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Abstract: Network traffic exhibits a high level of variability over short periods of time. This variability
impacts negatively on the accuracy of anomaly-based network intrusion detection systems (IDS) that
are built using predictive models in a batch learning setup. This work investigates how adapting
the discriminating threshold of model predictions, specifically to the evaluated traffic, improves the
detection rates of these intrusion detection models. Specifically, this research studied the adaptability
features of three well known machine learning algorithms: C5.0, Random Forest and Support Vector
Machine. Each algorithm’s ability to adapt their prediction thresholds was assessed and analysed
under different scenarios that simulated real world settings using the prospective sampling approach.
Multiple IDS datasets were used for the analysis, including a newly generated dataset (STA2018).
This research demonstrated empirically the importance of threshold adaptation in improving the
accuracy of detection models when training and evaluation traffic have different statistical properties.
Tests were undertaken to analyse the effects of feature selection and data balancing on model accuracy
when different significant features in traffic were used. The effects of threshold adaptation on
improving accuracy were statistically analysed. Of the three compared algorithms, Random Forest
was the most adaptable and had the highest detection rates.

Keywords: Intrusion Detection System; anomaly-based IDS; Threshold adaptation; Prediction
accuracy improvement; Machine Learning; STA2018 dataset; C5.0; Random Forest; Support
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1. Introduction

In the current digital age, numerous research papers and applications have been written and
have developed proposed solutions to combat network based threats and to protect information
systems. As a result, various security systems have emerged, which aim to ensure that the key goals of
cybersecurity are met [1]. However, every day these stated security goals are flagrantly violated by
breaches and security incidents, which raises questions about the capability of existing security systems.

Intrusion detection systems (IDS) are one of the many tools used in the cyber security field.
Their main purpose is to detect security attacks targeting the critical networks, systems or data that
they monitor, and to report any violation by an external intruder or system insider.

With the rapid advancement in technology many new challenges and threats are evolving.
As most of these technologies share the same communication networks, many challenges have
emerged; extensive data, traffic diversity and encryption. Such challenges made the identification of
threats to develop the right protective measure a very difficult task.

There are many areas being explored to address some of the many cyber security requirements;
artificial intelligence (AI), machine learning (ML) and data mining (DM) methods are some of the current
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key research topics in this field, particularly in the area of anomaly-based intrusion detection (ID).
These methods aim to overcome the limitation of human capabilities and conventional technologies in
handling the very large amounts and existing diversity of exchanged traffic.

As network traffic evolves over time, due to changes in services and users and their behaviours,
the capability of these methods to adapt to such changes is being challenged. Ever evolving traffic
makes the process of building ID models a particularly challenging task, as learning all possible
variations of traffic patterns for all different kinds of traffic and users is an impossible quest. Therefore,
there is a pressing need to make intelligent detection methods adaptable to traffic variability.

The remainder of this paper is organised as follows. In Section 2, we describe the problem that
we address in this paper. In Section 3, we discuss related work for threshold adaptation techniques,
applications and main research gap. Section 4 presents the proposed solution, which has been
empirically investigated. Section 5 describes the experimental setting and data sets used. In Section 6,
we present and thoroughly discuss the results of the first set of experiments that aimed to serve
as a proof of concept. In Section 7, we discuss the results of the second set of experiments that
investigated threshold adaptation under different feature sets and data balance scenarios. Finally,
Section 8 concludes this work and lists future work and directions.

2. Problem Statement

In a typical (batch-based) scenario, a network-based anomaly ID model would be built to protect
specific environments from attackers. The model building phase would require some training data
that were previously captured from old traffic to generate the ID model, which would be tuned and set
to detect anomalous behaviours. However, as such a model is used to analyse new, real traffic, it will
suffer from high false alarms and low detection accuracy. These phenomena are usually caused by the
changes in network patterns, and lead to an early phasing out of such a model and a triggering of model
regeneration or updating phase. This could be linked to the inefficiency of using a fixed discriminating
threshold for such ID models. For example, a network under high volume attacks, such as denial of
service (DoS) or scan attacks, would have different class (normal to attack) distributions than when
under low volume, but stealthy attacks such as SQL injection and command-and-control (C&C).

Most of the learning and classification methods used in building such ID models are based on a
number of key assumptions [2,3], such as: (i) the equal representation of classes, (ii) the equal representation
of sub concepts for a specific class, (iii) the similar class conditional distributions of all classes, and (iv) the
pre defining and knowledge of all the values of the attributes for all records in the dataset. Due to the traffic
evolution, most, if not all, of these assumptions are violated in real environments, as new traffic will
start to exhibit different statistical properties to those of the training data.

Unpredictable differences between the training and evaluated (tested) data can be introduced
over time because of such traffic evolution, known as concept drift. These differences can take various
forms; for example, class distributions might differ in the new data from those used to build the
ID model, and even new classes might emerge over time. In addition, class balance (also known
as data balance) can play an important role in the accuracy of constructed models, which could be
affected as a result of pattern changes. Traffic variability might also bring about differences in feature
importance. These effects (collectively or individually) might render the learnt model outdated sooner
than anticipated. However, the current methods to deal with these effects (in a batch-based setup) will
attempt to generate a new model, which may consume additional resources in collecting and labelling
new data to be used to learn that new model.

Many studies have attempted to address some of these issues in real time setups by tuning the
detection parameters of the ID models, while others have introduced ensemble methods for data
stream setups. However, there is insufficient empirical work to analyse the threshold adaptation of
model predictions in binary batch learning (offline learning) setups [4].

The low detection accuracy of such score-based anomaly ID models in a batch learning setup,
could be linked to the use of a fixed discriminating threshold, which in turn could result in an inaccurate
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reading of the accuracy that is far lower than the actual optimal accuracy. This might explain the early
termination of such ID models. As a result, adapting the discriminating threshold to the predictions
of the evaluated network traffic would provide an accurate reading of the actual accuracy of the ID
model. Understanding this will lead to an improvement in detection accuracy, and hence an extension
in the lifespan of the ID models.

Therefore, in this paper we address this problem by investigating the effect of adapting the
discriminating threshold (specifically to the evaluated network traffic) on the accuracy (i.e., the geometric
mean (G-Mean) of accuracy) of multiple models and comparing the results with the use of a fixed
threshold. This investigation was done by comparing the effects on traffic collected at different times
with existing variability. Further, the ability of different types of ML algorithms to adapt to traffic
changes was analysed.

3. Related Work

Security researchers have been aware that the performance of IDS were tightly related to the
behavioural patterns of users, as well as to the characteristics of various underlying services and
protocols. Anomaly-based methods were introduced to address possible deviations from normal
behaviours in order to flag intrusions. These anomaly-based methods suffered from high false alarms,
the key reason being their inability to adapt themselves to changes in data patterns (new data) over
time. As a result, many proposals have been put forward to address this issue, including methods that
adapt to such changes, such as model updating and rule tuning techniques. Other research has looked
into the benefits of using adaptive or tuneable thresholds for the IDS measures to flag anomalies, rather
than relying on fixed thresholds. The following section presents the key works in this area.

Chen et al. [5] suggested performing threshold tuning for the predictions of classification methods
that generate a quantitative output (score), so that the threshold can be set at different values to assign
class labels. Catania and Garino [6] suggested performing tuning on statistical based models whenever
a change in network traffic patterns is detected by making adjustments to the normal model.

In an attempt to understand the importance of the right threshold selection on the performance of
prediction models, Freeman and Moisen [7] investigated 11 optimisation criteria of threshold selection,
and concluded that sensitivity to threshold selection demonstrates a low prevalence or a poor model
quality. However, many anomaly detection methods have been developed assuming that anomalous
traffic forms a minority compared to normal traffic, and, due to the evolving nature of traffic, the quality
of these detection models tends to deteriorate over time. Therefore, a key consideration is that threshold
adaptation should help improve the quality of these models in terms of accuracy before they are
phased out.

To address model tuning, the conventional (batch learning) modelling process usually has two
main phases: training and testing. At the modelling stage, training (learning) data are used to build a
prediction model, which is then used to predict the test (evaluation) data. Buczak and Guven [8] stressed
the importance of having three phases, in which they suggested that the training data be used to build
multiple models using different ML/DM algorithms with different parameters. The validation data,
which is used in the second phase, could then be used to select the best model(s) and to estimate their
errors before they are used to predict or classify the testing data. Buczak and Guven [8] recommended
that the selected model should not be fine-tuned (model parameter tuning) based on how it performed
on the test data, to avoid reporting overly optimistic results, i.e., reporting accuracy rates that might
not be true for another test dataset. However, many of the recommended adaptive real time systems
(see Section 3.2) perform tuning on detection rules. Therefore, threshold tuning based on the prediction
scores of a model could provide a tool to tune the system over time. However, the single fine-tuning
recommendation may not be appropriate, as it may be based on the assumption that test datasets,
including future unseen data, have similar statistical properties; which is not a valid assumption given
the variable nature of network traffic.
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In an attempt to find the right discriminating threshold for the detection model, Beguería [9]
suggested the use of validation data. The selected threshold is then used to classify the records in the
evaluation/test data, based on the scores returned by the prediction model. However, Beguería [9]
does not appear to take into account the variability of behaviour in input (traffic) data over time.

