
Information 2010, 1, 60-73; doi:10.3390/info1020060 

 

information
ISSN 2078-2489 

www.mdpi.com/journal/information 

Review 

Application of Information—Theoretic Concepts in 

Chemoinformatics  

Martin Vogt, Anne Mai Wassermann and Jürgen Bajorath * 

Department of Life Science Informatics, B-IT, Rheinische Friedrich-Wilhelms-Universität, Dahlmannstr. 

2, D-53113 Bonn, Germany; E-Mails: vogtm@bit.uni-bonn.de (M.V.);  

wasserma@bit.uni-bonn.de (A.M.W.). 

 

*  Author to whom correspondence should be addressed; E-Mail: bajorath@bit.uni-bonn.de,  

Tel: +49-228-2699-306; Fax: +49-228-2699-341. 

Received: 1 September 2010; in revised form: 26 September 2010 / Accepted: 16 October 2010 /  

Published: 20 October 2010 

 

Abstract: The use of computational methodologies for chemical database mining and 

molecular similarity searching or structure-activity relationship analysis has become an 

integral part of modern chemical and pharmaceutical research. These types of computational 

studies fall into the chemoinformatics spectrum and usually have large-scale character. 

Concepts from information theory such as Shannon entropy and Kullback-Leibler divergence 

have also been adopted for chemoinformatics applications. In this review, we introduce these 

concepts, describe their adaptations, and discuss exemplary applications of information 

theory to a variety of relevant problems. These include, among others, chemical feature (or 

descriptor) selection, database profiling, and compound recall rate predictions. 

Keywords: database profiling; feature selection; feature significance; information theory; 

similarity searching; molecular topology; virtual screening 

 

1. Introduction 

Chemoinformatics is still evolving as a research field and is, from a methodological point of view, 

closely related to bioinformatics. Whereas bioinformatics typically deals with genes, proteins, and other 

large biomolecules, pharmaceutically-oriented chemoinformatics focuses on small (synthetic) molecules, 
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their interactions with targets, and their biological activity [1]. In more general terms, we can rationalize 

chemoinformatics as a discipline that processes any form of chemical information with the aid of 

computational methods. Similar to bioinformatics, the management, use, and analysis of large quantities 

of information is central to the field of chemoinformatics [2]. A prime objective of chemoinformatics 

methods is the identification of compounds with desired biological activities that might ultimately 

become drug candidates. 

Information theoretical concepts can be applied to chemoinformatic problems at very different levels 

and in diverse contexts. On the one hand, the concepts from information theory can be directly applied 

to different representations of small molecules in order to quantify their chemical “information  

content” [3]. On the other hand, information-theoretic approaches can be employed in statistical 

analysis, data mining, and machine learning, which currently play a vital role in chemoinformatics 

research [4]. Herein, we will first provide an overview of how the concept of information can be  

applied to molecules. Then we focus on statistical analysis of compound databases and the use of 

information-theoretic concepts for applications such as virtual compound screening. 

2. Chemical Descriptors and Shannon Entropy 

2.1. Information-Theoretic Concepts for Characterizing Topological Properties of Molecules 

Probably the most well-known description of chemical compounds is the chemical graph 

representation. In a chemical graph, the atoms composing a molecule are represented as nodes and 

bonded atoms are connected by edges indicating the type of bond, e.g., a single, double, or aromatic 

bond (Figure 1). A chemical graph does not represent three-dimensional structure information but its 

topology. The graph can also be annotated with stereochemical information, which defines the relative 

spatial arrangements of selected atoms. In graph representation of a molecule, hydrogen atoms are often 

“suppressed”, i.e., they are not shown as separate nodes and are also not directly considered when 

extracting information from the graph. 

Figure 1. Abstract representation of a molecule as a mathematical graph. Topological 

properties of molecules are typically derived from a hydrogen-supressed representation by 

reducing molecules to their connectivity information and disregarding atom type and  

bond order. 
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An early application of information-theoretic concepts in chemoinformatics has been the 

determination of chemical “information content” from graph representations. The basic idea here is to 

calculate the Shannon entropy [5] of a probability distribution that is induced by invariants of the 

underlying graph. A graph invariant is a property that is only dependent on the abstract structure of a 

graph and not on specific representations. For instance, the adjacency matrix of a graph is not an 

invariant because it depends on the order of the nodes. On the other hand, the characteristic polynomial 

of the adjacency matrix is an invariant because it does not depend on the order. 

