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Abstract: Traffic prediction techniques are classified as having parametric, non-parametric, and a
combination of parametric and non-parametric characteristics. The extreme learning machine (ELM)
is a non-parametric technique that is commonly used to enhance traffic prediction problems. In this
study, a modified probability approach, continuous conditional random fields (CCRF), is proposed
and implemented with the ELM and then utilized to assess highway traffic data. The modification is
conducted to improve the performance of non-parametric techniques, in this case, the ELM method.
This proposed method is then called the distance-to-mean continuous conditional random fields
(DM-CCRF). The experimental results show that the proposed technique suppresses the prediction
error of the prediction model compared to the standard CCRF. The comparison between ELM as
a baseline regressor, the standard CCRF, and the modified CCRF is displayed. The performance
evaluation of the techniques is obtained by analyzing their mean absolute percentage error (MAPE)
values. DM-CCRF is able to suppress the prediction model error to ∼ 17.047%, which is twice as good
as that of the standard CCRF method. Based on the attributes of the dataset, the DM-CCRF method is
better for the prediction of highway traffic than the standard CCRF method and the baseline regressor.

Keywords: traffic prediction; non-parametric; baseline regressor

1. Introduction

The construction of highways is one of the proposed solutions to overcome the problem of vehicle
congestion and air increase in metropolitan areas [1]. Highways can shorten the travel time of a vehicle
compared with normal roadways. Therefore, highways are an ideal alternative for long-distance
driving. However, several factors can cause congestion of vehicles on highways, including exceeding
the vehicle capacity of highways and irregular flow of vehicles on the highways. Research to predict
traffic flow on highways can be done to study the problem of vehicle congestion [2] by analyzing
traffic flow data. The traffic flow can be assumed to be analogous to fluid flow and can be viewed as a
continuum where its characteristics correspond to fluid physics characteristics [3]. There are two early
categorizations of traffic flow: macroscopic and microscopic traffic flow models. The macroscopic
model is comparable to a fluid moving along a duct (described as a highway), and the microscopic
model considers the movement of each individual vehicle while they interact [4].

Traffic prediction techniques based on models are classified as having parametric, non-parametric,
or a combination of parametric and non-parametric characteristics [5–7]. Parametric techniques:
(1) capture all information about the traffic status within parameters, (2) use the training data to
adjust some finite and fixed set of model parameters, (3) use the model to estimate the traffic states
for a set of test data, (4) are the simplest approach, (5) define the structure in advance, and (6) are
based on time-series analysis. Non-parametric techniques: (1) include an unspecified number of
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parameters, (2) take more time and computational effort to learn optimal parameters, (3) assume that
the distribution of data cannot be easily defined by a set of fixed and finite parameters in the model,
(4) capture the more subtle aspects of the data, (5) have more degrees of freedom, and (6) are based
on artificial intelligent techniques. Moreover, methods for traffic flow estimation are divided into
model-driven and data-driven approaches [8]. Model-driven approaches mostly utilize macroscopic
traffic models and use an algorithm to optimize model results; meanwhile, data-driven approaches
make a statistical analysis based on known measurements and generally include a time-series method.

Research on traffic flow prediction has become urgent with the development of the intelligent
transportation system (ITS) concept. Due to their simplicity, several authors have utilized parametric
techniques to enhance traffic flow prediction [5,7,9–16] and have yielded satisfactory results under
various conditions and cases. Non-parametric techniques were selected and implemented due to their
better accuracy by [6,17–24] to enhance the traffic flow prediction problem. Generally, techniques are
combined to create a model with a higher prediction accuracy [25–29]. Despite the better accuracy
of non-parametric techniques in comparison with simple parametric techniques, the accuracy is
highly dependent on the quality and the quantity of the training data. Therefore, to help improve
the performance of non-parametric techniques, a probabilistic approach is proposed in this research.
This approach is a modification of continuous conditional random fields (CCRF), where CCRF is one
variation of the probabilistic graphical model (PGM) method. PGM uses a graph-based representation
as a basis for breaking down a complex distribution of high-dimensional space [30].