Overall, there are three main themes in model tuning and adaptability to traffic pattern changes,
and these are outlined below.

3.1. Batch Learning

Yang [10] proposed score based local optimisation (SCut) as a strategy to select a threshold
based on optimising a performance measure, such as accuracy. SCut is therefore the threshold at
which a performance measure would be maximised or minimised. To the best of our knowledge,
no studies have explored model adaptation for changes in network traffic by tuning the threshold of
the predictions of a model within a batch learning setup.

Lakhina et al. [11] used principal component analysis (PCA) to separate a high-dimensional space
of network traffic measurements into disjoint subspaces. Each subspace corresponded to normal or
anomalous network settings. They used a fixed threshold (3σ deviation from the mean) to separate the
principal axes into normal and anomalous sets, and found that the first four principal components
represented the normal subspace for the cases they analysed. This study did not address the variability
of traffic over time, and so requires further analysis of its performance when traffic conditions vary.

In an attempt to investigate the effect of threshold tuning on multi class predictions, Fan and Lin [12]
concluded the effectiveness of tuning approaches on the performance of classification techniques.
They used the 5-folds cross-validation (CV) technique to evaluate these effects. However, the CV
technique may not maintain the statistical differences between the training and the testing data, leading
to overly optimistic results. The authors analysed the effect of different optimisation metrics (macro
average F-measure, micro average F-measure and exact match ratio) on the overall performance of
the selected threshold. They then investigated this tuning approach using validation data, without
considering whether such tuning was required for every independent evaluation process or whether
the selected threshold could be used for future evaluations performed by the prediction model.
Pillai et al. [13] also investigated the issue of threshold selection for multi label classification problems
by optimising the F-measure and precision-recall curve. They used 5-folds CV on five datasets to
validate their results. The results were compared to the evaluation/testing data by using the optimal
threshold that had been selected on the basis of the validation data. However, the authors did not
extend their analysis to comparing their results with those where the threshold had been tuned for
the testing data. They concluded that selecting an optimal threshold based on maximising the micro
F-measure can lead to overfitting.

Koyejo et al. [14] investigated the optimisation of a binary classifier using different metrics where
they identified the optimal threshold based on the conditional probability of the positive (normal)
class using training and validation data. Yan et al. [15] pointed out that this search requires prior
knowledge of the optimal classifier, which is usually unknown in reality. As a result, Yan et al. [15]
identified two key properties (the Karmic property and the Threshold Quasi Concavity property),
and they theoretically demonstrated that the Bayes optimal classifier is a threshold function of the
conditional probability of a positive class. Again, these works do not seem to assume a change in data
over time (concept drift), as the threshold is only set once using the validation set. In general, nearly
all approaches in the batch learning methods adopt the recommendations of using a single validation
dataset to select the right threshold.

3.2. Real-Time Learning

In an early study, Eskin et al. [16] proposed an adaptive host-based ID model generation.
Their framework, which is similar to that of Honig et al. [17], recommends the aggregation of all data,
i.e., system calls, into a single data warehouse. This data can then be used to train detection models,
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which can in turn be distributed to hosts to detect intrusions. The adaptability of this framework
is in the deployment of models on the hosts. However, this framework uses a fixed threshold to
flag anomalies without addressing the variability between the hosts. There is a scalability limitation,
as storing such large amounts of data will become a serious issue over time.

Hossain and Bridges [18] proposed a framework for adaptive IDS using fuzzy data mining.
This framework aims to minimise the human intervention in the adjustments of the profiles used
to describe normal traffic by the IDS. The tuning process is designed to operate on a real-time IDS.
Hossain et al. [19] evaluated this framework by using a sliding window to update the profile, so that
the updating process used the data that fell within that time window. It appears that they considered
all traffic, other than simulated portscans, as benign. The system produced results that the authors
could not explain, which could be attributed to the lack of controls over the traffic that was analysed.

Jung et al. [20] developed a threshold random walk (TRW) algorithm to detect random portscan
attacks in a real-time setup, based on the observations of the state (successful or unsuccessful) of
connection attempts from a remote host to newly-visited local addresses. However, this model assumed
that all distinct connection attempts had the same likelihood of success, while no correlation between
these attempts was assumed. Ali et al. [21] pointed out that threshold adaptation was only performed
on the upper boundary of the likelihood ratio, based on previously observed instances, while the lower
boundary was fixed.

Idé and Kashima [22] investigated the development of an IDS to detect anomalies in multi-tier
systems, such as web-based systems. They used a weighted graph to extract a feature vector of service
activities. As this IDS models service activities in the system, where the directions of these activities
are assumed to be stable, services that are rarely used may not benefit from its detection capabilities.
As a result, services run by careful adversaries, such as command and control (C&C) might not be
flagged up.

Yu et al. [23] proposed an automatically tuning IDS (ATIDS) system, which used feedback from
the security officer about encountered false predictions to automatically tune the threshold of the rule
sets in real-time. This system is dependent on the human resources available, so Yu et al. [24] proposed
an extension that adjusts the number of alarms flagged to security operators based on their abilities.
Although this extension minimised the burden on security officers, the overall performance of the
system was limited by the time it took to provide feedback. This system also failed to cope with drastic
changes in system behaviour, as the tuning process was performed on the rules level of the detection
model and these rules set might not be representative of new behaviour due to concept or feature drift.

Ali et al. [21] proposed a generic threshold tuning algorithm so that the detection threshold of
any score-based anomaly detection systems (ADS) could be adapted. In their approach, statistical
and information theoretical analyses were undertaken on the anomaly scores produced by multiple
network-based and host-based ADSs. These analyses aimed to reveal consistent structures of time
correlation during periods of normal activity. This approach targeted anomalies that cause a detectable
variability in traffic patterns due to their high volume, such as UDPFlood, TCP SYN Flood and TCP
SYN portscans attacks. This is designed for score-based real-time detectors (not batch), as they quantify
the anomaly score based on a comparison between the learned profile and the run-time profile.

Chou and Wang [25] proposed an adaptive network IDS for cloud environments. They claimed
that their system had the capability to perform automatic labelling of raw network traffic (normal and
anomalous). They used a spectral clustering algorithm (unsupervised learning) to cluster the unlabelled
network traffic so that the clusters could later be used as labels to construct a decision-tree-based
detection model. These clusters (labelled data) were used to improve the original detector and to
adapt it to the network environment. However, the authors used DARPA 2000 and KDD 1999 datasets
in their experiments, without any justification as to why such old data had been selected for this
scenario. They also proposed an experimental design that overlooked any DDoS attacks in DARPA
2000, claiming that this type of attack would generate lots of connections. This decision calls into
question how their system would perform in a real life setup.
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Agosta et al. [26] introduced a distributed anomaly detection system (ADS) to detect worm threats.
This system employed a threshold adaptation technique, to compare it with the performance of a fixed
threshold. This study concluded that the adaptive threshold technique was far superior. However,
these techniques were specifically designed for this type of attack, and the ability to generalise these
results to other classes of threat is debatable.

Gu et al. [27] devised a framework to measure the effectiveness of IDS quantitatively. This method
is based on quantifying the feature representation capability, classification information loss and overall
intrusion detection capability of an IDS using a set of information-theoretic metrics. The authors
discussed the importance of dynamic fine tuning over static fine tuning to address the issue of traffic
variability over time. Their framework introduced dynamic fine tuning by dividing the time series
into a number of intervals. However, Strasburg et al. [28] have raised concerns about the practical
effectiveness of such a model in IDS development.

Jyothsna and Rama Prasad [29] studied a meta-heuristic assessment model, which aimed to set
a threshold for random normal behaviour in real-time by estimating the degree of intrusion scope
threshold from a given network transaction. Their model also aimed to identify any new intrusions in
the network, and feature correlation methods were performed to reduce processing and time costs.
This approach did not cater for the effect of concept drift on the selected features over time, and hence
on a model’s performance.