This concept was first introduced in the 1950s by Rashevsky [6] and further developed by  

Trucco [7,8] and Mowshowitz [9-12]. The basic idea is to measure the complexity of a graph by 

considering its symmetries. For instance, benzene is a highly symmetrical graph where all carbon atoms 

are topologically indistinguishable. However, when we consider phenol, only the carbon atoms at 

positions 2 and 6 and at positions 3 and 5 are indistinguishable [Figure 2 (a)]. If we add another 

hydroxyl group at position 4 (i.e., benzene-1,4-diol), the four carbons at positions 2, 3, 5, and 6, the 

carbon pair 1 and 4, and the two hydroxyl groups become indistinguishable. If such topologically 

“indistinguishable” nodes are grouped together the relative size of the groups induces a probability 

distribution, as shown for benzene-1,4-diol in Figure 2 (b).  

Figure 2. Partitioning of atoms into sets of indistinguishable atoms. Atoms of a molecule 

are grouped together if they are topologically indistinguishable. For each molecule, atoms 

belonging to the same group are shown in the same color. (a) All (non-hydrogen) atoms of 

benzene are indistinguishable. When a hydroxyl group is added, the carbons in positions 2 

and 6 as well as those in positions 3 and 5 positions are indistinguishable, as indicated by the 

color code. (b) For benzene-1,4-diol, groups of indistinguishable atoms are shown in the 

same color and the probability distribution resulting from the partitioning is reported. 
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The Shannon entropy of this distribution then defines the topological information content of the 

graph. If n is the total number of non-hydrogen atoms in a molecule and the molecule is partitioned into 

k sets of topological indistinguishable atoms of respective size ni, i=1…k, the values 
n

ni can be treated 

as probabilities of a discrete probability distribution and the topological information index is defined as: 
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For the benzene of Figure 2 (a) all atoms are indistinguishable, so n=6, k=1, n1=6, and: 

ITOP(benzene) = 0. 

For phenol, n=7, k=5, n1=1, n2=1, n3=1, n4=2, n5=2 and: 
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Finally, for benzene-1,4-diol [Figure 2 (b)], n=8, k=3, n1=2, n2=2, n3=4 and: 
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Thus, due to its limited symmetry phenol has the highest index of these three molecules. In 

mathematical terms, nodes of a graph are indistinguishable if they are contained in the same orbit with 

respect to the automorphism group. An automorphism of a graph is a permutation of the nodes that 

preserves the adjacency relationships of the nodes. The automorphism group is the set of all 

automorphisms of a graph. Two nodes belong to the same orbit if there is an automorphism that maps 

one node onto the other. The information content is solely based on the relative sizes of the orbits and is 

also called orbital information content [3]. Variants of the topological information can be defined, for 

instance, by considering edges instead of nodes (edge orbital information content) or connections, i.e., 

paths of length 2 (connection orbital information content) [13,14]. 

The idea of calculating the Shannon entropy on an observed or modeled probability distribution  

has been applied to a variety of other graph invariants in order to describe the topological  

shape of molecules [15,16]. Among others, these include the adjacency matrix, the respective  

characteristic polynomial, the distance matrix, or their respective edge counterparts (see [3] for a more 

comprehensive listing). 

2.2. Shannon Entropy Descriptors (SHED) 

The majority of chemoinformatics methods rely on the representation of molecular structure and 

properties by numerical descriptors. Typically, combinations of descriptors are calculated for molecular 

data sets that then constitute chemical references spaces where each mathematical model (feature, 

descriptor) adds a dimension to the space. The projection of molecules into chemical reference spaces is 

a pre-requisite for the application of statistical and data mining methods. Literally thousands of different 

molecular descriptors of greatly varying mathematical complexity are available. Many descriptor spaces 

that are utilized in chemoinformatics are high-dimensional. However, for applications such as compound 

classification, the dimensionality of chemical reference spaces is often reduced in order to focus on 

features that are most descriptive- and predictive- for a given data set and to provide a basis for 

chemical interpretation of the results. 