This modification of CCRF, known as the distance-to-mean CCRF (DM-CCRF) technique,
is conducted to improve the ability of the extreme learning machine (ELM) to predict time-series data.
The ELM is a neural network method known for its efficiency and effectiveness that is implemented
in traffic flow prediction areas [31–37]. The CCRF technique itself is known as an approach that is
capable of handling prediction problems, and several authors have used this technique for various
conditions and cases [38–45]. However, to the current authors’ knowledge, this technique has not been
implemented for traffic flow prediction, despite its suitable characteristics for traffic flow data. The
modification is conducted to upgrade the efficiency of CCRF by increasing the probability of the best
prediction output. In this method, it is possible to check the variation in the information that can be
obtained from interactions between points on a CCRF graph. Furthermore, the DM-CCRF is then
implemented in the ELM method for traffic flow prediction. The ELM is set as the baseline regressor,
and a comparison between the baseline regressor, CCRF, and DM-CCRF is displayed. This study
conducts a data-driven traffic flow prediction by using macroscopic traffic flow data. The performance
evaluation of the proposed technique is based on mean square error (MSE) values. The contributions
of this research compared with the previous works mentioned are (1) the modification of the CCRF,
(2) the implementation of the DM-CCRF to the non-parametric ELM method, and (3) the utilization of
DM-CCRF and ELM to enhance traffic flow prediction.

2. Materials and Methods

2.1. Continuous Conditional Random Fields (CCRF)

According to [46–48], the continuous conditional random fields (CCRF) is a method that can
handle the prediction problems on time-series data that have many attributes. A standard conditional
random fields (CRF) approach was proposed to build a novel data-driven scheme to overcome a
saliency estimation with labeling issues [42]. The scheme was based on a special CRF framework
in which the parameters of both unary and pairwise potentials were jointly learned. A predicted
process for image depth from a single RGB input was conducted by utilizing CCRF, and the framework
was implemented to fuse multi-scale representations derived from several common neural network
outputs [43]. The method builds the pairwise potentials that force neighboring pixels with a similar
appearance to obtain close depth values.
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A standard CCRF modification was implemented on aerosol optical depth (AOD) data by using
two prediction results, namely statistical models and deterministic methods [38]. The modifications
were made on the edge features to capture information from the AOD data. Baltrusaistis et al. [39]
used CCRF combined with the support vector machine (SVM) for regression cases, and the method
was modified by making a baseline prediction with neural networks. This modification method was
hereinafter known as continuous conditional neural fields (CCNF) [40,41]. Another modification
of CCRF was proposed by Banda et al. [44], who conducted the continuous dimensional emotion
prediction task utilizing a continuous conditional recurrent neural field (CCRNF). The method evaluated
audio and physiological emotion data, and the results were compared with other methods such as
Long Short-Term Memory (LSTM). Zhou et al. [45] proposed a deep continuous conditional random
fields (DCCRF) approach to tackle online multi-object tracking (MOT) problems, such as detached
inter-object relations and manually tuned relations, which produced non-optimal settings. The method
implemented an asymmetric pairwise term to regularize the final displacement.

2.2. Extreme Learning Machine (ELM)

The ELM method has been implemented in traffic flow prediction research, with or without
modification or combination. A method based on the extreme learning machine was proposed to
enhance a real-time traffic problem by Ban et al. [33]. Due to the efficiency and effectiveness of the
ELM for a wide area, a modification of the ELM, where a kernel function substitutes the hidden
layer of the ELM, was proposed [31]. The aim was to improve the accuracy of the prediction in the
case of traffic flow. A novel prediction model implemented the extreme learning machine with the
addition of bidirectional back propagation, where the parameters in these techniques were not tuned
by experience [32]. This technique, known as incremental extreme learning machine (I-ELM), aimed to
overcome the drawbacks of previous techniques, such as (1) time consumption and (2) hidden nodes
leading the trained model stack to be over-fitted. Zhang et al. [34] implemented the extreme learning
machine to carry out traffic flow prediction based on real heterogeneous data sources. The time series
model also included the techniques and was used as a benchmark.

