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Abstract: To create alternative complex patterns, a novel design method is introduced in this study
based on the error back propagation (BP) neural network user cognitive surrogate model of an
interactive genetic algorithm with individual fuzzy interval fitness (IGA-BPFIF). First, the quantitative
rules of aesthetic evaluation and the user’s hesitation are used to construct the Gaussian blur tool to
form the individual’s fuzzy interval fitness. Then, the user’s cognitive surrogate model based on the
BP neural network is constructed, and a new fitness estimation strategy is presented. By measuring
the mean squared error, the surrogate model is well managed during the evolution of the population.
According to the users’ demands and preferences, the features are extracted for the interactive
evolutionary computation. The experiments show that IGA-BPFIF can effectively design innovative
patterns matching users’ preferences and can contribute to the heritage of traditional national patterns.

Keywords: patterns with traditional national characteristics; BP neural network; surrogate model;
interactive genetic algorithm; aesthetic evaluation

1. Introduction

Creating consumers’ preferred products to achieve commercial goals is an important aspect of
product design [1]. Traditional patterns are an important part of the design of national crafts, and they
are mostly designed manually according to the designer’s own experience; therefore, the designs
of patterns are restricted by the individual’s level of experience, which is inefficient. Meeting the
various design requirements of traditional crafts is difficult [2]. Batik shape patterns are abundant and
diverse, with elegant colors and ethnic-specific features. These patterns are rich in aesthetic, cultural,
and re-design values, occupying an important position in the development history of modern textiles
around the world. Therefore, the batik shape patterns design methods are important. In the study
of pattern designs, shape grammar [3] and the fractal algorithm [4] are usually used to extract and
reconstruct patterns. However, both use a combined transformation based on shape rules, and shape
rules are finite in number. Batik shape patterns are complicated in composition, difficult to represent
using traditional geometry, and there are design styles and cultural connotations in the traditional
national designs. It is difficult to retain heritage and meet the market demand in the design of these
patterns. To explore the emotions of users and design traditional national patterns that users prefer,
in order to fully improve the competitiveness of products, further study is warranted.

Aiming at addressing the deficiency of existing pattern design methods, a novel design method
is introduced in this study based on the back propagation (BP) neural network user cognitive
surrogate of the interactive genetic algorithm with the individual’s fuzzy interval fitness (IGA-BPFIF).
The advantages of the method in this paper are as follows: (1) constructing the fitness function based on
aesthetic evaluation to form the central value of the fuzzy interval in order to retain and inherit the style
characteristics of national patterns and the design of national patterns with greater beauty for users,
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(2) considering users’ cognitive hesitation to revise the evaluation value to increase the diversity of the
evolutionary population, (3) using machine learning to predict the fitness of evolutionary individuals
to reduce users’ operation fatigue, and (4) the BP neural network is trained according to error back
propagation by measuring mean squared error (MSE); the training data and surrogate model are
continuously updated to guarantee the precision of the surrogate model. For designers, the method
can stimulate design inspiration and improve the speed of design to a certain extent. For enterprises,
it plays a crucial role in customization of crafts by meeting customers’ needs and preferences.

This article is organized as follows. In Section 2, we present the related work. In Section 3,
the proposed method is described. In Section 4, the performed experiments are outlined, along with
an analysis of the results obtained. In Section 5, we analyze and discuss the algorithm’s performance.
Finally, in Section 6, the conclusions and a discussion concerning future work are presented.

2. Related Work

Batik is one of the intangible cultural heritages in the world, famous for its long history and
cultural connotation. In our previous work, Yuan et al. digitally designed butterfly patterns [5] using a
fractal algorithm to enrich the batik patterns, classified batik shape patterns [6], and performed
retrieval [7] using a machine learning algorithm. Lv et al. realized batik renderings using an
interpolation subdivisions algorithm [8]. In order to meet users’ personalized needs for batik shape
patterns and expand the batik shape patterns design methods, we propose a novel design method
based on the interactive genetic algorithm (IGA) in this paper.