3.3. Data Stream Learning

In the data stream learning methods, the concept drift is a core feature that is considered in the
modelling process. Bifet et al. [30] proposed a new data stream framework which aimed to address
concept drift by employing ensemble methods using various bagging techniques. They later developed
this framework into an open source software known as Massive Online Analysis (MOA) [31].

Masud et al. [32] proposed a classification method to address concept drift in data classes, that is,
the emergence of unseen classes (labels). Usually, new class labels require a longer time to be provided
with new training data to rebuild the base detection models. Therefore, Masud et al. applied some
clustering concepts to measure the distance between known classes and new data instances, so that
this technique could flag up these new instances as anomalies. Farid et al. [33] stated that such models
would need to gather a large number of test instances to determine their similarities and differences in
order to identify any novel classes.

In an earlier study, Masud et al. [34] proposed another detection approach for novel classes that
used an adaptive threshold and the Gini coefficient for outlier detection. However, the proposed
approach is unable to distinguish between the novel classes if multiple new classes have emerged,
and it also does not cater for other types of evolution, such as feature drift [35].

In order to automatically determine the optimal parameters of an anomaly detector (AD)
Cretu-Ciocarlie et al. [36] enhanced the training phase by introducing a self-calibration stage.
Their method consisted of applying ensemble methods to unsupervised learning techniques to
build micro-models. A weighted voting scheme on labels returned by these micro-models was used to
compute a final class decision. However, this approach could result into an AD that might be subject to
attack, as an adversary could train it. This approach may fail to differentiate between a real change in
traffic patterns and an ongoing crafted attack aimed at skewing the majority votes of the micro-models.

Chen et al. [37] suggested the offline mining of an old data stream to build high-quality models
for every recurrent concept. When concept drift is later detected in a data stream, it could then be
evaluated to identify the type of concept, so that the traffic could be passed to the most suitable
pre-built model to classify the traffic in that stream. This technique claims to achieve high rates of
accuracy because of the high-order models, but it assumes that there is a finite number of concepts
to be modelled. This assumption is challenged by the high volume and diversity of network traffic.
In addition, there are scalability issues.
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In a more recent work, Gomes et al. [38] proposed an adaptive random forest (ARF) algorithm
that was suitable for evolving data streams. This algorithm has the potential to address concept drift
by adapting itself to any changes. The adaptation is performed by replacing any outdated trees in the
forest with new trees that have been grown (trained) in the background.

3.4. Research Gaps

As presented, the importance of adaptation to pattern variability has mainly been addressed in
the context of real time and data stream problems. Most of the adaptation and tuning approaches for
real-time-based systems target certain classes of attack which are formed of abrupt patterns, such as DoS
attacks. As these attacks introduce high variability into traffic patterns, much research has attempted
to detect them and fine tune the system accordingly. In most cases, these tuning approaches would
aim to adapt the IDS detection parameters to increase or decrease the thresholds of these parameters.
However, Catania and Garino [6] pointed out that most of the adaptation approaches are aware of
the high network variability, and the proposed methods provide the required adaptability features to
adjust for the targeted anomalies. Similarly, in the data stream field, most of the proposed approaches
suggest building new detection models to adapt to such changes [21].

As for the batch learning tasks, in an ideally designed experiment, adaptation is undertaken only
once for the prediction model, using validation data [8,39]. Validation data is used to estimate class
distributions in order to calculate the optimal threshold for the prediction model. However, in a real
life setup, these distributions are not fixed, which renders such approaches ineffective. Furthermore,
using a fixed threshold for predictive models could result in an inaccurate reading of the model’s
performance, which could in turn lead to the selection of weaker models or an early phasing out of
good models. However, no study exists to investigate continuous adaptation for every evaluation/test
datum in a batch-based setup. Therefore, in this paper we investigate such an approach.

Moreover, in batch learning approaches, there is a reliance on the K-folds cross-validation (CV)
technique to evaluate models, and, when attempting to address the pattern change problem, validation
data is the alternative suggested approach. Such an approach is used to select the best threshold
based on the optimisation of some measure, such as the accuracy, for the prediction model. However,
no study has investigated how a fixed threshold will behave under different setups. Additionally,
as model development is based on various decisions taken in relation to the training data (such as
feature selection and data balancing), it is important to analyse how such decisions might affect the
model performance when traffic changes over time and causes concept or feature drift. It is also
important to address whether the threshold (tuning) adaptation of model predictions have any effect
on eliminating or mitigating such limitations.

4. Threshold Adaptation

As noted earlier, the adaptation capability of prediction models under the batch learning setups is
the least investigated area in comparison to other methods, although the batch-based ID models are
important to detect novel attacks that cannot usually be detected by other techniques. Some kinds
of attacks are better detected in a batch mode to increase the detection rate, rather than attempting
faster detection in real-time with a higher failure rate. With this approach, there is no need to change
or tune any of a model’s parameters as long as its predictions are in the form of a probability score.
In this sense, threshold adaptation does not require any modification to the anomaly detection model.
The detection model is thus treated as a black-box, as the adaptation is performed to its predictions
and not to its detection parameters.

5. Experimental Settings

In this section, the experimental settings used in all conducted experiments are presented.
Three ML algorithms were used and their main settings are explained. All the experiments were
evaluated in terms of detection accuracy using the geometric mean of accuracy (gAcc) [40] measure,
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as the normal accuracy measure can be a very misleading measure due to its sensitivity to class
imbalance. Similarly to other performance assessments of classification models in a supervised learning
task, the gAcc uses the computed basic counts of a table known as a confusion (error) matrix [41]
(see Table 1).

Table 1. Structure of confusion matrix for n classes.
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The gAcc computes the classification accuracies of every class separately, and then computes their
geometric mean. Equation (1) shows the general formula used to compute this measure, where Cj,i is
the number of class i instances that were predicted as j, and n is the total number of classes.

gAcc = n

√√ n∏
i=1

ci,j∑n
j=1 cj,i

(1)

Although this measure was first proposed by Kubat and Matwin [40], few studies have used it
to assess and compare the performance of different models. However, a number of recent studies in
network ID domain have started to use it [42–44].

5.1. Overview of Classification/Machine Learning Algorithms

For all of the experiments conducted in this paper, three common classification algorithms that
are widely used for batch learning were analysed, evaluated and compared to address the anomaly
network detection. These algorithms were C5.0, Random Forest (RF) and Support Vector Machine
(SVM); this section provides an overview of each of these algorithms.

5.1.1. Decision Trees (C5.0)

C5.0 is a classification algorithm [45] based on decision trees, which are used in classification
problems to build a deterministic data structure that is formed out of decision rules for a particular
domain [46]. It has a lower error rate due to its use of ‘boosting’ [47]. Additionally, as C5.0 generates
smaller trees, it consumes fewer resources, such as memory, and performs faster executions. It also
avoids overfitting noisy data [48]. The C5.0 algorithm uses the information gain ratio to perform its
splits, aiming to reduce the bias towards features with a large number of distinct values by penalising
the selection of a feature based on the number and size of its branches. However, this criterion
might result in favouring features with very low information values [49]. The final classification
decision is based on the path traversed from root to leaf; these decisions can be either a ‘class’ (label),
or ‘probabilities’ (score) of classes.

C5.0 performs tree pruning by removing parts of the tree that are predicted to have a high error
rate [50]. In this pruning process, every subtree is evaluated to determine whether it will be replaced
with a leaf or a node.

5.1.2. Random Forest (RF)

Random Forest (RF) is basically formed out of multiple decision trees (prediction models) that are
grown using a combination of ‘bagging’ and the random selection of features (subspace). Bagging
(bootstrap aggregating) is a technique that aims to improve the performance (accuracy and stability) of
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ML algorithms and to reduce variances and the chance of overfitting [51,52]. This is performed by
generating nTree bootstrap samples, which are randomly sampled from the main training data. Each of
these bootstraps will then be used to build a prediction model, resulting in a total of nTree models
(decision trees).

After a bootstrap sample is produced, a decision tree is generated. In RF, only a random selection
of features (subspace), with no replacement, are evaluated at every node to decide on the best split,
rather than using the full features set as in the C5.0 algorithm. The number of these random features,
mtry, is usually far less than the original number of features.

Out-of-bag (OOB) data are used in the internals of RF to estimate and monitor the errors of the
decision tree and its strength, as well as the correlation between different trees and to measure feature
importance [46,53].

The final prediction of the forest is performed by running each instance down all decision trees in
the forest. The results of all these trees are then aggregated to form the final decision. For numerical
predictions, the average or the weighted average of the results of all trees is returned, whereas for
classification problems, the majority vote or the probability of the classes is returned.