Given the wealth of chemical descriptors that are available, the topological information content and 

its variations, as discussed above, only characterize molecules with regard to their topological 

complexity. It is of course also important to characterize molecules with regard to their physicochemical 

properties, e.g., by assessing their hydrophobic character or the distribution of hydrogen bond donors. 

For the analysis of structure-activity relationships, a central theme in chemoinformatics, it is of critical 
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importance to represent small molecules using descriptors that are relevant for and responsive to 

specific biological activities.  

The information entropy concept has also been applied to design molecular descriptors, termed 

Shannon entropy descriptors (SHED) [17], which characterize the distribution of potentially activity-

relevant atomic features in a molecule. Sets of atomic features that are responsible for a molecule‟s 

biological activity constitute a pharmacophore. More precisely, a pharmacophore describes the spatial 

arrangement of groups of functionalities in a molecule that determine its biological activity. An active 

molecule must possess features that are highly complementary to the binding site of its target protein, 

e.g., hydrogen bond donor and/or acceptor functions. In order to capture relevant pharmacophore 

features, SHED are based on the calculation of pairs of atomic features and their topological distances 

in a molecule. Therefore, each atom of a molecule is assigned to one or more of four atom-centered 

features: hydrophobic, aromatic, hydrogen bond acceptor, or hydrogen bond donor. The combination of 

two of these four features yields 10 different possible feature pairs. For each feature pair, all atom pairs 

representing this feature pair and their topological distances, i.e., the shortest path lengths (number of 

bonds) between them, are determined. This yields a distribution of topological distances ranging from 1 

to 20. Distances larger than 20 bonds are included in topological distance 20. Considering the relative 

frequency with which each distance occurs yields a probability distribution for each feature pair for 

which the Shannon Entropy S is calculated. The S values for all 10 feature pairs are further transformed 

into projected entropy values E, SeE  , that form the SHED profile of a test compound. Pairwise 

similarity of molecules is assessed by calculating the Euclidean distance of their SHED profiles. It was 

shown that molecules with a similar SHED profile were often likely to possess the same biological 

activity [17], which is a typical way to assess descriptor relevance. The calculation of SHED profiles is 

outlined in Figure 3. 

3. Information Theory-Based Assessment of Feature Significance in Active Compounds 

The methods discussed above focus on the application of information-theoretic measures to 

individual molecules to characterize their properties. In this section, other chemoinformatics approaches 

are described that make use of information theory for data mining and analysis in a statistical context.  

In ligand-based virtual screening [18], known bioactive compounds (the reference set) are used to 

mine databases for novel compounds active against the same biological target. The concept is based on 

the similarity property principle (SPP) [19] stating that overall structurally similar molecules should 

have similar biological properties. This concept is simple at first glance, but requires a bridge between 

chemical similarity and activity similarity, which presents a major challenge for chemoinformatics 

methods. For similarity assessment, compounds are represented by a set of descriptors, as discussed 

above. Due to their effectiveness and computational efficiency, fingerprints that encode the features of 

molecules as bit string representations are widely applied in similarity searching [20]. They are a special 

form of a complex descriptor that captures feature distributions mostly (but not always) in a binary 

format. Fingerprints can usually be characterized as two- or three-dimensional (2D, 3D) according to 

the dimensionality of the molecular representation from which they are derived. This means that 2D 

fingerprints are calculated from the chemical graph and 3D fingerprints from the 3D structural 

representation of a molecule [4]. For example, in simple 2D structural fingerprint designs, each bit 
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accounts for the presence (i.e., the bit is set to one) or absence (the bit is set to zero) of a predefined 

structural fragment, as illustrated in Figure 4. Irrespective of the specific search methodology used for 

database mining, fingerprint overlap between active and database compounds is generally used to 

quantify molecular similarity—and utilized as a measure of predicted activity similarity [20].  