The design methods based on the IGA are one of the most effective solutions for responding to
user needs and preferences, achieving remarkable results in modifying and improving designs [9].
IGA is an optimized algorithm that is an extension of the traditional genetic algorithm. Through
the integration of human intelligence, the optimization of implicit performance indicators, such as
human preferences, cognition, emotions, and psychological characteristics, is effective. Therefore, IGA
has been widely used in fields such as education [10], engineering [11], and the arts [12]. However,
the uncertainty, vagueness, and gradualism of users’ cognitive preferences, with fluctuation and
evaluation fatigue, affect the performance of the algorithm to a large extent. There are two aspects
to the solutions to this problem. The first is to speed up the convergence of IGA, which reduces the
number of individuals evaluated by users, thereby easing user fatigue; and the second is to apply a
fitness estimation strategy to predict the remaining evolutionary individuals automatically through a
small number of individuals evaluated by users as samples, which reduces user evaluation times to
reduce user fatigue.

To increase the convergence speed of IGA, there are two major categories of studies. One involves
reducing the noise of evaluation, and prior studies have proposed interest degree [13], trust degree [14],
credibility [15], hesitation [16,17], and other cognitive rules to reduce the evaluation noise. The second
set of solutions involves improving the genetic operators [18]. For the fitness estimation strategies, there
are two main categories of research. Methods, such as elite set [19], directed graph [20], grey model [21],
fuzzy range [22], and maximum entropy criterion [23], have been proposed. The other category
involves applying the fitness function approximation model. At present, studies have been based on
machine learning methods [24,25] and on the collaborative filtering algorithms [26].

Although IGA can respond to users’ needs to a certain extent, in traditional interactive genetic
algorithms (IGA-T), users’ cognition is fuzzy, which leads to the inability to accurately measure
evolution individuals’ fitness as well as user’ aesthetic fatigue. Problems with deviation of evolution
direction and lacking evolution with low optimized efficiency easily occur. At present, the IGA mainly
focuses on an individual’s image evaluation, and studies on the aesthetic evaluation of evolutionary
individuals are lacking.
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3. The Proposed Method

The method in this paper builds a unified architecture that integrates user cognitive characteristics,
a machine agent model, and evolutionary knowledge. The fitness is formed with a fuzzy Gaussian
function for evolutionary individuals of the quantitative rules of aesthetic evaluation and users’
cognitive hesitation. Then the fitness of the fuzzy interval is formed through λ-cut set to depict
uncertainty of user cognitive. In general, IGA requires a large number of labeled samples generated
by a human user who finds the optimal solution. Therefore, if a learning algorithm that simulates
the user cognitive processes will reduce fatigue to a large extent. After learning from the training
set, the network can automatically map the relationship between the network’s input and output.
Therefore, in this paper, when the human user feels fatigue, a stable cognitive surrogate model
based on BP neural network is obtained by K-fold cross validation on the basis of the human user’s
historical evaluation information. After evolution of M generations, the agent model presents M
optimal individuals in successive generations and the estimated adaptive values. If the predicted
values deviate from the human user’s expectations, the user can submit the evaluation again and the
system will update the training data set automatically. By measuring MSE, the agent model is updated
through the user’s preferences. The algorithm process is shown in Figure 1.
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3.1. Individual’s Fuzzy Interval Fitness

We constructed a Gaussian membership function with quantifiable rules of aesthetic evaluation
as the central value of fuzzy fitness f̃ (xi) and the user’s hesitation time as the width of f̃ (xi), which
was transformed into the fuzzy interval fitness through the λ-cut set. Evolutionary individuals
were selected using the interval probabilistic dominant strategy with the league scale of 2 used
by Shi et al. [27]. Then, subsequent crossover, mutation, and iteration operations were performed.
Patterns can be adjusted to enhance their expression, and finally produce a satisfactory solution.

Without loss of generality, considering an evolutionary individual ∀xi ∈ S, the domain of
the fitness f (xi) is [ fa (xi), fb(xi)] ⊂ R. The Gaussian membership function of f̃ (xi) is shown in
Equation (1):

µ f̃ (xi)
( f (xi)) = e

− 1
2 [

f (xi)− fc(xi)
σ(xi)

]
(1)

where fc(xi) is the central value of f̃ (xi), σ(xi) is the width of f̃ (xi), and the theoretical domain of the
Gaussian membership function is

µ f̃ (xi)
( f (xi)) ⊂ (0 , 1] . Then, the λ-cut set fλ(xi) of

µ f̃ (xi)
( f (xi)) is

obtained as the fuzzy interval fitness F̃(xi), as shown in Equation (2):

F̃(xi) =
[

fc(xi)−
√
−2 ln λσ(xi) , fc(xi) +

√
−2 ln λσ(xi)

