O1 ≼ O3 ○ O2 if and 

only if O1 ≼ O2 . 

Proof. 1. Let us assume that O1 ≼ O2. Then for an arbitrary object A from the category C, we have 

the commutative Diagram (4.11):  

                                                                                        O3(B) 

                                                                     A                    B                 D       
                                                                       O2(A)   
                                                              O1(A)               f                                      (4.11) 

                                                                                      C                  H 

                                                                                            O3(C) 

As O3 is a categorical information secoperator, the morphism O3(C) is a section. Consequently, 

there is a morphism g: H  C, such that g ○ O3(C) = 1C.  

Thus, we have 

                    O3(B) ○ O2(A) = O3(B) ○ f ○ O1(A) = O3(B) ○ f ○1C ○ O1(A) =  

                           O3(B) ○ f ○ g ○ O3(C) ○ O1(A) = t ○ O3(C) ○ O1(A) 

where t = O3(B) ○ f ○ g. As A is an arbitrary object from the category C, we have 

                                                      O3 ○ O1 ≼ O3 ○ O2 

2. Now let us assume that O3 ○ O1 ≼ O3 ○ O2. Then we have the commutative Diagram (4.12): 

                                                                                       O3(B) 

                                                                   A                    B                 D       
                                                                        O2(A)   
                                                             O1(A)                            f                         (4.12) 

                                                                                      C                  H 

                                                                                            O3(C)  
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As O3 is a categorical information secoperator, the morphism O3(B) is a section. Consequently, 

there is a morphism g: H  C, such that g ○ O3(B) = 1B .  

Thus, the equality 

                                      O3(B) ○ O2(A) = f ○ O3(C) ○ O1(A)  

implies the equalities  

                                     g ○ O3(B) ○ O2(A) = g ○ f ○ O3(C) ○ O1(A) =  

                                               q ○ O1(A) = 1B ○ O2(A) = O2(A) 

where q = g ○ f ○ O3(C). As A is an arbitrary object from the category C, we have 

                                                                 O1 ≼ O2 

Proposition is proved.  

Corollary 4.15. If O3 is a categorical information secoperator, then O3 ○ O1 ≍ O3 ○ O2 if and only  

if O1 ≍ O2. 

Proof. 1. Let us take categorical information operators O1, O2 and O3 and assume that O1 ≍ O2 and 

O3 is a categorical information secoperator. Then by Definition 4.6, we have O1 ≼ O2. Thus, by 

Proposition 4.18, O3 ○ O1 ≼ O3 ○ O2. 

Besides, O1 ≍ O2 implies O2 ≼ O1. Thus, by Proposition 4.18, O3 ○ O2 ≼ O3 ○ O1. Then by 

Definition 4.6, we have O3 ○ O1 ≍ O3 ○ O2. 

2. Let us take categorical information operators O1, O2 and O3 and assume that O3 ○ O1 ≍ O3 ○ O2 

and O3 is a categorical information secoperator. Then by Definition 4.6, O3 ○ O1 ≼ O3 ○ O2. Thus, by 

Proposition 4.18, O1 ≼ O2. 

Besides, O3 ○ O1 ≍ O3 ○ O2 implies O3 ○ O2 ≼ O3 ○ O1 . Thus, by Proposition 4.18, O2 ≼ O1. Then 

by Definition 4.6, O1 ≍ O2. 

Corollary is proved. 

Proposition 4.19. If O3 is a categorical information isoperator, then O3 ○ O1 ≼ISO O3 ○ O2 if and 

only if O1 ≼ISO O2. 