The RF algorithm has many advantages, such as low training time complexity and fast prediction
time [54,55], efficient handling of missing data, no required pre-processing (scaling or normalisation)
of data, and efficient handling of imbalanced data and rare cases (due to the bootstrapping feature) [56].
However, this algorithm has some drawbacks, such as slow runtime as the number of its trees increase,
and difficulty to interpret its models due to their high complexity (caused by randomisation) [57].
The key stages of the RF algorithm are illustrated in Figure 1.
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5.1.3. Support Vector Machine (SVM)

The Support Vector Machine (SVM) [58] is one of the most popular classification algorithms used
for supervised learning tasks in ML. Its development is based on the structural risk minimisation
principle [57,59]. In SVM, each data instance is represented geometrically as a vector (Rp) in
p-dimensional space—x =

(
x1, · · · , xp

)
∈ X ⊂ Rp. SVM attempts to find a linear surface (hyperplane)—or

a line in 2D space—that separates the instances into two classes y ∈ {–1, 1}, where this separating
hyperplane has the largest distance between the edge points of each class. These edge points define
the border lines for each class as per Equation (2):

Negative (−) line equation,
∣∣∣ w.x + b = −1 Positive (+) line equation,

∣∣∣ w.x + b = +1 (2)

where x is an edge point in the training data that lies on the border line of a class, and b is (offset)
the distance from the origin to the decision boundary (w.x + b = 0) [58]. The edge points also define



Information 2019, 10, 159 10 of 42

the width of the margin between those border lines. These points (vectors) are used to define and
outline (support) the separating hyperplane and are called the support vectors. The minimum number
required of these points is (p + 1).

As there could be many separating hyperplanes that might separate positive cases from negative
cases, the SVM algorithm searches for a decision boundary with the maximum margin. The width of
this margin is the sum of the distances from that decision boundary to the parallel hyperplanes that
contain the closest positive and negative training points (support vectors) [60].

The SVM classifier depends on computing w, which is a normal vector perpendicular to the separating
hyperplane (decision boundary). This normal vector is precomputed as Equation (3) presents:

w =
N∑

i=1

λiyixi (3)

where λi are Lagrange multipliers produced at the training phase using data with N training samples.
SVM classification is performed by evaluating which side of the hyperplane a test instance (vector)
will fall into, as Equation (4) shows:

SVM(x̂) =
{
−1, w.x̂ + b < 0
+1, w.x̂ + b ≥ 0

(4)

where x̂ is a test instance, and b is (offset) the distance from the origin to the decision boundary
(w.x + b = 0) [58], which is precomputed at the training phase.

SVM has the capability to find a separating hyperplane with soft margins, which allows some
violation of the boundary by permitting some levels of mixing between classes. This is usually done by
tuning some cost value (C), which has an effect on the variance [61].

One of the main advantages of SVM is that it does not suffer from the “curse of dimensionality,”
as many other ML algorithms do. As a result, feature reduction is not required by SVM [62]. SVM also
has many limitations, such as the required pre-processing phase of the data (dealing with missing data,
data transformation, scaling and/or normalisation) [63].

For non-linearly separable problems, SVM might require the use of kernel methods or functions
to transform the data from input (data) space into higher dimensional (feature) space, where the data
can be made linearly separable. Hence, the resultant separating hyperplane can be expressed using the
inner products of the vectors [64]. However, using kernels will incur optimisation costs, as all their
tuning parameters need to be taken into account [65]. As a result, SVM processing speed is affected by
the kernel used, as some kernels will perform more operations in the transformation phase, which will
slow the SVM’s speed [66].

5.2. Parameter Setting for the ML Algorithms

All of the implementations of the analysed algorithms within this study utilized packages of the
R environment [67]. Default parameters of these algorithms were used to make these experiments
reproducible. Adjusting parameters to improve detection would require further investigation, which is
outside the scope of this paper.

5.2.1. C5.0 Algorithm

The “c50” package (version 0.1.0-24) [68] was used in this study. All experiments used the
default settings of this algorithm, with the 10 trials option (trials = 10) set to return the results of the
classification as a probability score (type = “prob”) when the model was used to predict the evaluation
(test) data.
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5.2.2. Random Forest

The “ranger” package (version 0.8.0) [69,70] was used over the course of this research. This package
was selected because of its fast implementation of RF in C++. All experiments used the default settings
of 500 trees (nTree) to grow, with the number of features to evaluate at every node being the
square root of the total number of features in the dataset

(
mtry =

⌊√
p
⌋)

, where p is the number of
features. The algorithm was instructed to return results in the form of classification probabilities
(probability = TRUE).

5.2.3. Support Vector Machine (SVM)

The open source SVM package (LiblineaR) (version 2.10-8) [71,72] was used in these experiments.
This package executes an optimized linear version of SVM. All experiments used the default settings
of L2-regularized logistic regression linear model type (type = 0) with the cost set to one (cost = 1).

The choice to use the linear version of SVM was driven by the very large differences in the runtime
of experiments between its linear and nonlinear kernel versions. Some preliminary experimentations
were conducted to compare the two versions. As a result of the large difference of runtime between
the two versions, the linear version of SVM was selected, as it was much faster. These preliminary
experiments also showed that the runtime of the kernel SVM grows exponentially as the number
of instances increase. With all these differences, the nonlinear kernel SVM was not tractable to be
introduced as a solution in a domain like IDS [73].

Data were pre-processed by converting all categorical (nominal) features into dummy attributes,
as SVM can only handle numerical data [74]. A data were also standardised, where the standardisation
parameters (the mean and standard deviation) of the training data were used to standardise the features
of the test data before being classified by the model [71,75].

5.3. Performance Assessment Techniques

K-folds cross-validation (CV) technique is the most widely used performance assessment method
of different ML algorithms due to many reasons, such as data shortage [76–78], avoiding overfitting
problems [79], and to identify and fine tune the model’s parameters [80]. In this technique, the dataset
is randomly divided into K parts. A model is then trained using K-1 parts and tested on the remaining
part. This process is repeated K times, so that each one of the K parts is only used once as test data.
The model’s overall performance is estimated by aggregating the performance of the K models (through
averaging or a majority vote). However, it requires a long time to process as larger values of K are used.
It could also provide overly optimistic results due to the random division of datasets, which could be a
result of partitions that are statistically similar to each other. Therefore, the K-folds CV technique was
used in all experiments at every model building (training) stage to estimate the prediction thresholds
for every developed model, as per the recommendation of Ambroise and McLachlan [81].

In this paper we adopted the prospective sampling [82] method, which obtains new sample data
after the model generation phase is over. This method is not a commonly used evaluation practice in
anomaly-based detection. This evaluation method aimed to mirror real life, given that models are
usually trained on data that have been collected in the past to predict future data.

5.4. Datasets Description

This section provides an overview of the datasets used in the experiments outlined in this study.
Two synthetic datasets (SEA and AGR) were generated randomly, alongside two domain specific
datasets (gureKDD and STA2018). The first three datasets (SEA, AGR and gureKDD) were used in the
first experiment, and STA2018 in the second one.
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5.4.1. SEA

A streaming ensemble algorithm (SEA) generator [83] in the MOA framework [31] was used to
generate a data stream with three continuous features (X1, X2, X3). Each feature had a range between
0 and 10, although only features X1 and X2 influenced the class value. Instances were produced by
randomly generating points (X1, X2) in a two dimensional space. Instances were labelled as groupA
if X1 + X2 > θ, and as groupB if X1 + X2 ≤ θ, where X1 and X2 were the first two features and θ was
a threshold. There were four functions, which would label the instances differently based on their
threshold values between the two classes (function 1 sets θ = 8, function 2 uses θ = 9, function 3 sets
θ = 7, and function 4 sets θ = 9.5) [84]. The SEA generator’s default setting was used to add 10% noise
classes. Six different data streams (files) were produced: function 1 was used to generate two streams
(file 1 and file 2); function 2 was used to generate two other streams (file 3 and file 4); and a combination
of function 1 and function 2 was used to generate two streams (file 5 and file 6). For every file, calls to
these functions used different seed values to set the seed of the random generator function to generate
new random instances. Figure 2 presents an example of the command line call to generate File 1 with
the SEA stream generator.
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Figure 2. Command used to generate File 1 of streaming ensemble algorithm (SEA) dataset.

Each stream consisted of 200,000 instances. This dataset was used to analyse the effect of different
statistical properties (concept drift) between training and testing data on the model’s performance.
Table 2 lists the number of instances of each class in every file in this dataset.

Table 2. Instances’ classes in every file in the SEA dataset.