]
, [Fa(xi) , Fb(xi)] (2)

The central value fc(xi) of the evolving individual xi is composed of several sub-factors

{ f1, f2, . . . fn} and can be expressed as fc(xi) =
n
∑

i=1
wi fi, where wi represents the weight corresponding

to fi. The characteristics of existing batik patterns were analyzed, and fc(xi) was decomposed into
three seed factors: style f1, tone f2, and layout f3 as the aesthetic evaluation index. The mean of the
field was normalized to [0, 100]. f1 is quantified using the user’s subjective rating. f2 is quantified
using the mean of the color histogram mutual information. Based on the principle of formal aesthetics,
f3 is quantified using beauty indicators such as balance, symmetry, and centroid deviation [28], which

is f ′3 =
3
∑

i=1
w3i f3i ⊂ [0, 1], where w3i represents the weight corresponding to f3i. To maintain the same

range of theoretical domain, take f3 = 100 f ′3 ⊂ [0, 100].
The degrees of balance represent the difference in the total weight of the patterns on both sides

of the horizontal and vertical axes of symmetry; the higher the balance, the calmer the psychological
feeling, i.e., f31 is closer to 1, and the higher the balance, as shown in Equation (3):

f31 = 1− 1
2

(∣∣∣∣ wl − wr

max(|wl |, |wr|)

∣∣∣∣+ ∣∣∣∣ wt − wb
max(|wt|, |wb|)

∣∣∣∣), wj =

nj

∑
i=1

aijdij, j = l, r, t, b (3)

where l, r, t, b represent the left, right, upper, and lower spaces of the pattern, respectively; aij represents
the space occupied by line i in j space; dij represents the distance between the centerline of the pattern
i and the centerline of the pattern space; and nj denotes the number of patterns contained in a space.
In this paper, the minimum external contiguous rectangle of the contour line is taken as the area of the
pattern space.

Symmetry refers to the degrees of symmetry between patterns along the vertical, horizontal,
and diagonal lines. The higher the degree of symmetry, the more solemn the psychological feeling, i.e.,
f32 is closer to 1, and the higher the balance, as shown in Equation (4):

f32 = 1− 1
3
(|s1|+ |s2|+ |s3|) (4)

where s1, s2, s3 represent the symmetry degree of the vertical, horizontal, and diagonal lines of the
pattern, respectively, shown as follows:
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s1 = 1
12 (|x′ul − x′ur|+ |x′ ll − x′ lr|+ |y′ul − y′ur|+ |y′ ll − y′ lr|+ |h′ul − h′ur|+

|h′ ll − h′ lr|+ |b′ul − b′ur|+ |b′ ll − b′ lr|+ |θ′ul − θ′ur|+ |θ′ ll − θ′ lr|+ |r′ul − θ′ur|+ |r′ ll − θ′ lr|)

s2 = 1
12 (|x′ul − x′ ll |+ |x′ur − x′ lr|+ |y′ul − y′ ll |+ |y′ur − y′ lr|+ |h′ul − h′ ll |+

|h′ur − h′ lr|+ |b′ul − b′ ll |+ |b′ur − b′ lr|+ |θ′ul − θ′ ll |+ |θ′ur − θ′ lr|+ |r′ul − r′ ll |+ |r′ur − r′ lr|)

s3 = 1
12 (|x′ul − x′ lr|+ |x′ur − x′ ll |+ |y′ul − y′ lr|+ |y′ur − y′ ll |+ |h′ul − h′ lr|+ |h′ur − h′ ll |+
|b′ul − b′ lr|+ |b′ur − b′ ll |+ |θ′ul − θ′ lr|+ |θ′ur − θ′ ll |+ |r′ul − r′ lr|+ |r′ur − r′ ll |)

where x′ j, y′ j, h′ j, b′ j, θ′ j, r′ j represent the dimensionless values after normalization of xj, yj, hj, bj, θj, rj,
respectively, conform to the following constraints:

xj =

nj

∑
i

∣∣Xij − Xc
∣∣, j = ul, ur, ll, lr

yj =

nj

∑
i

∣∣Yij −Yc
∣∣, j = ul, ur, ll, lr

Rj =

nj

∑
i

√
(Xij − Xc)

2 + (Yij −Yc)
2

hj =

nj

∑
i

Hij, bj =

nj

∑
i

Bijθj =

nj

∑
i

∣∣∣∣∣ Yij −Yc

Xij − Xc

∣∣∣∣∣
o′ i =

Oi − min
1≤j≤n

{
Oj
}

min
1≤j≤n

{
Oj
}
− min

1≤j≤n

{
Oj
} , o = x, y, h, b, θ, r

where ul, ur ll, and lr represent the space on the upper left, upper right, lower left, and lower right of
the pattern, respectively;

(
Xij, Yij

)
and (Xc, Yc) represent the coordinates of the pattern i in the center

of j in a certain space and the center of the pattern, respectively; Bij and Hij represent the width and
height of the minimum rectangle external to the grain profile, respectively; and nj denotes the total
number of patterns in a space.