Proof. 1. Let us take categorical information operators O1, O2 and O3 and assume that O1 ≼ISO O2 

and O3 is a categorical information isoperator. Then we have the commutative diagram (4.13) in which 

f is an isomorphism: 

                                                                                        O3(B) 

                                                                       A                   B                 D       
                                                                        O2(A)   
                                                             O1(A)               f                                      (4.13) 

                                                                                      C                  H 

                                                                                           O3(C) 
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By Proposition 4.18, it is possible to extend Diagram (4.13) to the commutative Diagram (4.14):  

                                                                                         O3(B) 

                                                                   A                    B                 D       
                                                                         O2(A)   
                                                              O1(A)               f            t                          (4.14) 

                                                                                    C                  H 

                                                                                            O3(C) 

where t = O3(B) ○ f ○ g and g is the inverse to the morphism O3(C). As O3 is a categorical 

information isooperator, O3(C) and O3(B) are isomorphisms. Consequently, g is an isomorphism [27]. 

As f is an isomorphism, the morphism t is also an isomorphism as the sequential composition of 

isomorphisms [27]. It means that O3(B) ○ O2(A) = t ○ O3(C) ○ O1(A) where t is an isomorphism. 

As A is an arbitrary object from the category C, we have 

                                                      O3 ○ O1 ≼ISO O3 ○ O2 

2. Let us take categorical information operators O1, O2 and O3 and assume that  

O3 ○ O1 ≼ISO O3 ○ O2 and O3 is a categorical information isoperator. Then we have the commutative 

diagram (4.15) in which f is an isomorphism: 

                                                                                       O3(B) 

                                                                     A                    B                 D       
                                                                         O2(A)   
                                                            O1(A)                           f                           (4.15) 

                                                                                      C                  H 

                                                                                            O3(C) 

By Proposition 4.18, it is possible to extend Diagram (4.15) to the commutative Diagram (4.16):  

                                                                                       O3(B) 

                                                                     A                    B                 D       
                                                                         O2(A)   
                                                            O1(A)               q            f                        (4.16) 

                                                                                     C                  H 

                                                                                          O3(C) 

where q = g ○ f ○ O3(C). and g is the inverse to the morphism O3(B). As O3 is a categorical 

information isooperator, O3(C) and O3(B) are isomorphisms. Consequently, g is an isomorphism [27]. 

As f is an isomorphism, the morphism q is also an isomorphism as the sequential composition of 

isomorphisms [27]. It means that O2(A) = q ○ O1(A) where q is an isomorphism. 

As A is an arbitrary object from the category C, we have 

                                                                 O1 ≼ISO O2 

Proposition is proved.  

Let us take two categorical information spaces C and K. 
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Theorem 4.1. A covariant functor F: C  K associates categorical information operators over K to 

categorical information operators over C and preserves their sequential composition.  

Proof. Let us consider a covariant functor F: C  K. To each object A from C, the functor F 

assigns the object F(A) from K, and if O is a categorical information operator, then F assigns the 

morphism F(O(A)) from Mor K to each morphism O(A) from C. Assuming axiom of choice for the 

class Ob C, it is possible to choose a unique object DA from the class FA = { C; C  Ob C and  

F(C) = F(A) }. Then we define FO(F(A)) as the morphism F(O(DA)). Note that F(DA ) = F(A). In such 

a way, we build a categorical information operator FO over K. By definition (cf. Section 2), functors 

preserve sequential composition. Thus, sequential composition of categorical information operators is 

also preserved. 

Theorem is proved. 

Informally, functors are mapping of categorical information spaces that preserve the structure of 

information transformations. In particular, Theorem 4.1 shows that functors are mappings between 

categories of states of different infological systems that are compatible with actions of information. 

Functors allow one to study how the same information operates in different infological systems.  

As we can see from the proof of Theorem 4.1, in a general case, it is possible to associate different 

categorical information operators over K to the same categorical information operator over C, i.e., 

correspondence between categorical information operators over K and categorical information 

operators over C is not a function. To make it a function, we need additional conditions on the  

functor F. 

Theorem 4.2. If F is an embedding covariant functor, then a unique categorical information 

operator FO over K is associated to each categorical information operator O over C and if O is total, 

then FO is total. 