A method based on the extreme learning machine was built and applied to the prediction of the
urban traffic congestion problem [35]. A symmetric-ELM-cluster (S-ELM-Cluster) transformed the
complex learning issue into different issues on small and medium scale data sets. Yang et al. [36] utilized
the Taguchi method, which is known as a robust and systematic optimization approach, to improve
the optimized configuration of the proposed exponential smoothing and extreme learning machine
forecasting model. This developed model was then applied to highway traffic data. Feng et al. [37]
proposed a combination of the wavelet function and the extreme learning machine to optimize the
short-term traffic flow forecasting method.

3. Materials and Methods

3.1. Standard CCRF

Probabilistic graphical models (PGM) is a method that relies on three main components of
an intelligent system: representation, inference, and learning. The PGM framework is capable of
supporting natural representation, having effective inferences, and being able to acquire a decent model.
Those three components give this method the ability to complete domain renewal [30]. The continuous
conditional random field (CCRF) is a part of PGM that is able to accommodate sequential prediction
problems with many variables. This method was first introduced by Qin et al. [47] and is a regression
form of the conditional random field (CRF) model. The CCRF model is a conditional probability
distribution that represents a mapping relationship of the data selected against their ranking values,
where the ranking values are expressed as continuous variables. In CCRF, information about data and
relationships between data is used as a feature. The structure of the standard CCRF is illustrated in
Figure 1.
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Figure 1. Structure of the standard continuous conditional random field (CCRF).

The probabilistic density function (PDF) is an exponential model that contains features based
on input and output. It is assumed that there is a connection between the labels that are adjacent to
the output. The CCRF forms a connection between a point and its neighboring points. These points
represent the predicted values of time unity and are generated by the conventional predictor algorithm
as the baseline. Because the CCRF works in the case of regression, the baseline used is referred to as
the baseline regressor. The baseline regressors that could be used in this method include the support
vector machine (SVM), neural networks, or trees.

In general, the CCRF serves to strengthen probabilities for weak predictive values. In general,
the CCRF model can be written as [39]

P
(

y
∣∣∣X)

=
1
η

eΨ. (1)

Here, y = (y1, y2, . . . , yN) is a set of predictive values (output), N denotes the number of observed
samples, and X is a vector of independent random variables called predictor vectors. The function Ψ
is the potential function of CCRF, which defines an interaction between every variable on a clique.
A clique is a maximal subgraph, i.e., a set of vertices on a graph that has an edge for each two vertex
pairs [48]. The function η is the normalizer formula that is used to maintain the probability value
P
(

y
∣∣∣X)

between 0 and 1, which is defined as

η(X) =

∫
y

eΨdy. (2)

The potential function Ψ is defined as [49]

Ψ(y, X,α, β) =
∑

i
F(yi, X,α) +

∑
i, j

G
(
yi, y j, X, β

)
, (3)

where F is the CCRF feature variable function referred to as the association potential, G is the CCRF
edge feature function called the interaction potential, i, j = 1, 2, . . . , N denotes the observation sample,
and α, β are the contribution parameters of the feature variable and edge feature, respectively.

The feature function variable F and the edge feature G are the two sources of information used in
CCRF. The feature function F represents prior knowledge for CCRF and evaluates predictive results
formed by the baseline repressors. Generally, the feature tests the prediction results by using an error
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evaluation function such as the mean square error (MSE). Meanwhile, the edge feature G expresses
the interactions between prediction values. The functions F and G are defined as shown in (4) and
(5), respectively: ∑

i
F(yi, X,α) = −

∑
i

∑K1

k=1
αk(yi − fk(Xi))

2, (4)∑
i, j

G
(
yi, y j, X, β

)
= −

∑
i, j

∑K2

k=1
βk

(
yi − y j

)2
. (5)

The integers K1 and K2 represent the number of baseline regressors and the number of similarity
measurements between feature vectors, respectively. The function fk(X) is an unstructured model that
predicts a single output yi based on the input X. Simply stated, fk(X) is a function that maps the input
xi ∈ X to a prediction value yi, which is referred to as a prediction function by a baseline regressor.