File 1 File 2 File 3 File 4 File 5 File 6 Total
groupA 71,609 71,298 85,190 84,965 78,295 77,913 469,270
groupB 128,391 128,702 114,810 115,035 121,705 122,087 730,730

5.4.2. AGR

The AGRAWAL generator [85] in the MOA framework [31] was used to generate a data stream
with nine features (X1, . . . , X9), six of which were nominal (factor) and three of which were continuous.
This generator had ten different functions to assign the produced instances to one of two different
classes, based on the values of their different features. The following examples illustrate the labelling
rules of the two functions that were used in generating this dataset:

Function 1: - if (age < 40 OR age ≥ 60) then groupA else groupB,

Function 2:

- if (age < 40){ if (50K ≤ salary ≤ 100K) then groupA else groupB },

- else if (age < 60){ if (75K ≤ salary ≤ 125K) then groupA else groupB },

- else{ if (25K ≤ salary ≤ 75K) then groupA else groupB },

Each function increases the level of complexity as it uses additional features and complex rules
to label the instances [86]. The generator’s default setting was used to add 10% noise classes by
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introducing a disturbance factor that added a deviation value (following uniform random distribution)
to the original feature’s values. Similar to the SEA dataset generation, six different data streams
(each with 200,000 instances) were generated using function 1 and function 2 of the AGR data stream
generator. Figure 3 provides an example of the command line used to generate the data of File 1 in this
dataset. Table 3 presents a summary of the label frequencies in every file for this dataset.
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Table 3. Instances’ classes in every file in the AGR dataset.

File 1 File 2 File 3 File 4 File 5 File 6 Total
groupA 134,572 134,457 76,577 76,947 105,301 105,785 633,639
groupB 65,428 65,543 123,423 123,053 94,699 94,215 566,361

5.4.3. gureKDDcup

gureKDDcup [87–89] (referred to throughout this paper as gureKDD) is a transformation of the
raw network traffic of the DARPA 1998 dataset [90] into a suitable format for ML tasks, where every
connection is described using a set of features. This transformation is similar to the KDD 1999
dataset [91], but much richer and cleaner. The KDD 1999 dataset was not used in this paper due to its
many limitations, identified by Al Tobi and Duncan [92]. Every connection in the gureKDD dataset has
a unique ID that helps identify the chronological order of all connections. Therefore, all connections in
this dataset are chronologically separable and can be divided by day, week, etc.

For the first experiments, all traffic (over a seven week period) was segregated into a time
window of a week, which resulted in seven files. Every file contained the network traffic of that week
(Monday–Friday). Every connection in these files was profiled using 41 features: 3 of which were
nominal (protocol_type, service and flag), 6 were binary features, 15 were continuous (real) features and
17 were integer features. These features were divided into four main groups: intrinsic (basic) features
{1–9}, content based features {10–22}, time based features {23–31} and connection based features {32-41}.

Each connection was labelled either as normal or as one of the 35 different attacks. These attacks
were grouped into four main classes: DOS, Probing, Remote to Local or User to Root. In these
experiments, the data were pre-processed so all different attack types were grouped and labelled as
‘attack’ to produce binary classes. Table 4 presents a statistical summary of the connection class types
for each of the seven weeks, which were clearly shown to have different class balances.
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Table 4. Number of connection classes in every file in the gureKDD dataset.

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Total
Normal 177,889 186,706 72,676 98,627 128,516 247,699 217,743 1,129,856
Attack 21 2,084 215,693 15,319 475,787 703,662 217,072 1,629,638
DOS 16 1,002 207,896 1,171 465,825 684,741 207,035 1,567,686

PROBE 0 1,027 7,757 12,366 9,941 18,017 10,031 59,139
R2L 1 55 39 1,752 0 881 2 2,730
U2R 4 0 1 30 21 14 4 74

Anomaly 0 0 0 0 0 9 0 9
Total 177,910 188,790 288,369 113,946 604,303 951,361 434,815 2,759,494

5.4.4. STA2018

The STA2018 dataset (The full data set can be found at: https://doi.org/10.17630/c5f31888-9db5-
4ac0-a990-3fd17dcfe865) [73] was generated by transforming the network traffic of the UNB ISCX
Intrusion Detection Evaluation DataSet 2012 [93] into a suitable format for ML tasks. This dataset
profiles every connection using 193 basic features, where part of Onut’s feature classification schema [94]
was used to extend these features to a total of 550 features (549 independent variables plus 1 dependent
(class) variable).

The STA2018 dataset contains the profiled sessions (connections) of the network traffic of seven
simulation days, where data records are grouped by day so that every data file aggregated all of the
connections within that simulation day. The transformation process of this dataset went into five main
stages: basic features extraction, validation and connection labelling, extend the basic features, balance and
clean up.

Due to the balancing stage, this dataset can be used into two modes: first with the original
imbalanced version, second with a balanced version where synthetic instances of the attack connections
(minority class) were generated using the Synthetic Minority Over-sampling Technique (SMOTE)
algorithm [95]. Table 5 sets out the number of connections for each class for each day (original and
balanced versions).

Table 5. Number of classes of instances for each day’s file of the STA2018 dataset.

Day 1
11/Jun

Day 2
12/Jun

Day 3
13/Jun

Day 4
14/Jun

Day 5
15/Jun

Day 6
16/Jun

Day 7
17/Jun Total

Normal 442,705 164,545 168,947 213,798 633,388 600,017 409,090 2,632,490
Attack 0 2,123 10,037 6,422 35,260 11 4,959 58,812
Total

(Original) 442,705 166,668 178,984 220,220 668,648 600,028 414,049 2,691,302

Synthetic 0 162,422 158,910 207,376 598,128 600,006 404,131 2,130,973
Total

(Balanced) 442,705 329,090 337,894 427,596 1,266,776 1,200,034 818,180 4,822,275

In the second set of experiments outlined in Section 7, only days 2 to 7 were used, as the first day
was attack free.

Originally, the file for each day consisted of 550 features (549 features + 1 class). Two features
(synthetic and origOrder) were omitted from any analysis, as their only purpose was to distinguish the
original data from the balanced (synthetic) data and to identify the connection order. Three further
features were removed from the analysis (start_time, src_ip and dst_ip), both to avoid any possibility
of overfitting and because of the large number of levels. Removing these five features resulted in a
total of 545 features (544 features + 1 class). Any reference to the Full set of features thus refers to these
545 features.

https://doi.org/10.17630/c5f31888-9db5-4ac0-a990-3fd17dcfe865
https://doi.org/10.17630/c5f31888-9db5-4ac0-a990-3fd17dcfe865
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5.5. Hardware Specifications

All experiments were performed on a “Dell C5220 PowerEdge Rack Servers” cluster, which had
12 micro servers. Each micro server ran Scientific Linux 7 on dual quad-core Intel Xeon 3.4GHz CPUs,
16GB RAM, two 500GB SATA disks and two Gigabit Ethernet interfaces. The large data files of the
STA2018 dataset {Day 5 (15/Jun) and Day 6 (16/Jun)}, in the second set of experiments, were run on a
Hyper-V virtual machine with 8 Virtual Processors, 20 GB RAM and 32 GB Swap space. This VM was
used to host the Ubuntu 16.04 (64-bit) operating system. It was hosted on a server with the following
hardware specifications: 2U Supermicro chassis; 8x host-swap 2.5" SAS/SATA disk bays; Supermicro
X8DTU-LN4F+ motherboard; Dual Intel Xeon E5620 (quad core); 24GB RAM (6 x 4GB DDR3 ECC
RDIMM); 4x 1TB SATA (RAID10); and 4x 1Gb Ethernet. This machine used a Windows Server 2012 R2
Datacentre (64-bit) operating system.

6. First Experiment

In the first set of experiments, we examined the effect of threshold adaptation on the overall
performance of a detection model. We aimed to provide a proof of concept (PoC) by comparing
three well known ML algorithms (C5.0, RF and SVM) to determine which was the most adaptable to
variations and concept drifts. In this set of experiments, we conducted two different experimental
setups (see Figure 4). Both setups used the same datasets and the same ML algorithms, however,
different sampling approaches were performed. We analysed the effect of different sampling approaches
on individual detection model accuracy using a real life setup (prospective sampling), and compared
this to the usual experimental setups reported in academic publications (K-folds cross-validation).
Another part of this experiment was to examine the effect of threshold adaptation in improving model
overall detection accuracy. The choice to use the synthetic datasets (SEA and AGR) was driven by the
need to control the degree of variability between different data files. The gureKDD dataset was used to
make this study comparable to other studies in the field, as its comparator datasets (KDD1999 and
NSL-KDD) are widely used in this domain.
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6.1. Results and Discussion

This section presents the results of the first set of experiments and discusses their main findings.