Proof. Let us consider an embedding covariant functor F: C  K. To each object A from C, the 

functor F assigns the object F(A) from K, and if O is a categorical information operator, then F assigns 

the morphism F(O(A)) from Mor K to each morphism O(A) from C. Because F is an embedding 

covariant functor, it defines a one-to-one correspondence between objects from C and objects from K 

[27; Section 12]. Thus, there is only one object X in the class Ob C such that F(X) = F(A) and we 

define FO(F(A)) as the morphism F(O(A)). In such a way, we build a unique categorical information 

operator FO over K. As O is total and FObC: Ob C  Ob K is a one-to-one correspondence, the 

operator FO is also total. 

Theorem is proved. 

Theorem 4.3. A full dense covariant functor F: C  K maps categorical information operators 

over K into categorical information operators over C and preserves totality of categorical information 

operators.  

Proof. Let us consider a full dense covariant functor F: C  K and a categorical information 

operator O over K. To each object D from K, the operator O assigns the morphism O(D) from K. 

Besides, to each object A from C, the functor F assigns the object F(A) from K. If C = Im OF(A), then 

there is an object B from C, such that F(B) is isomorphic to C because F is a dense functor, i.e., there 

is an isomorphism f: C  F(B).  This gives us the following diagram  
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                                                               A                              B 
 

                                                             F                      F                                     (4.17) 
 

                                                       F(A)                      F(B) 

                                                               f ○ O(F(A)))  

Because F is a full functor, there is a morphism g: A  B such that F(g) = f ○ O(F(A))). This gives 

us the following diagram 

                                                                       g 
                                                                A                            B 

 

                                                             F                      F                                    (4.18) 
 

                                                         F(A)                      F(B) 

                                                              f ○ O(F(A)))  

Thus, we define U(A) = g. This is done for each object A in the class Ob C, and such a way  

we obtain a categorical information operator U over C. As O is total and FObC: Ob C  Ob K is a  

one-to-one correspondence, the operator U is also total. We denote the categorical information 

operator U by F-1O.  

Theorem is proved. 

Let us take a property P of categorical information operators. 

Definition 4.9. A functor F: C  K:  

a) preserves the property P if for any categorical information operator A over C with the property P, 

its image F(A) is a categorical information operator over K with the property P. 

a) reflects the property P if for any categorical information operator A over C, if its image F(A) has 

the property P, then A also has the property P. 

For instance, by definition, a covariant functor preserves the property of a morphism to be a 

composition of other morphisms. 

Proposition 4.20. Every covariant functor F: C  K preserves the relation ≼ between categorical 

information operators.  

Indeed, if O1 ≼ O2 for categorical information operators O1 and O2, then by Definition 4.6, for any 

object A from C, we have 

                                            O2(A) = f ○ O1(A) for some morphism f  

Because F is a functor, we also have 

                                            FO2(F(A)) = F(f) ○ FO1(F(A))  

As F(A) is an arbitrary object where categorical information operators FO1 and FO2 are defined, we 

have FO1 ≼ FO2 . 

Proposition 4.20 and Proposition 12.2 from [27] imply the following result. 

Proposition 4.21. Every covariant functor F: C  K preserves relations ≼RET, ≼SEC, and ≼ISO 

between categorical information operators. 
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Proposition 4.22. If A O B, then FA FO FB. 

Indeed, the commutative Diagram 4.4 in the category C implies the commutative Diagram 4.19 in 

the category K. 

                                                            F(A)             
                                                                           FO(A)   
                                                         F(f)                                                              (4.19) 

                                                                 F(B)               F(C) 

                                                                          O(B) 

Proposition 4.23. For any categorical information operators O1 and O2 over C, if A O1 B, then  

A O2 O1 B. 

Indeed, the commutative Diagram 4.4 implies the commutative Diagram 4.20.  

                                                                   A             
                                                                       O1(A)   
                                                           f                                                               (4.20) 

                                                                     B                 C                 D 

                                                                        O1(B)         O2(B) 

Proposition 12.2 from [27] implies the following result. 