Centroidal deviation represents the minimum degrees of the rectangular center between the
centroid and contour line. The lower the deviation, the more stable the psychological feeling, i.e., f33 is
closer to 1, and the higher the balance, as shown in Equation (5):

f33 = 1− 1
2


∣∣∣∣∣∣∣∣

n
∑

i=1
ai(xi − xc)

1
2

n
∑

i=1
aibw

∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣

n
∑

i=1
ai(yi − yc)

1
2

n
∑

i=1
aibl

∣∣∣∣∣∣∣∣
 (5)

where (xi, yi) and (xc, yc) represent the centroid of the pattern i and the center of the smallest rectangle
external to the contour of the pattern i, respectively; ai represents the area occupied by pattern;
bw and bl represent the width and the length of the smallest rectangle external to the contour i of the
pattern, respectively.

In IGA, users have different degrees of hesitation with different cognition [17]. At the early stage
of evolution, the user is not familiar with evolutionary individuals, thus the user has a strong sense of
hesitation at this time. Therefore, the fitness of evolutionary individuals has greater uncertainty, so a
wider interval value is selected as the fitness of evolutionary individuals. With progressing evolution,
user cognition gradually becomes clear and hesitation gradually disappears; therefore, the width of the
fitness value interval of an evolutionary individual continually decreases. Therefore, the evaluation
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time T(xi) of individual xi can be used as the user’s cognitive hesitation to describe the width of
the fitness value interval. From Equation (2), when λ and fc(xi) are certain, the width of F̃(xi) is
determined by σ(xi). Therefore, σ(xi) is represented by T(xi) as σ(xi)= T(xi).

3.2. BP Neural Network User Cognitive Surrogate Model

Due to frequent operations intended for human interaction, users easily tire. The construction of
the surrogate model is conducive to reducing user fatigue, expanding the search scope of the algorithm,
and increasing the diversity of the population. As a non-linear information dynamics model, BP neural
networks realize non-linear mapping from input to output and have good fault-tolerant, adaptive,
and generalization characteristics. BP neural networks are mainly applied to problems of approximate
function, pattern recognition, data compression, and classification. Based on a human user’s own
historical evaluation information, the surrogate model in this paper obtains the modified fitness
using Equation (2) as the labeled samples, adopts K-folded cross validation to train the BP neural
network surrogate model, and divides the data into k parts. Each piece of data D(k) = {(xi, F̃(xi)), i =
1, 2, . . . , Nk} was selected in turn as the test data, and the remaining k – 1 parts as the training data.
As the three-layer BP neural network has a continuous mapping capability from arbitrary input to
output, this model adopts the three-layer BP neural network: input layer, hidden layer, and output
layer, where wih and who represent the connection weight of neuron nodes in the input layer and hidden
layer, hidden layer, and output layer, respectively. The unipolar sigmoid function f (x) = 1

1+e−x is used
as the transfer function. The number i of the input layer is determined by the component number of
the evolving individual xi. The number of nodes of neurons in the output layer o is 2, which represents

the upper limit
−
Fa(xi) and lower limit

−
Fb(xi) of the predicted interval fitness

−
F(xi). The number

of hidden layer neuron nodes h was determined using h = i+o
2 in Lin et al. [29]. wih and who are

dynamically adjusted using gradient descent technology, such that the objective function measured

by MSE is MSE = 1
Nk

Nk
∑

i=1

(−
F(xi)−

∼
F(xi)