6.1.1. 10-folds Cross-Validation on Full Data

In the first setup (Figure 4), we started these experiments by comparing the detection performances
of the three ML algorithms (C5.0, RF and SVM) on the three different datasets (gureKDD, SEA and
AGR). The conventional method of 10-folds CV technique was performed on the merged files of each
dataset. The maximum gAccs of these models and the best cut-off values were reported. Due to the
minimal variability between results, each experiment was repeated only ten times (see Table 6).

Table 6. Average model accuracy (G-mean accuracy), the average optimal cut-off value (at which
maximum G-mean accuracy was reached) and their standard deviation of the 10-folds cross-validation
(10 repetitions).

C5.0 RF SVM
G-Mean Accuracy Optimal Cutoff G-Mean Accuracy Optimal Cutoff G-Mean Accuracy Optimal Cutoff

gureKDD 0.9998 ±0.0000 0.5322 ±0.0122 0.9998 ±0.0000 0.4714 ±0.0126 0.9947 ±0.0000 0.5879 ±0.0022
SEA 0.8568 ±0.0002 0.2959 ±0.0070 0.8951 ±0.0002 0.2329 ±0.0011 0.8621 ±0.0000 0.4354 ±0.0001
AGR 0.7162 ±0.0003 0.5322 ±0.0044 0.6580 ±0.0001 0.7700 ±0.0011 0.5627 ±0.0000 0.5144 ±0.0002

Table 6 presents the average of the gAcc values of the ten trials of the 10-folds CV in terms of the
gAcc of the three algorithms (C5.0, RF and SVM). It also shows the mean of the optimal cut-off values
of the ten runs at which the maximum gAccs were reached.

In general, all algorithms reported similar accuracies for their respective datasets. However, in the
artificial dataset AGR, SVM failed to perform anywhere close to C5.0 or RF (showing a difference of
almost 15%—see Table 5). This could be related to the nature of the dataset, which could be non-linearly
separable, as a linear version of SVM was used in this analysis. Generally, RF was capable of improving
detection accuracy on all datasets.

Generally, the performance of all algorithms on gureKDD was the highest, followed by those on
the SEA dataset. The AGR dataset was the worst in reaching high detection accuracy. This fact is
clearly illustrated by the plots in Figure 5, which show the gAcc curve against the cut-off values for all
datasets. These plots show the ten runs in a lighter colour and the means of these runs in solid colour.
They also show the optimal threshold values for each dataset under the tested algorithm.
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Figure 5. The gAcc curves of the 10 runs of the 10-folds cross-validation experiments for the three 
datasets (gureKDD, SEA and AGR) using three classification algorithms. (a) C5.0. (b) Random Forest. 
(c) SVM. 

Friedman’s test [96,97] was used to analyse whether the differences between the accuracies of 
all runs of the 10-folds CV on the full datasets for these algorithms were significant. The tested 
hypothesis was, “there is no statistically significant difference in model gAccs between the different 
algorithms.” This test revealed that there was a significant difference between the different algorithms 
applied to these datasets under the 10-folds CV approaches, χ2(2) = 26.7, p = 0.000 < 0.05. The follow 
up Nemenyi post-hoc test [98] revealed that the algorithms were all different from each other, as 
illustrated in Figure 6, which shows that the differences between the algorithms were statistically 
significant. 

Figure 5. The gAcc curves of the 10 runs of the 10-folds cross-validation experiments for the three
datasets (gureKDD, SEA and AGR) using three classification algorithms. (a) C5.0. (b) Random Forest.
(c) SVM.

Friedman’s test [96,97] was used to analyse whether the differences between the accuracies of all
runs of the 10-folds CV on the full datasets for these algorithms were significant. The tested hypothesis



Information 2019, 10, 159 17 of 42

was, “there is no statistically significant difference in model gAccs between the different algorithms.” This test
revealed that there was a significant difference between the different algorithms applied to these
datasets under the 10-folds CV approaches, χ2(2) = 26.7, p = 0.000 < 0.05. The follow up Nemenyi
post-hoc test [98] revealed that the algorithms were all different from each other, as illustrated in
Figure 6, which shows that the differences between the algorithms were statistically significant.Information 2019, 10, x FOR PEER REVIEW 17 of 44 
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6.1.2. Subset-to-Subset (File-to-File)

In the second setup (Figure 4), we used the same datasets and algorithms to generate detection
models, but in scenarios that were similar to natural settings we applied the prospective sampling
technique [82]. In these experiments, models were generated on a subset of the dataset using the 10-folds
CV technique to set these models’ parameters, i.e., the prediction threshold (cut-off). These models
were then used to evaluate the remaining files in the dataset. Two gAcc values were computed for every
combination of prediction model and evaluation data. The first gAcc was obtained when the model’s
pre-set prediction threshold value, which was calculated using the 10-folds cross-validation, was used
to predict the test data file. The second gAcc value was calculated based on the maximum accuracy
reached when the prediction threshold value was adapted to the evaluated data file. This section
shows the results obtained under this setup.

Plots of the gAcc (in Figures A1–A3 in Appendix A) present the performance of the prediction
model (MDLk) that was trained using Filek on the files in the dataset (Filei,k) that were not used
in producing that model. In these figures, each model’s performance, based on the CV technique,
is illustrated with a solid line; other individual performance evaluations are depicted with dotted lines.
As the SEA and AGR datasets are composed of only six files each, there is no illustration of model 7 for
these datasets in these figures.
C5.0 algorithm:

Algorithm C5.0 had the worst performance on the first file in the gureKDD dataset, even at CV
evaluation during the model generation stage (Figure A1 in Appendix A). This is due to the fact that
this file has the least number of attacks (21 attacks) and is the most imbalanced of the files. Therefore,
the generated model using this file was not able to predict any instances in other files. Where the
number of attacks in other files increased with a proportionate balance, the model performances
improved under this algorithm.

Generally, applying this algorithm under the prospective sampling approach followed the same
pattern as the first experiment (10-folds cross-validation), where performance on gureKDD resulted in
the highest accuracy, followed by the SEA dataset; the worst performing dataset was the AGR.

For both the SEA and AGR datasets, the generated models performed best when files exhibited the
same statistical properties, denoted in these experiments by the same generating functions. For example,
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where MDL1 used File 1 as training data, it predicted instances in File 2 with a high performance and
vice versa, as both files were generated using the same function. This was also true for Files 3 and 4.
Where files contained mixed behaviours, the prediction performance dropped sharply.

Tables A1–A3—in Appendix A—present the results of each model on every file generated by
each of the different algorithms. These tables show that the performance of all of these models
improved when the threshold (cut-off) was adapted for the evaluation dataset, rather than using a
pre-calculated one.
Random Forest (RF) algorithm:

Unlike C5.0, it was expected that RF would perform well on the first file of the gureKDD dataset
despite its low number of attack connections. This was linked to the bootstrap stage, where instances
were sampled from the population with replacement. This means that duplicates of the 21 attack
connections were sampled many times, which increased the predictability of the built trees (Figure A2
in Appendix A).

After careful examination of the results, as presented by Table A2 in Appendix A, one can see,
especially in the synthetic data (SEA and AGR), that when a testing file has similar statistical properties
to the model, its performance will not increase much, even after cut-off adaptation. However, when it
has different statistical properties, the adaptation process boosts the prediction, leading to an accurate
evaluation of a model’s performance.

Furthermore, the effect of the adaptation process was more tangible in gureKDD than in the
synthetic data, as this dataset exhibited both different patterns and varying statistical properties
between files. For example, Table A2—in Appendix A—under gureKDD data, shows that MDL1,
which was trained on File 1, reached a gAcc of 67.33% on File 5 when the original cut-off (threshold) of
the model was used, but applying the adaptation process to this threshold increased its performance
to 99.37%.
SVM algorithm:

SVM performed the worst on the AGR dataset in comparison to the other algorithms (Figure A3
in Appendix A). This could have been the result of the non-linear nature of this dataset, which was
not picked up by the SVM linear implementation used in these experiments. In general, the cut-off

(threshold) adaptation showed a similar effect in improving the models’ performances compared to
using the model’s optimal threshold.

6.2. Discussion

The findings of the experiments in this section illustrate the importance of the adapted cut-off value
to the data–model pairs in achieving an accurate reading of each model’s performance. Friedman’s
test [96,97] was used to assess whether the difference between the different algorithms was significant
before and after threshold adaptation. The tested hypothesis was, “there is no statistically significant
difference in model gAccs before and after cut-off (threshold) adaptation between the different
algorithms.” This test revealed that there was a significant difference between the different algorithms
before and after threshold adaptation, χ2(5) = 217.7, p = 0.000 < 0.05.