Theorem 4.4. Every covariant functor F: C  K preserves categorical information secoperators, 

categorical information retroperators, and categorical information isoperators over the category C.  

Theorem 12.10 from [27] implies the following result. 

Theorem 4.5. Every dense full and faithful covariant functor F: C  K preserves categorical 

information monooperators, categorical information epoperators, categorical information bimoperators 

over the category C.  

Propositions 12.8 and 12.9 from [27] imply the following result. 

Theorem 4.6. Every full faithful covariant functor F: C  K reflects categorical information 

secoperators, categorical information retroperators, categorical information monoperators, categorical 

information epoperators, categorical information bimoperators, constant categorical information 

operators, co-constant categorical information operators, zero categorical information operators, and 

categorical information isoperators over the category C.  

In addition to sequential composition, it is possible to define concurrent and parallel compositions 

of categorical information operators.  

Let us consider a category C with pushouts [27]. 

Definition 4.10. A categorical information operator O over C is called the free sum of categorical 

information operators O1 and O2 over C if for any A  Ob C, there is the pushout (4.21) where  

q = g ○O1(A) = f ○O2(A) and O(A) = q.  
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 g 

                                                                    B                 D 

                                                           O1(A)            q           f                                         (4.21) 
 

                                                                    A                  C 

                                                                           O2(A) 

The free sum of categorical information operators O1 and O2 over C is denoted by O1⊛O2.  

By properties of pushouts [27] the free sum of categorical information operators is defined uniquely 

up to an isomorphism. 

On the level of information processes, the free sum of categorical information operators represents 

consistent integration of information. Now when people and databases receive information from 

diverse sources, information integration has become an extremely important cognitive operation. 

Information integration plays a mission critical role in a diversity of applications from life sciences to 

E-Commerce to ecology to disaster management. These applications rely on the ability to integrate 

information from multiple heterogeneous sources. 

Operationally, Definition 4.3 means that the free sum of two categorical information operators O1 

and O2 is constructed by taking pushouts for couples of actions of O1 and O2 on each object in C. It 

models concurrent information processing (e.g., integration and composition). 

Theorem 4.7. The free sum of any two categorical information operators is a categorical 

information epoperator. 

Proof. Let us take the free sum O of two categorical information operators O1 and O2 over C. Then 

for any object A  Ob C, there is the pushout (4.21). To prove that O is a categorical information 

epoperator, we need to show that q always is an epimorphism. 

Let us consider two morphisms k, h  HomC(D, Q) such that k○q = h○q. Then we have  

                   k○q = k ○ f ○O2(A) = k ○ g ○O1(A) = h○q = h ○ f ○O2(A) = h ○ g ○O1(A) 

It gives us the commutative diagram (4.22). 

                                                                           k○g 

                                                                     B                 Q 

                                                          O1(A)   k○q = h○q    h○f                                     (4.22) 
 

                                                                    A                  C 

                                                                          O2(A) 

By the definition of a pushout (cf. for example, [27]), we have a morphism p: D  Q, which is 

defined in a unique way and for which  

                                                   p ○ f ○ O2(A) = p ○ g ○ O1(A)                        (4.23) 

As the equality (4.23) is also true for morphisms k and h and morphism p is unique, we have k = h. 

Theorem is proved because the object A  Ob C and morphisms k and h were chosen in an  

arbitrary way. 

The free sum preserves relations between categorical information operators. 
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Theorem 4.8. If O1 ≼ O3 and O2 ≼ O4 , then O1 ⊛ O2 ≼ O3 ⊛ O4 . 

Proof. Let us take categorical information operators O1, O2, O3 and O4 and assume that O1 ≼ O3 and 

O2 ≼ O4. For each pair of them, we build their free sums O1 ⊛ O2 and O3 ⊛ O4, presented for an object 

A in diagrams (4.24) and (4.25). 