Figure 3. Calculation of SHED descriptors. Each atom in a molecule is assigned one or 

more of the following atomic features: hydrophobic (H), aromatic (R), hydrogen bond 

acceptor (A), or hydrogen bond donor (D). The pairwise combination of these features 

results into 10 possible feature pairs. For each pair, the distribution of topological distances 

between atoms with the respective features is determined. Here, the distribution is shown 

for the aromatic-donor feature (RD) pair. As can be seen, there is only one donor atom in 

the molecule. To obtain the RD distribution, the shortest path lengths (number of bonds) of 

the donor atom to 14 aromatic atoms present in the molecule are calculated. From this 

distribution, the Shannon entropy for the feature pair is derived and further transformed into 

a projected Shannon entropy value, i.e. E-value. The projected entropies of the 10 feature 

pair distributions are graphically displayed in a wheel chart. The small circle in the chart 

indicates the E-value for the RD feature pair. 
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Fingerprints typically combine, and test for, many different chemical features. Often, individual 

features are associated with defined bit positions, forming a one-to-one correspondence. However, it 

has been shown that usually not all bit positions contribute equally to search performance [21]. 

Furthermore, fingerprint search performance is strongly compound class-dependent, which is typically 

observed for molecular descriptors and similarity search tools, regardless of their design and specific 

methodological features. Fingerprint search performance can often be improved if the fingerprint format 

is edited in a compound class-specific manner. For example, dependent on the search strategy that is 
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applied, the elimination of bits from fingerprints can increase the recall of active compounds [22]. In 

general, the determination of optimal bit subsets for individual compound classes requires the 

assessment of the discriminatory power of individual bit positions to distinguish between active  

and inactive database compounds. Two information-theoretic concepts that can be applied to  

assign a relevance score to a given descriptor are the Kullback-Leibler divergence [23] and  

mutual information [24]. 

Figure 4. Schematic substructural fingerprint. A substructural fingerprint consists of a 

predefined set of substructural features represented by specific positions in a binary string. If 

a feature is present in a molecule the bit is set on in its fingerprint; otherwise it is set off. 

The bit pattern is illustrated by the bar where each square corresponds to a specific 

substructural feature, as indicated for five different fragments. The molecule shown at the 

top contains two of the five fragments. For these fragments, the corresponding bits are set 

on (filled square), whereas the bits for the three other substructures that do not occur in the 

molecule are set off (empty square). 

 

3.1. Kullback-Leibler (KL) Divergence 

Fingerprints kiivv ...1)( 


consist of k bits that are either set on or off and thus fingerprint bits can be 

modeled as random binary variables following a Bernoulli distribution. The probabilities A

ip  and B

ip  

that bit i is set on for active and inactive compounds, respectively, can be estimated from the relative 

frequency of the bit being set on within the active reference set (A) and the background database (B).  
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Here, m denotes the number of active and n the number of database compounds. Although database 

compounds are usually not confirmed inactive molecules, they can readily serve as an approximation for 

our estimate because only very few compounds in a large database are likely to display a specific 

biological activity so that their influence on the statistics becomes negligible.  
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Furthermore, as active reference sets are usually rather small, a Laplacian correction can be applied 

to avoid that the estimated probabilities become zero: 
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Accordingly, the probability that a bit is set off is given by pq ˆ1ˆ  . 

KL divergence quantifies the difference between corresponding bit probability distributions for two 

classes of compounds. The KL divergence of an individual fingerprint feature can hence be used to 

assess its significance with respect to the amount of information it contains about an activity class A 

relative to a compound database B: 
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In a recent simulated virtual screening study [25], fingerprints of different complexity and design 

were subjected to KL divergence analysis for 27 different activity classes with 20 active reference 

compounds each and bit positions achieving highest KL divergence scores were combined into subsets 

of increasing size such that compound-class specific fingerprints of variable length were generated. 

These reduced fingerprints and the full-length fingerprints were then used for Bayesian virtual  

screening [26]. Using bit distributions of active and inactive reference molecules, the likelihood of test 

compounds to exhibit a desired activity was estimated on the basis of a log-odds scoring function that is 

conceptually related to the KL divergence analysis [27]:
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This scoring function can be derived from Bayesian principles using the common assumption that the 

features are independently distributed. A conventional performance measure of virtual screening 

benchmark trials is the recall (or recovery) rate, i.e., the number of active compounds retrieved in the 

selected (top-scoring) database subset divided by the total number of actives in the compound database. 