3.2. DM-CCRF

The distance-to-mean continuous conditional random fields (DM-CCRF) method includes a
modification made to the edge feature function of CCRF, as shown in Figure 2. It aims to improve the
CCRF performance in predicting time-series data. Modifications are carried out with the assumption
that there is information on the average probability of an event in the total sequence of time-series data.
The prediction model belief probability that emerges is expected to increase by using this assumption.
This assumption is formulated by defining a new edge feature H:∑

i
H(yi, X,γ) = −

∑
i

∑K3

k=1
γk(yi −mi)

2. (6)

Here, integer K3 is the length of the calculated sequence, γ is the contribution variable of the modified
edge feature, and mi is the average of prediction values to yi−1. The variable mi can be formulated as

mi =
1

i− 1

∑i−1

s=1
ys; i = 2, 3, . . . , N, (7)

where the integer s is the sequence of events. The structure of the DM-CCRF is illustrated in Figure 3.
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With the formation of a new edge feature function, a DM-CCRF potential function is defined as

Ψ =
∑

i
F(yi, X,α) +

∑
i
H(yi, X,γ). (8)

In the form of conditional probabilities, DM-CCRF can be written as

P
(

y
∣∣∣X)

=
1
η

eΨ. (9)

Thus, the form of the DM-CCRF formulation can be written as P
(

y
∣∣∣X)

P
(

y
∣∣∣X)

=
e[

∑
i F(yi,X,α)+

∑
i H(yi,X,γ)]∫

y e[
∑

i F(yi,X,α)+
∑

i H(yi,X,γ)]dy
. (10)

By substituting Equations (4)–(6) into Equation (10),

P
(

y
∣∣∣X)

=
e{[−

∑
i
∑K1

k=1 αk(yi− fk(xi))
2]+[−

∑
i
∑K3

k=1 γk(yi−mi)
2]}∫

y e{[−
∑

i
∑K1

k=1 αk(yi− fk(xi))
2]+[−

∑
i
∑K3

k=1 γk(yi−mi)
2]}dy

. (11)

In the concept of a matrix, a simplification of Equation (11) can be written as [38]

P
(

y
∣∣∣X)

=
e[−

1
2 (y−µ)Tσ−1(y−µ)]

(2π)
N
2 |σ|

1
2

, (12)

where
σ−1 = 2(A + B), (13)

µ(X) = σu. (14)
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Matrix σ−1 contains the contribution variable of the entire DM-CCRF feature function, |σ| is the
determinant of matrix σ, and µ denotes the average predictor variable. Matrix A is a diagonal matrix
that contains elements

Ai, j =

 ∑K1
k=1 αk; i = j

0; i , j
. (15)

Matrix B is a symmetrical matrix where the elements consist of

Bi, j =


γkU1; i = j = 1

γk(1 + Ui); (i = j) ∈ {2, . . . , K3 − 1}
−2γk

(
1

j−1 + U j
)
; i , j

γk; i = j = K3

, (16)

where U is constant. Vector u contains elements which are defined as

u = 2
∑K1

k=1
αkXi, j. (17)

3.3. Learning and Inference in DM-CCRF

The learning process aims to select the optimum feature variable value, which will maximize the
conditional probability value [48]. In DM-CCRF, the learning process aims to choose the optimum
values of variables α and γ such that P

(
y
∣∣∣X)

reaches its maximum value. Given a training data{
X(q), y(q)

}N

q=1
, which is formed from any probability distribution [47], X(q) is an input vector that

corresponds to data q, and y(q) is a set of predictive values that correspond to the q-th data point.
The value of the DM-CCRF feature variable θ =

{
α,γ

}
can be estimated. A conditional logarithmic

likelihood function that corresponds to the DM-CCRF model is defined from observational data, i.e.,

L(θ) =
∑N

q=1
log

[
P
(

y
∣∣∣X)

;θ
]
. (18)

Equation (19) is obtained by substituting Equation (9) into Equation (18):