)2
. When the error accuracy requirement is met, the training

ends, and the cognitive surrogate model based on BP neural network is obtained. The topology of the
surrogate model is shown in Figure 2. The model is used to predict the fitness of subsequent evolution
individuals to reduce user operational burden.
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As the construction of the surrogate model is based on a human user’s own historical evaluation
information, with the progress of evolution, user preferences tend to fluctuate, and the fitness of some
evolutionary individuals predicted by the surrogate model may deviate from the user expectation.
At this point, the surrogate model needs to identify the user preferences to update. As the ultimate goal
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of IGA is to search once for the optimal individual surrogate model performances, and the number
of evolution generations is M times, where M is the initial population size, the optimal individual of
each generation is saved, and M predicted optimal individuals are presented to users. If the predicted
fitness of individuals deviates from the user’s expectations, the user can re-submit the evaluation data.
The evaluation data are included in data set D(k) as the sample data randomly, and the training sample
data are verified through K-fold cross validation. If MSE ≥ e, where e is error accuracy, the surrogate
model will update automatically.

4. Evolution Design Experiment with Batik Style Patterns

We collected a large number of batik shape patterns to analyze their characteristics, as shown
in Figure 3. A batik shape tablecloth is shown as an example in Figure 3a. Generally, a batik shape
pattern can be divided into a border pattern, which is shown in Figure 3b, and the main pattern, which
is shown in Figure 3c. The main batik pattern can be separated to extract a specific pattern structure,
as shown in Figure 3d.
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4.1. Individual Codes

Customers’ display performance requirements consist of several sub-requirements {d1, d2, . . . , dn}.
In this paper, display performance is coded according to the customer’s pattern structure, the specified
pattern type, and the pattern size requirements. The pattern structure requirement is taken as an
example, as shown in Figure 4. The L module is the border pattern; modules C, E, and I are both
mainly patterns that mostly reflect the meaning of the pattern. The pattern type is specified by the
customer; other modules are decorative patterns. As the batik pattern style is mostly two-square
continuous or four-square continuous, eight patterns were randomly selected from the decorative
pattern library, and they were rotated to a fixed angle for the decorative module gene library. The main
pattern modules C and D (dragon patterns) and module E (bronze drum patterns) are taken as
examples. The gene pool of each module included eight patterns, the values of coded decimals ranged
from 0 to 7, which was converted to 3-bit binary code, then the search space contained 8∧12 = 236

candidate solutions.
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4.2. Experimental Environment and Parameters Setting

To measure the performance of IGA-BPFIF, IGA-T, interactive genetic algorithms with individual’s
interval fitness (IGA-IIF) in Shi et al. [27], and the neural network surrogate models based on
individual’s interval fitness in interactive genetic algorithms (IGA-NNISF) in Gong et al. [30] were
compared. The parameters settings are shown in Table 1. We set the same control parameters for all
four algorithms. The evolution parameters setting was completed as follows. The initial population
size was M = 9; the crossover probability and mutation probability were set to pc = 0.85 and pm = 0.05
through multiple experiments, respectively; the selection operator was set as the selection of roulette
with interval probability in Shi et al. [27]; the crossover operator was set as a two-point crossover;
and the mutation operator was set as a single point mutation. The process for setting the surrogate
model parameters was as follows. Since the pattern structure included 12 modules, the nodes of input
layer i = 12 and the output were Fa(xi) and Fb(xi). With a normalization procedure, the nodes of
the output layer were o = 2 and the nodes of the hidden layer were h = 7 according to h = i+o

2 in
Lin et al. [29]. The modified fitness was determined according to the data evaluated by a human user
who is trying to determine the solution to Equation (2) of the labeled samples. The labeled samples
were divided into k = 3 parts. Each piece of datum D(k) = {(xi, F̃(xi)), i = 1, 2, . . . , Nk} was selected
in turn as the test datum and the remaining two parts as the training data to initialize the surrogate
model. The MSE precision threshold was set to e = 0.01. The rest of the parameters in IGA-BPFIF were
set as follows: fc(xi) is composed of style f1, color f2, and layout f3, and is standardized by domain
[ fa (xi), fb(xi)] , [0, 100]. Since the traditional batik shape patterns are all white flowers on a blue
background, the color f2 corresponds to weight w2 = 0. If more emphasis is placed on pattern style,
the weight w1 of this factor increases. f3 is calculated according to Equations (3)–(5). The weights of
w11, w12, and w13 are all 1/3.

Table 1. Parameters settings.