                                                                      g 
                                                                    B                               D 

                                                           O1(A)                 O1⊛O2(A)   f                              (4.24) 
 

                                                                    A                               C 

                                                                              O2(A) 

                                                                     k 
                                                                    H                             U 

                                                           O3(A)                O3⊛O4(A)   h                              (4.25) 
 

                                                                    A                             K 

                                                                                O4(A) 

As O1 ≼ O3 and O2 ≼ O4, by Definition 4.6, we have: 

                                                                   O3(A) = p ○ O1(A) 

and 

                                                                   O4(A) = q ○ O2(A) 

for some morphisms f and g. 

This gives us the following commutative diagram  

                                                                                                 U 
                                                                      k                                                     
                                                                        O3⊛O4(A)                
                                               H                    B                   D           h 
                                                           p               g  
                                       O3(A)      O1(H)                     f                                       (4.26) 
                                                                             O4(A)C     q                                
                                                                    A                                K 

                                                                              O4(A)  

From Diagram (4.24), we obtain the following commutative square 

                                                                       k ○ p 
                                                                     B                               U 

                                                           O1(A)                                     h ○ q                     (4.27) 
 

                                                                    A                               C 

                                                                              O2(A) 

As the commutative square in Diagram (4.24) is a pushout, there is a morphism r: D  U, such that 

k ○ p = r ○ g and h ○ q = r ○ f. This gives us the following commutative diagram 
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                                                                                               U 
                                                                   k                                                     
                                                                       O3⊛O4(A)      r 

                                                H                    B                   D           h 
                                                            p               g  
                                       O3(A)      O1(H)                     f                                        (4.28) 
                                                                              O4(A)C     q                                
                                                                   A                                K 

                                                                              O4(A) 

From Diagram (4.28), we have 

                                                           O3(A) ⊛ O4(A) = r ○ O1(A) ⊛ O2(A) 

Thus, O1 ⊛ O2 ≼ O3 ⊛ O4. 

Theorem is proved. 

Definitions imply the following result. 

Theorem 4.9. For any categorical information operators O1 and O2, we have O1 ≼ O1 ⊛ O2 and  

O2 ≼ O1 ⊛ O2. 

Indeed, O1⊛O2(A) = g ○ O1(A) = f ○ O2(A) for any object A from the category C.                                   

5. Conclusions  

Using the operator model of information, we studied decompositions of portions of information and 

relation of complementarity between portions of information, which are represented by relations 

between categorical information operators. These relations are preserved by covariant functors, 

sequential compositions and free sums of categorical information operators. 

Categorical representation of information processes can solve different problems and clarify general 

misconceptions. One of them is related to computers. 

As we well understand, computers process information. However, what we see is only data 

processing. Indeed, computers get data as their input and give data as their output. As the rule, these 

data have the symbolic form. This is the observed picture. 

It is similar to dynamics of material bodies. People see movement of bodies but to find energy or 

acceleration, it is necessary to perform measurements and calculations, representing observable 

quantities by relevant structures in Newtonian dynamics. 

In a similar way, we represent information by information operators (in this paper, by categorical 

information operators) and information transformations by information metaoperators (in this paper, 

by functors). This model makes it possible to describe information processing by compositions of 

information metaoperators (functors), i.e., by the sequential composition of information metaoperators 

(functors). In such a way, categorical model allows researchers to describe in a theoretical form 

information processing and not only data processing. 

There are operations with categorical information operators and relations between these operators 

that are not studied in this paper but are important for information theory. This brings us to the 

following problems. 
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Problem 1. Find necessary and/or sufficient conditions when an operation with categorical 

information operators preserves given relations between these operators. 

Problem 2. Find conditions when an operation with categorical information operators implies 

prescribed relations between these operators. 

Problem 3. Find conditions when categorical information operators form a lattice with respect to  

the relation ≼. 

Problem 4. Characterize classes K of morphisms in a category C such that categorical information 

operators in C form a lattice with respect to the relation ≼K. 

In this paper, relations between categorical information operators and covariant functors  

are studied. 

Problem 5. Study relations between categorical information operators and contravariant functors. 
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