L(θ) =
∑N

q=1

{[
−

∑
i

∑K1

k=1
αk

(
yi
(q)
− fk

(
Xi

(q)
))2

]
+

[
−

∑
i

∑K3

k=1
γk

(
yi
(q)
−mi

)2
]}
−

∑N

q=1
log

{
η
[
X(q)

]}
. (19)

The learning process for training data in DM-CCRF can be written as

(α∗,γ∗) = argmax
α,γ

[L(θ)]. (20)

A stochastic gradient ascent is an algorithm that can be used to process thousands of datasets that
contain hundreds of features. Therefore, the optimal value of a variable can be determined using a
stochastic gradient ascent [39]. The partial derivatives of the conditional logarithmic function P

(
y
∣∣∣X)

for αk and γk can be written as
∂L(θ)
∂αk

=
∂
∂αk

log
[
P
(

y
∣∣∣X)]

, (21)

∂L(θ)
∂γk

=
∂
∂γk

log
[
P
(

y
∣∣∣X)]

. (22)

It is assumed that there is a constraint that can be used to guarantee the partition function so that

e{[−
∑

i
∑K1

k=1 αk(yi− fk(Xi))
2]+[−

∑
i
∑K3

k=1 γk(yi−mi)
2]} (23)
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where
αk > 0 dan γk > 0 (24)

can be integrated [38,39].
A constraint in Equation (24) will reach its optimum value by using a partial derivative of logαk

dan logγk [47], which can be written as

∂L(θ)
∂logαk

=
∂log

[
P
(

y
∣∣∣X)]

∂logαk
, (25)

∂L(θ)
∂logγk

=
∂log

[
P
(

y
∣∣∣X)]

∂logγk
. (26)

Using Equations (25)–(26), the most recent values of αk and γk for each iteration based on the
gradient ascent can be calculated by using Equations (27) and (28), respectively.

logαnew
k = logαold

k + ζ
∂

∂logαk

{
log

[
P
(

y
∣∣∣X)]}

, (27)

logγnew
k = logγold

k + ζ
∂

∂logγk

{
log

[
P
(

y
∣∣∣X)]}

, (28)

where ζ, commonly known as the learning rate, is a constant that is used to determine how significant
the variables updated in each iteration are. If ζ has an enormous value, then there is a possibility of
premature convergence, whereas if ζ has an insignificant value, then the optimization process will take
a very long time to reach convergence.

In the inference process, the desired predictive value is determined [39]. The inference process
in DM-CCRF aims to find the predictive value of y for each input value X given, such that the
conditional probability value P

(
y
∣∣∣X)

reaches the maximum value. The estimated value for each optimal

y corresponding to the conditional probability value P
(

y
∣∣∣X)

will be the same as the expected µ(X) .
The prediction value ŷ in DM-CCRF can be formulated as

ŷ = argmax
y

[
P
(

y
∣∣∣X)

;θ
]
= µ(X). (29)

4. Results and Discussion

4.1. Experimental Setup

4.1.1. Dataset

The traffic data used in this study were obtained from the Department of Transport, United
Kingdom, and were collected using hundreds of sensors for 24 h. The sensors were placed on road
segments and operated in a real-time scenario, resulting in an increase in size over time. The utilized
data were traffic data from a Highways Agency that provides traffic flow information, average traffic
speed, and average trip time for periods of 15 min [50]. The data were collected from 2009 to 2013.
From 270,000,000 observation data points, only 2760 data points were used in the experiment, and these
were located at the latitude of 50.832657◦. These traffic data had ten attributes: source-latitude,
source-longitude, destination-latitude, destination-longitude, time and date, period, vehicle speed,
distance, and traffic flow. The traffic data were narrow in the morning, congested at midday, and started
to plummet at the end of the day [51].