Evolution
Parameters Setting

Surrogate Model Parameters
Setting Remaining Parameters in IGA-BPFIF

M pc pm i o h k e w1 w2 w3 w11 w12 w13
9 0.85 0.05 12 2 7 3 0.01 1/2 0 1/2 1/3 1/3 1/3

To set the terminal condition, the terminal evolutionary generation was set as the number of
individuals that were evaluated by the user, which was 270. This means that if the users had not
found their satisfied individual after 30 evolution generations without applying any surrogate model,
the system automatically ends. If users find a satisfactory solution before the terminal evolutionary
generation is met, they can manually end population evolution.

The system was programmed with PyQt 5, which was developed by Riverbank Computing
in Wales, England, and the operating system interface is shown in Figure 5. The user clicks the
initialization button, the system automatically generates the initial evolution population, and provides
a display. Then, a human user evaluates the evolutionary individuals according to their preferences and
clicks the next generation button, and the population conducts the selection, crossover, and mutation
operations to generate new populations. If the human user’s evaluation generations exceed five,
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the agent model can be selected to replace the user evaluation, which means there are more than 45
labeled samples. The system takes the evaluation results of the first five generations of individuals,
which means 45 labeled samples are automatically taken as the initial training data. Then, the system
divides the samples into three parts to adopt K-fold cross validation to train the BP neural network
cognitive surrogate model. The system estimates the adaptive value of each generation of evolution
individuals, and the population carries out genetic operations to generate new populations. The
surrogate model represents the optimal individual of each generation and the predicted adaptive value
after nine generations. If the predicted value deviates from the user’s expectations, the user can submit
the evaluation again, and the system will update the training data set automatically. If MSE > 0.01,
then the model will update automatically. The process repeats until the human user finds a satisfactory
evolutionary individual.
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4.3. Results

For the purpose of this paper, a satisfied individual human user is the result of the experiment.
Table 2 displays a subject’s preferences for each algorithm in the 10th generation as the optimal result
for each algorithm in the 10th generation. The optimal individual fitness for IGA-BPFIF was higher
than IGA-T, IGA-IIF, and IGA-NNISF.
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Table 2. Optimal result in the 10th generation.

Algorithm IGA-T IGA-IIF IGA-NNISF IGA-BPFIF

Optimal
Individual
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Both the proposed algorithm, IGA-BPFIF, and IGA-NNISF selected the surrogate model after the 
fifth generation of evolution. When algorithms converge, the performance differences of IGA-BPFIF, 
IGA-T, IGA-IIF, and IGA-NNISF were compared from three aspects: the total number of iterations in 
each evolution, the number of individuals evaluated by the user, and the number of searched 
individuals in the system. As subjects, 25 graduates were randomly selected and used with the above 
four different algorithms to illustrate the general applicability of our method. The contrast indicators 
data were respectively recorded, as shown in Table 3. The average values (Avg.) and variance scores 
(Var.) were calculated for the three aspects above for the four different algorithms, and the 
comparison results are shown in Table 4. The IGA-IIF generations when the algorithm converges 
were fewer than IGA-T, indicating that IGA-IIF could minimize user fatigue to some extent. The 
number of individuals evaluated by the user of IGA-NNISF was significantly lower than IGA-IIF, 
indicating that IGA-NNISF could better minimize user fatigue; however, the IGA-NNISF generations 
were no better than IGA-IIF when the algorithm converged because IGA-NNISF applied the interval 
fitness in IGA-IIF, and due to the surrogate model, a user could find the satisfactory solution with 
more than 30 generations. The average evolution generations and the average number of individuals 
evaluated by users of IGA-BPFIF accounted for 35.20% and 21.74% of IGA-T, 39.71% and 24.38% of 
IGA-IIF, and 38.13% and 83.24% of IGA-NNISF, respectively. For a user who found a satisfactory 
item on IGA-BPFIF, the human–computer interaction operation of this algorithm was greatly reduced 
compared with the other algorithms mentioned above. Then, the number of searched items in the 
system increases significantly. The average number of searched individuals in the system accounted 
for 158.75% of IGA-T, 177.99% of IGA-IIF, and 170.90% of IGA-NNISF. To a certain extent, this reflects 
the effectiveness of the algorithm in improving the quality of individual evolution and reducing user 
aesthetic fatigue. 

Table 3. Contrast indicators comparison. 