To identify which algorithms were different, a Nemenyi post-hoc test was carried out to calculate
the pairwise comparisons. Figure 7 presents the critical differences between the different algorithms
before and after cut-off adaptation as a plot. The plot shows that when the cut-off was adapted for the
evaluated dataset, the SVM and C5.0 algorithms were no different to each other. They showed the
same behaviour even when cut-off adaptation was not performed, but the cut-off adaptation increased
their gAccs. In general, all algorithms were ranked higher when cut-off adaptation was performed,
with the RF algorithm always outperforming the other two.
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7. Second Experiment

In this set of experiments, we used the STA2018 dataset to investigate the capability of various
ML algorithms in adapting their predictions to the variability of network traffic. We investigated this
new approach (prediction threshold adaptation) in the IDS domain.

Typical model development would be governed by decisions made to improve some performance
measures, e.g., speed or detection rate. Such decisions, which might involve executing a feature
selection and/or a data balancing stage, are usually based on the analysis that will be conducted on the
training data. As such, when new evaluation data are used, the performance of the models may not
be satisfactory, leading to a phasing out of those models and the generation of new ones. However,
such models may still be able to maintain high performances if they are adapted to the new concept
that is introduced in the new data.

There are many techniques to perform feature selection, which aims to select a subset of salient
features to build a prediction model. Bi et al. [99] have attempted feature selection through introducing
a probe to the data by adding three randomly generated variables (fake features/columns) to the dataset.
These fake features are randomly drawn from a Gaussian distribution [100]. They use a linear SVM
to model the subsets at every iteration of a K-folds cross-validation, where variables with nonzero
weights are selected. Any variable (feature) with an average weight below that of the fake variables is
then rejected. This approach does not address weight variability, as it only compares averages.

Similarly, Kursa et al. [101,102] have proposed a similar approach in which the information system
(training data) is doubled, so that every feature has a shadow feature that is basically a shuffled version
of the original one. Feature importance evaluation is then performed on the extended system using the
RF algorithm. A K-folds CV—of at least 10-folds—is performed at every iteration, so that every feature
is compared to its shadow using statistical tests to evaluate the highest performing features. The main
drawbacks of this approach are scalability and speed. Therefore, in this paper a new approach has
been proposed and executed that combines the core ideas of the two approaches above.

In this approach, as illustrated in Figure 8, the information system (training data) is extended by
adding three randomly generated variables (fake features/columns) to the dataset, where these fake
variables are drawn randomly from a Gaussian distribution. A feature importance evaluation—using
the RF algorithm—was performed on the newly extended system, and the importance measures of
these random variables were then used as a threshold to reject any features with a lower importance
value than those of the fake variables. In other words, any feature that performed worse than a random
guess was rejected. This comparison was performed using statistical measures.
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adaptation experiment.

As equal variance between compared groups (feature versus fake variables) is not guaranteed,
and due to the unbalanced design (number of compared importance measures) of these comparisons,
which would have small sample sizes, Welch’s two sample t-test [103,104] was used. Comparisons
were performed to evaluate the statistical significance of the mean difference between every feature
and the fake variables. The aim of this approach was to speed up the feature selection stage and to
make it independent of human evaluation or fixed thresholds, so that it would be more adaptive to the
true nature of the dataset. This study adapts the approach of Bi et al. [99] to address the limitation of
the Kursa et al. [101] method.

Every fake feature was formed of N random values drawn from a Gaussian distribution with
a mean of zero and a standard deviation of one, where N was the number of records in the training
data. These random features were combined with the original dataset and were processed by the
RF algorithm to compute its features’ importance, using a 3-folds CV technique. A Welch’s t-test
statistical [103,104] comparison was then performed to evaluate whether the mean of the importance
measures of every feature, Fi,—from the three folds—was statistically significantly greater than the
mean importance of the fake features (with a significance level of α = 0.05). All features with a mean
importance statistically significantly greater than that of the fake features were selected. The steps of
the feature selection stage are illustrated in Algorithm 1.

As RF can return importance score of every feature, it has been used to select the salient features
using its two measures {mean decrease of accuracy (MDA) and mean decrease in Gini (MDG)} [70,105].

In the feature importance evaluation, 15 categorical (factor) features were eliminated from the
STA2018 dataset, as they had been added to all the experiments’ model building designs and evaluation
process by default. These features are listed in Table 7.

Table 7. Categorical (factor) features eliminated from the feature importance evaluation phase.

No. Feature
2 src_ip
3 src_zone
5 dst_ip
6 dst_zone
9 ipVersion

10 Protocol
11 conn_state
23 bro_conn_state
24 bro_service
31 conn_start
32 conn_partial_start
33 conn_close
34 conn_partial_close
43 conn_stats_orig_endian_type
50 conn_stats_resp_endian_type
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Algorithm 1: Feature Selection with Fake Features (pseudo code)

Input: dataFile, ftrType
Result: Selected Important Features
1 dataFile <- filename, // Name of the data file to be processed

2 ftrType <- ftrMsr, // Features importance measure {MDA or MDG}

3

4 ftrImprtance <- {}, // Initialize list to contain the computed

5 // importance value of every feature

6 ftrSelected <- {}, // Initialize list to contain the selected features

7

8 DS <- load file (fileName), // Load the content of the data file

9 ftrSet <- getDataFeatures(DS), // Get the list of features in the data file

10 N <- num_rows(DS), // Get number of records in the training data

11

12 FK1 <- rand(sample=N, mean=0, sd=1), // Generate 3 lists of random variables where

13 FK2 <- rand(sample=N, mean=0, sd=1), // each list contains N random numbers with

14 FK3 <- rand(sample=N, mean=0, sd=1), // mean=0 and standard deviation=1

15

16

17 newDS <- [ DS(N×p) FK1
(N×1)

FK2
(N×1)

FK3
(N×1)

], // Append the fake features to the original data

18 partsDS <- create K partitions of newDS, // Create K partitions to calculate features

19 // importance measures using K-folds Cross-Validation

20

21 // Compute the importance of every feature using K-folds

22 // Cross-Validation and save them in ftrImprtance

23 For fold in K-folds, do

24 trainRcrds <- partsDS[-c(fold)]

25 ftrImprtance[fold, ] <- featre_importance(data=newDS[trainRcrds, ], measure=ftrMsr)

26 done

27

28 // Evaluate every feature in the data file by comparing its performance

29 // to the performances of the 3 fake features. If the mean importance of

30 // that feature is statistically higher than the mean importance of the

31 // fake features, then add that feature to the selection set.

32 For Fi in ftrSet, do

33 if( ftrImprtance[,Fi] > ftrImprtance[,c(FK1, FK2, FK3)] with t.test probability > 0.05 ){

34 ftrSelected <- ftrSelected ∪ {Fi},

35 }

36

37 done

38

39 return( ftrSelected ), // Return the list of selected features

The experiments were executed in three different phases, as explained below, and presented with
the pseudo code in Algorithm 2.

As the STA2018 dataset distinguishes between original and synthetic records, every day’s traffic
file (subset) was pre-processed in order to be used into two modes [imbalanced and balanced] (line 6
in Algorithm 2). As explained earlier, the SMOTE algorithm [95] was used by the STA2018 dataset [73]
to generate synthetic instances of the minority class until the number of instances in both classes were
equal to each other.

In the first phase (lines 10–14 in Algorithm 2), every file in the STA2018 dataset (which was used to
generate the models) was evaluated to select two subsets of features (see Algorithms 1) using the Mean
Decrease of Accuracy and the Mean Decrease Gini, resulting in the formation of the MDA and MDG sets,
respectively. The same feature selection criteria were used on the balanced data file to generate another
two sets of features, referred to in this paper as MDABalanced and MDGBalanced. By the end of this phase,
there were four feature sets (see Table 8) along with the Full features set for each training day.
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Algorithm 2: Experiment Phases (pseudo code)

Input: Dataset
Result: Performance results
1 For Fi in Dataset, do // Process every file Fi in the STA2018 dataset

2 Ftrs.Set[Full] <- {Full.Ftrs} // 544 features

3 Mdls.Set <- {}

4 Rslt.Set <- {}

5

6 Fi.bal <- Balance(Fi) // Generate/get a balanced version of data file Fi with balanced

7 // instances’ classes by generating synthetic instances of

8 // minority class using SMOTE algorithm.

9

10 // Phase 1: features selection...