The combination of automatic number plate recognition (ANPR) cameras, an in-vehicle Global
Positioning System (GPS), and inductive loops was utilized to calculate the travel time and average
speed attributes. Furthermore, the travel time attribute was derived from real vehicle observations
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and calculated using the adjacent time periods. The date attribute was converted to the number of
days in one week: 1 for Monday, 2 for Tuesday, and so on. The time attribute was graded from 1 to 96,
representing 00:00–24:00 per time interval. The period attribute was displayed in seconds, the vehicle
speed attribute was displayed in km/h, the distance attribute was displayed in km, and the traffic flow
was displayed as the number of vehicles. The process aimed to analyze the number of vehicles (traffic
flow) predicted.

The cleaning process was conducted by removing the empty attributes or the attributes with
values of zero. In addition, if the dataset contained missing values, then data preprocessing through
imputation techniques was conducted. After the data cleaning process was complete, the remaining
attributes were used as random variables with one target variable value. The target variable in question
was the traffic flow prediction variable. Furthermore, the clean dataset was converted into numerical
data using values between 0 and 1. This was done to avoid data outliers or a huge range of data.

4.1.2. Baseline Regressor

A baseline regressor was formed before data processing with the DM-CCRF. The extreme learning
machine (ELM), which is a regressor based on neural networks, was chosen as a baseline regressor. The
original ELM, which is a machine learning algorithm for single-hidden layer feedforward networks
(SFLNs), was proposed by Huang et al. [52]. Learning parameters in the ELM, namely input weights
and biases from a hidden node, can be set randomly without needing to be set first in each iteration
process [53]. As for the output on the ELM, it can be determined analytically by a simple inverse
operation. The only parameter that must be defined first in the ELM is the number of hidden nodes.
The ELM has a better performance than other SLFN algorithms, especially in terms of the learning
process duration. In the ELM, it is assumed that any non-linear fitness function can be used as a hidden
layer. Figure 4 is an illustration of the ELM, where the enlarged part shows a hidden neuron in the
ELM that can load sub-hidden neurons.
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Several variations of ELM parameters were used to form various scenarios. These scenarios
produced a baseline regressor to provide diverse quality. Furthermore, the behavior of the DM-CCRF
during interaction with various baselines was observed. Each scenario was evaluated by the Mean
Absolute Percentage Error (MAPE), which was used as a benchmark for the DM-CCRF. MAPE
formulations can be written as

MAPE =
100
N

∑N

i=1

∣∣∣∣∣ y− ŷ
y

∣∣∣∣∣. (30)
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In the case of the classical regression model, one way to choose the best model is to analyze the
MAPE value, where the best model can minimize the MAPE value.

4.2. Results and Discussion

Given several variations of kernel parameters with the ELM as the baseline regressor, the results
of the interaction of DM-CCRF with each parameter were obtained. These are represented by
regularization coefficient values. The scenarios were built on the variation of the baseline regressor,
which combined the number of kernel parameters and the coefficient of regulation. The scenarios were
obtained from fine-tuning ELM results. Table 1 presents the variations of ELM parameters as baseline
regressors for DM-CCRF in several scenarios. Fifteen scenarios were investigated, with the smallest
number of the kernel being 1 and the largest number being 1,000,000. The interval of the regularization
coefficient value ranged from 1 up to 1,000,000.

Table 1. Variation of the baseline regressor.

Scenarios Kernel Parameter Coefficient of Regularization

1 1 1
2 1 5
3 1 10
4 1 50
5 1 100
6 1 500
7 1 1000
8 1 10,000
9 1 1,000,000

10 1,000,000 5
11 1,000,000 10
12 1,000,000 50
13 1,000,000 100
14 1,000,000 1000
15 1,000,000 10,000

The evaluation of the performance of the ELM as a baseline regressor for various scenarios is
shown in Figure 5. The peak MAPE value for ELM implementation, 184.76%, was given by the 15th
scenario, while the lowest performance was given by the 8th scenario, 47.33%. In the first scenario,
ELM gave a reasonably high MAPE value, which then decreased gradually until the 8th scenario.
From the 9th scenario to the 11th scenario, the MAPE value for the ELM rose, although this was
not significant. It rose significantly in the 12th scenario and then stabilized with a small increase.
Then, the performance of the DM-CCRF was compared with the standard CCRF and the ELM as the
baseline regressor.
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Figure 5. The evaluation performance of several scenarios with ELM as the baseline regressor.