Algorithm Contrast Indicators 1 2 3 4 5 … 22 23 24 25 
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Both the proposed algorithm, IGA-BPFIF, and IGA-NNISF selected the surrogate model after the
fifth generation of evolution. When algorithms converge, the performance differences of IGA-BPFIF,
IGA-T, IGA-IIF, and IGA-NNISF were compared from three aspects: the total number of iterations
in each evolution, the number of individuals evaluated by the user, and the number of searched
individuals in the system. As subjects, 25 graduates were randomly selected and used with the above
four different algorithms to illustrate the general applicability of our method. The contrast indicators
data were respectively recorded, as shown in Table 3. The average values (Avg.) and variance scores
(Var.) were calculated for the three aspects above for the four different algorithms, and the comparison
results are shown in Table 4. The IGA-IIF generations when the algorithm converges were fewer than
IGA-T, indicating that IGA-IIF could minimize user fatigue to some extent. The number of individuals
evaluated by the user of IGA-NNISF was significantly lower than IGA-IIF, indicating that IGA-NNISF
could better minimize user fatigue; however, the IGA-NNISF generations were no better than IGA-IIF
when the algorithm converged because IGA-NNISF applied the interval fitness in IGA-IIF, and due
to the surrogate model, a user could find the satisfactory solution with more than 30 generations.
The average evolution generations and the average number of individuals evaluated by users of
IGA-BPFIF accounted for 35.20% and 21.74% of IGA-T, 39.71% and 24.38% of IGA-IIF, and 38.13%
and 83.24% of IGA-NNISF, respectively. For a user who found a satisfactory item on IGA-BPFIF, the
human–computer interaction operation of this algorithm was greatly reduced compared with the other
algorithms mentioned above. Then, the number of searched items in the system increases significantly.
The average number of searched individuals in the system accounted for 158.75% of IGA-T, 177.99% of
IGA-IIF, and 170.90% of IGA-NNISF. To a certain extent, this reflects the effectiveness of the algorithm
in improving the quality of individual evolution and reducing user aesthetic fatigue.

Table 3. Contrast indicators comparison.

Algorithm Contrast Indicators 1 2 3 4 5 . . . 22 23 24 25

IGA-T
Evolution generations 27 30 29 30 25 . . . 30 28 29 27

Number of individuals evaluated by the user 243 270 261 270 225 . . . 270 252 261 243
Number of searched individuals 243 270 261 270 225 . . . 270 252 261 243

IGA-IIF
Evolution generations 24 25 30 26 25 . . . 27 24 25 23

Number of individuals evaluated by the user 216 225 270 234 225 . . . 243 252 270 243
Number of searched individuals 216 243 270 234 225 . . . 243 252 270 243

IGA-NNISF
Evolution generations 25 26 32 25 24 . . . 22 24 35 22

Number of individuals evaluated by the user 65 66 72 65 64 . . . 62 64 75 62
Number of searched individuals 225 234 288 225 216 . . . 198 216 315 198

IGA-BPFIF
Evolution generations 8 9 9 10 12 . . . 8 7 10 9

Number of individuals evaluated by the user 57 51 55 56 62 . . . 52 51 54 57
Number of searched individuals 243 324 324 405 567 . . . 243 162 405 324
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Table 4. Algorithm performance comparison.

Algorithm
Evolution

Generations
Number of Individuals
Evaluated by the User

Number of Searched
Individuals

Avg. Var. Avg. Var. Avg. Var.

IGA-T 28.12 2.36 253.08 191.16 253.08 191.16
IGA-IIF 25.08 5.16 225.72 417.96 225.72 417.96

IGA-NNISF 26.12 16.94333 66.12 16.94333 235.08 1372.41
IGA-BPFIF 9.96 4.04 55.04 28.12333 401.76 26,506.44

For the convergence performance of IGA-BPFIF, Figure 6 compares the fitness of evolutionary
individuals. The y-coordinates in Figure 6a,b represent the average fitness of all evolutionary

individuals Fc(t) =
9
∑

i=1
Fc(xi) and the average width of interval fitness, respectively. The interval

fitness of the evolutionary individual is determined by the upper and lower limits of the interval
Fc(xi) = 1