It was shown that for all 27 compound classes, KL-divergence analysis was able to identify subsets of 

bits, often consisting of only a few positions, which determined fingerprint search performance and, in 

many instances, increased the recall rate of active compounds in top-scoring database selection sets in 

comparison to the full-length fingerprints [25]. In subsequent studies, preferred bit subsets from 

different fingerprint types were identified based on KL divergence analysis of active compounds and the 

background database and then combined to build “hybrid” fingerprints that were then used in similarity 

searching [28,29]. Systematic simulated virtual screening trials showed that hybrid fingerprints 

consistently outperformed their parental fingerprints with respect to both the number of retrieved 

compounds and the chemical diversity of the identified hits. Hence, as different fingerprints capture 

different aspects of molecular structure, the combination of discriminatory features from different 

fingerprints can lead to a substantial gain in chemical information that is exploited in the search for 

novel active compounds.  
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KL divergence analysis can also be applied to estimate the expected recall rate for different activity 

classes [30,31]. The KL divergence for an entire fingerprint is the sum of the KL divergences obtained 

for individual bit positions and corresponds to the expected score of the log-likelihood ratio 

))(log( vR


for activity class A. The higher the KL divergence the more the fingerprint should be able to 

distinguish between classes A and B and the higher is the expected recall rate for that activity class. In 

order to exploit this relationship for compound recall rate prediction, simulated virtual screening trials 

were carried out to determine recall rates for 40 different activity classes. Then a linear regression 

model was built by relating the logarithms of KL divergences to corresponding recall rates. 

Subsequently, the so derived model was used to predict recall rates for seven external test classes that, 

indeed, corresponded well to recall rates obtained by virtual screening experiments [30]. 

3.2. Mutual Information (MI) 

In addition to KL divergence, the concept of mutual information (MI) has been successfully applied 

to feature assessment and selection. MI answers the question of how much information about a class C, 

is contained in a feature F describing that molecule. This information might be the biological activity 

shared by compounds belonging to this class.   

Formally, if the values of feature F are distributed according to a probability distribution p(x) and the 

class C has two possible values A (active) and B (inactive) with probabilities p(A) and p(B), the 

(average) MI can be defined as: 

 )|H()H();MI( CFFCF   (6) 

where )(log)()( i

i

i xpxpFH  is the Shannon entropy and:  

 )|()()|()()|H( BCFHBpACFHApCF    (7) 

is the conditional entropy of F with respect to C [32]. Note that MI can also be expressed as the KL 

divergence between the joint distribution and the product distribution, i.e.: 
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This MI formalism is distinct from the KL divergence in the previous section where in equation (4) 

the KL divergence of the two conditional distributions )|( Axp and )|( Bxp forms the basis for 

descriptor selection. The MI is also known as „information gain‟ and is an important criterion in the 

design of descriptor-based trees [24].  

A related quantity is the so-called pointwise (or specific) mutual information:  
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According to equation (8), the MI is simply the expected value of SI. Liu [33] investigated different 

feature selection strategies for compound classification and found average MI-based feature selection to 

compare favorably to pointwise MI-based feature selection and a number of other statistical selection 

methods, especially for Bayesian classification. MI has also been successfully applied to feature 
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selection for QSAR (in combination with genetic algorithms) [34]. Furthermore, feature selection 

strategies can play an important role in virtual screening using high-dimensional binary fingerprints. 

Combinatorial fingerprints of large databases (e.g., 1,000,000 compounds and more) can contain a total 

of several 100,000 different features [35], although each molecule is usually described by less than 100 

features. Thus, most features occur only rarely and the selection of relevant features is highly activity 

class-specific. In this context, MI has been used successfully for Bayesian screening [36].  

A principal problem in applying MI for feature selection is that it depends on the estimation of the 

probabilities for activity p(A). Usually, these probabilities are estimated from training data. In the 

context of virtual screening, it is very difficult to estimate the number of potentially active compounds 

contained in a screening database. Usually, only a small number of active molecules are known (tens to 

hundreds of molecules). These small sets of active compounds usually do not provide a representative 

sample of the relevant chemical space. Active molecules are often obtained by replacing substituents in 

previously known active molecules, thereby producing so-called analog series of structurally very 

similar compounds, which further restricts the representation of activity-relevant chemical space. In 

general, only a very small fraction of the compounds in a large database can be expected to display a 

specific biological activity. On the other hand, the discriminatory power of a feature can be assessed 

regardless of the frequency of active compounds in a database. To this end, for the purpose of feature 

selection or prioritization, the actual feature probability distribution is not relevant and the probability 

can be arbitrarily set to p(A)=0.5. Under these assumptions [using equation (5)], equation (4) becomes: 