The same baseline regressor was implemented on the Highways Agency, United Kingdom,
dataset [50] for both methods. Based on Figure 6, it can be seen that the DM-CCRF and CCRF showed
significant performance improvements compared with the performance of the baseline regressor for
each scenario. The results provided by the standard CCRF show its ability to suppress errors obtained
by the baseline regressor. Almost every scenario showed a decreasing MAPE value for the standard
CCRF compared with the ELM as the baseline regressor, except for the fourth and fifth scenarios.
However, the DM-CCRF provided better results than the standard CCRF in terms of minimizing MAPE
values. Each scenario showed a decreased MAPE value with the DM-CCRF technique compared with
the standard CCRF and ELM. These results show the superiority of the DM-CCRF compared with the
standard CCRF method and ELM for traffic flow prediction.Information 2019, 10, x FOR PEER REVIEW 11 of 15 
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Figure 6. Performance evaluation comparison between the DM-CCRF, CCRF, and ELM.

In Table 2, a direct comparison between the results of the DM-CCRF, standard CCRF, and the
baseline regressor is displayed. For each scenario, DM-CCRF always gave superior results compared
with the standard CCRF and baseline regressor. The MAPE values achieved by DM-CCRF were
constantly lower than those of the standard CCRF and baseline regressor. These results show the
superiority of DM-CCRF in suppressing error values for each scenario of traffic flow prediction. When
the standard CCRF simply suppressed errors of ∼ 7.63% compared with the baseline regression,
the DM-CCRF was able to suppress errors up to ∼ 17.047%.
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Table 2. Head-to-head comparison between the ELM, CCRF, and DM-CCRF.

Scenarios Performance Evaluation (MAPE)

ELM (%) CCRF (%) DM-CCRF (%)

1 87.949 87.112 80.312
2 80.598 79.521 73.916
3 75.993 74.774 69.706
4 62.563 62.281 57.903
5 56.531 56.404 52.663
6 49.268 47.667 46.314
7 48.255 47.328 45.342
8 47.331 46.265 44.966
9 56.267 54.286 52.796

10 52.136 49.747 48.400
11 57.906 57.067 53.297
12 93.272 92.585 84.893
13 103.026 102.459 93.925
14 110.763 109.814 100.349
15 184.762 177.132 167.715

Average 77.775 76.296 71.500
Head-to-Head 0 0 15

The best performance of DM-CCRF was achieved in the 15th scenario, where the DM-CCRF
provided a difference in results of 17.047% compared to the regression baseline. The lowest difference
to the baseline regressor, 2.365%, was obtained in the 8th scenario. Compared with the standard CCRF,
DM-CCRF had the biggest difference in the 14th scenario, where the difference in error was 9.465%.
The smallest error, 1.299%, was found in the 8th scenario. Hence, it can be concluded that DM-CCRF
provided better predictive results for the traffic flow dataset compared with the standard CCRF or
ELM baseline regression.

5. Conclusions

A modification to a probability approach, continuous conditional random fields (CCRF),
was proposed and implemented in the ELM and then utilized to assess highway traffic data.
The modification was conducted to improve the performance of the ELM method. The experimental
results showed that the proposed technique was better at suppressing the prediction error of the
prediction model compared with the standard CCRF. The comparison between the ELM as the baseline
regressor, the standard CCRF, and the modified CCRF was displayed. The performance evaluation of
the techniques was conducted by analyzing their Mean Absolute Percentage Error (MAPE) values.
The DM-CCRF was able to suppress the prediction model error twice as well as the standard CCRF
method. Based on the attributes of the dataset, the DM-CCRF method was better for the prediction of
highway traffic than the standard CCRF method and ELM baseline regressor.

6. Future Work

In further research, observations will be made on whether the probability of the emergence of a
predictive model will continue to increase even though the belief level is not too significant. Another
problem is that even though the DM-CCRF is superior to the standard CCRF, this modified method
still provides a fairly large error value.
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