2 (Fa(xi) + Fb(xi)); the x-coordinate represents the number of iterations. The four curves
represent the trend of each generation of the evolution individuals of IGA-T, IGA-IIF, IGA-NNISF,
and IGA-BPFIF. As can be seen from Figure 6a, the average fitness of IGA-BPFIF gradually increased
with the increase in evolution generation, indicating that the evolution direction conforms to the
cognitive rule. Figure 6b shows that although the average width of the interval fitness fluctuates a little,
the overall trend gradually decreased, indicating that the uncertainty of user evaluation gradually
decreased. As IGA-NNISF adopts the interval fitness in IGA-IIF, the average fitness was the same.
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iterations, the increasing number of different individuals represented by IGA-IIF was no longer 
obvious; however, IGA-BPISF experienced significant growth in the number of different individuals. 
This shows that IGA-BPFIF was more complex than the other three algorithms in terms of time 
complexity. IGA-BPFIF had more opportunities to find satisfactory solutions. By comparing the 
evolutionary generations under the algorithm convergence condition in Table 1, the search efficiency 
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Figure 7 compares the number of different individuals. The number of individual variations
of the four algorithms increased with the increase in the number of generations. After 20 iterations,
the increasing number of different individuals represented by IGA-T was no longer significant. After
25 iterations, the increasing number of different individuals represented by IGA-IIF was no longer
obvious; however, IGA-BPISF experienced significant growth in the number of different individuals.
This shows that IGA-BPFIF was more complex than the other three algorithms in terms of time
complexity. IGA-BPFIF had more opportunities to find satisfactory solutions. By comparing the
evolutionary generations under the algorithm convergence condition in Table 1, the search efficiency of
this algorithm was shown to be higher than that of the other algorithms. The reason is that IGA-BPFIF
modified the adaptive value of the different individual through the user’s cognitive hesitation, which
significantly increased the number of different individuals in each generation, thereby effectively
improving the search efficiency of IGA-BPFIF. Therefore, to a certain extent, the results showed that
the proposed algorithm can modify the adaptive value of the evolving individual by constructing a
quantitative system for aesthetic evaluation and users’ cognitive hesitation, which is conducive to
reducing user evaluation noise.
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Individuals with fitness greater than 70 were regarded as satisfactory solutions. Figure 8 provides
a satisfaction comparison of the four algorithms. When the number of generations was less than 30,
the number of satisfying solutions for IGA-BPFIF was greater than those for IGA and IGA-IIF, and
when the number of generations was more than 30, the number of satisfying solutions for IGA-BPFIF
was 40% more than IGA-NNISF. Therefore, our algorithm effectively improved the success rate of IGA
and the satisfaction degree of the users.
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5. Discussion

Set T as the number of evolutionary generations when the algorithm converges, and T1 and T2

as the number of evolution before and after the application of surrogate model, respectively; then,
T = T1 + T2. In IGA-T and IGA-IIF, the number of individuals evaluated by the user and the total
number of system evaluation individuals were both T ×M. T was certain due to T2 × (M− 1) > 0.
As a result, IGA-NNISF could effectively reduce the number of individuals evaluated by the user.
For IGA-BPFIF, the user evaluated the number of individuals T1×M ≤ N ≤ T×M and the number of
searched individuals by the system was T1 ×M + T2 ×M2. Since the surrogate model was used once,
it was necessary to evolve the individuals M times and the system presents the optimal individual
in each generation. If the predicted fitness of the individuals deviated from the user expectations,
user evaluation was needed. Therefore, when the number of searched individuals by the system was
certain, T2 in IGA-BPFIF was 1

M in IGA-NNISF. Set T2 = t. Due to N − t×M ≤ 0, the number of
individuals evaluated by a user in IGA-BPFIF was lower than in IGA-NNISF. As the total number
of searched individuals in IGA-BPFIF increases exponentially, the fitness function was constructed
using the quantitative rules of aesthetic evaluation and the user’s cognitive hesitation to form the
fuzzy interval fitness. Therefore, satisfactory individuals were more likely to be found. In summary,
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compared with the above three methods, the algorithm in this paper could reduce evaluation noise,
user fatigue, and effectively improve the IGA optimization performance to some extent.

6. Conclusions

In this paper, the fitness was measured using the aesthetic evaluation function combined with
user cognitive hesitation to analyze user cognition. The surrogate model based on a BP neural network
is trained using K-fold cross-validation. By measuring MSE, user preferences were identified and the
surrogate model was continuously updated to guarantee performance. Experimental results showed
that the algorithm could reduce user evaluation fatigue to a certain extent. Future work will focus
on improving designs in terms of reusability and speed, better alignment with customer preferences,
and a more effective aesthetic evaluation system optimization method will be introduced. Appropriate
evolutionary strategies are still needed to accelerate the algorithm convergence.
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