  )|H()|H(
2

1
)H();MI( BCFACFFCF   (10) 

This quantity is also known as the Jensen-Shannon divergence of the feature distributions of active 

and inactive compounds [37] and can be easily calculated from the entropies of the feature distributions 

for active and inactive compounds, taking their average and subtracting the value from the entropy of 

the joint distribution calculated as:  

  )|()|(
2

1
)( BfpAfpfp   (11) 

As a consequence of setting 5.0)()(  BpAp , MI exhibits desired properties when assessing the 

significance of descriptors. First, one should note that the value of the MI in equation (7) only depends 

on the feature distributions for class A and B. Second, the Shannon Entropy H(C) becomes 1 and hence, 

given that 1)H();MI(0  CCF , MI is normalized to the range 0 to 1. Thus, the significance of 

descriptors can be readily interpreted regardless of the prior probabilities p(A). A conceptually similar 

but numerically different approach, termed differential Shannon entropy (DSE), has also been exploited 

[38] to assess differences in the variability of descriptors in different databases and also as a feature 

selection strategy for building binary QSAR models for classifying natural products and  

synthetic molecules [39]. 

3.3. Shannon Entropy-Based Fingerprint Similarity Search Strategy 

The final section presents an SE-based similarity search strategy [40] that, albeit not widely applied 

in chemoinformatics, is discussed because of its conceptual novelty. The approach uses an SE-based 

similarity measure to determine the similarity of a database compound to an active reference set.  
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As for most search strategies the underlying idea of the SE-based fingerprint similarity search 

strategy [40] is that active compounds share a characteristic bit pattern (or consensus bit positions). The 

variability of a single fingerprint feature in a set of active compounds can be obtained by calculating the 

SE value for this bit position considering the feature as a random variable with the two possible values 0 

(absence) or 1 (presence). Again, probabilities in SE calculations are replaced by observed relative 

frequencies. Under the assumption that individual bits in the fingerprint are uncorrelated, SE values 

obtained for single bit positions are then summed up to yield the SE of the complete fingerprint for the 

ligand set (Figure 5). The lower the SE for the fingerprint, the more regular is the bit pattern produced 

by the active compounds. When a database compound that departs from consensus bit positions is 

added to the set of active compounds the SE of the complete fingerprint increases, whereas the addition 

of a compound that matches the consensus bit pattern results in no or only a slight modification of the 

original SE value, as shown in Figure 5. Hence, the fingerprint SE value obtained after addition of a 

database compound reflects its similarity to the reference compounds, and sorting database compounds 

in the order of increasing SE values provides a database ranking in the order of decreasing similarity. 

Virtual screening trials including eight different activity classes showed that the SE method could 

further improve the similarity search performance of current state-of-the-art approaches [40] such as 

nearest-neighbor or fingerprint averaging strategies [41]. 

Figure 5. Shannon entropy-based fingerprint similarity. The fingerprint Shannon entropy 

score (SE) is calculated as the sum of the Shannon entropies of individual bit positions 

(left). The SE of a reference set of four acetylcholine esterase (ACE) inhibitors is shown on 

the right. The SE is recalculated when individual test compounds are added to the set. For 

active compounds, the SE value changes only very little (top three compounds), but for 

inactive compounds, the SE increases notably (bottom three compounds). 
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4. Conclusions 

Herein we have provided a brief review of how information-theoretic concepts have thus far been 

applied in chemoinformatics. Initially, we have described how the information content of single 

molecules can be estimated. Other key applications include the adaptation of the Shannon entropy 

concept for descriptor design and database profiling and the use of Kullback-Leibler divergence and 

Mutual Information for feature significance analysis. In addition, we have discussed similarity search 

concepts that utilize an information theory framework. Information-theoretic concepts are expected to 

play an increasingly important role in chemoinformatics research, in particular, for fingerprint 

engineering applications, molecular similarity assessment, and large-scale information content analysis 

of steadily growing chemical databases.       
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