11 Ftrs.Set[MDA] <- getImportantFtrs(data=Fi, ftrType=MDA) ,

12 Ftrs.Set[MDG] <- getImportantFtrs(data=Fi, ftrType=MDG) ,

13 Ftrs.Set[MDABal.] <- getImportantFtrs(data=Fi.bal, ftrType=MDA) ,

14 Ftrs.Set[MDGBal.] <- getImportantFtrs(data=Fi.bal, ftrType=MDG) ,

15

16 // Phase 2: models generation...

17 // Generate five predictive models using original data with five different sets of features.

18 For ftrsa in Ftrs.Set, do

19 Mdls.Set[Fi, ftrsa] <- generate.Model(data=Fi, features= ftrsa)

20 done

21

22 // Generate five predictive models using balanced data with five different sets of features.

23 For ftrsa in Ftrs.Set, do

24 Mdls.Set[Fi.bal, ftrsa] <- generate.Model(data=Fi.bal, features= ftrsa)

25 done

26

27 // Phase 3: models evaluation...

28 // Perform total of 50 evaluations (5 testing files X 10 predictive models)

29 For Fj,Fi in Dataset, do

30 // Test every file other than Fi on every one of the 10 prediction models

31 // trained on Fi or Fi.bal

32 For Mdlb in Mdls.Set, do

33 // Get the following results:

34 // 1) G-Mean Accuracy using model’s cutoff (threshold) value,

35 // 2) G-Mean Accuracy using adapted cutoff (threshold) value,

36 Rslt.Set[Fj, Mdlb] <- evaluate(data=Fj, model=Mdlb)

37 done

38 done

39

40 done

Table 8. Number of selected features under every feature importance measure.

Day2 Day3 Day4 Day5 Day6 Day7
MDA 130 518 364 368 60 355

MDABalanced 166 507 378 388 170 322
MDG 124 27 11 113 70 137

MDGBalanced 119 137 117 168 84 134

In the second phase (lines 16–25 in Algorithm 2), each day’s traffic used each of the five feature sets
(including the Full features set) to generate a binary classification (prediction) model, which resulted in
five different models. The same process was repeated using the balanced data. Each model generation
step used the 3-folds CV technique to establish the model’s optimal (CV) prediction threshold. The final
prediction threshold was computed by aggregating all the fold’s predictions for each model to find
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the point (threshold) of the maximum gAcc. By the end of this phase, there were ten different binary
prediction models for each day’s traffic.

In the final phase (lines 27–38 in Algorithm 2), every generated model was evaluated against each
day’s traffic from the dataset that had not been used in any of the feature selection, or in the model
generation processes. In this phase, to test the data file for each evaluation, the gAcc was computed
using the model’s optimal (CV) threshold and the adapted cut-off.

The whole process was repeated for each of the algorithms being evaluated: C5.0, RF and SVM.

7.1. Results and Discussion

As every generated model was evaluated using all of the files (subsets) in the dataset except the
one that had been used to generate that model, two gAcc values were computed for every combination
of prediction model and evaluation data. The first gAcc (gAccThrCV

) was the one obtained after the
model’s optimal (CV) cut-off value had been calculated using 3-folds CV to predict the data file.
The other gAcc value (gAccThrOpt

) was calculated based on the maximum accuracy achieved after the
prediction cut-off value had been specifically adapted for the evaluated data file.

As stated earlier, this set of experiments aimed to investigate the effect of the cut-off adaptation by
determining the statistical significance in the gAcc of the models through comparing their optimal
threshold with the adaptive cut-off. The analysis compared the difference between the two approaches
by conducting four Friedman’s tests [96,97] (with a significance level of α = 0.05). The decision to
use the non-parametric Friedman’s test was based on the fact that the data did not follow a normal
distribution, as confirmed by the normality test (Shapiro–Wilk test) [106] W = 0.7, p-value = 0.000.
The following list shows the hypotheses that were tested and the results returned by the Friedman tests.

Threshold-H0: “there are no statistically significant differences in model gAccs before and after cut-off
(threshold) adaptation has been applied.”

χ2(1) = 873.0, p = 0.000 < 0.05 (differences were statistically significant)
ML-H0: “there are no statistically significant differences in model gAccs between the different ML

algorithms (C5.0, RF and SVM) before and after cut-off (threshold) adaptation has been applied.”
χ2(5) = 747.5, p = 0.000 < 0.05 (differences were statistically significant)
Features-H0: “there are no statistically significant differences in model gAccs between the different

feature sets (Full, MDA, MDG, MDABal. and MDGBal.) before and after cut-off (threshold) adaptation
has been applied.”

χ2(9) = 742.8, p = 0.000 < 0.05 (differences were statistically significant)
Balance-H0: “there are no statistically significant differences in model gAccs between the different

data balances (Original and Balanced data) before and after cut-off (threshold) adaptation has
been applied.”

χ2(3) = 761.3, p = 0.000 < 0.05 (differences were statistically significant)
As all of these tests showed significant differences, a Nemenyi post-hoc test [107–109] was

conducted to perform pairwise comparisons on the different effects of each test to distinguish which
differences were statistically significant. The results of these pairwise comparisons are illustrated in
Figure 9 through critical difference plots.

All of the plots in Figure 9 show that the cut-off adaptation effect was significantly different from
the fixed model’s optimal (CV) threshold. They also show that different treatments (ML algorithm,
feature sets and/or data balance) with the adaptive cut-off always ranked higher. Any insignificant
differences fall within the same effect (cut-off adaptation or model’s fixed optimal threshold).

Having shown that the models’ performance was ranked significantly higher when the adaptive
cut-off approach was used rather than the fixed optimal (CV) threshold (see results in Tables A4–A6
in Appendix A), all subsequent analyses focus on the results obtained using the adaptive cut-off.
For every analysed algorithm, a Friedman’s test (with a significance level of α=0.05) was performed to
test the hypothesis, “there are no statistically significant differences in the gAccs of models built with different
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feature sets and different data balances after a cut-off (threshold) adaptation has been applied.” The results of
this hypothesis are discussed under every algorithm.Information 2019, 10, x FOR PEER REVIEW 24 of 44 
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C5.0 algorithm
Results in Table A4—in Appendix A—for the C5.0 models show different patterns and behaviours

from one training day to another. For example, models trained on Day 2 (12/Jun) failed to perform
well on Day 5 (15/Jun), whereas Day 5 models predicted Day 2 traffic with a high degree of accuracy.
They also showed inconsistent behaviour towards different feature sets across the days. For example,
Day 2 models performed best when the Full feature set was used, but this pattern was not consistent
across all days. This can clearly be seen from the results of Day 5, when MDG features were used,
and the results of Day 7 (17/Jun) when MDA or MDABal. feature sets were used with the balanced
training data. One important observation to make is the poor accuracy of Day 6 (16/Jun) models
when the original training data were used. These models showed the worst accuracy, due to the
low number of attacks in this data file. When a balanced version of the Day 6 data file was used to
build the prediction models, accuracy improved. This supports the finding discussed in the previous
experiments regarding the behaviour of C5.0 algorithm with imbalanced data. It can also be clearly
observed from these results that data balancing had a minor effect in improving the accuracy of models
developed using the C5.0 algorithm, which was further investigated using statistical analysis.

The results of Friedman’s test—stated above—revealed that there was not enough evidence to
support this hypothesis, χ2(9) = 16.0, p = 0.067 ≮ 0.05. These tests showed that there was no significant
effect of one feature set over another when the C5.0 algorithm was used. In addition, data balancing
did not lead to a significant improvement in a model’s accuracy.

Results in Table A4 (see Appendix A) support this conclusion, as the C5.0 models show unstable
behaviours. Many factors could be behind the volatile behaviour of the C5.0 algorithm. For example,
selected feature sets might not be the best sets for this algorithm. This algorithm was also executed



Information 2019, 10, 159 25 of 42

within its default parameters, in particular the number of trials, which was set at ten. In addition,
C5.0 algorithms carry out random sampling by following the boosting technique (which randomly
samples weighted instances). This might have caused C5.0 to overfit the training data, which could be
one of the reasons for its overall poor accuracy in predicting new traffic. Overall, based on the statistical
results returned using Friedman’s test, the C5.0 models ranked low, as illustrated by Figure 9b.
Random Forest algorithm

Another Friedman’s test was performed to assess the above hypothesis for the RF algorithm’s
models. This test aimed to determine how these models performed when using different feature sets
with different data balances, and whether the difference in accuracy was significant after applying the
threshold adaptation.

This test revealed that for the RF algorithm, there were significant differences between these
features after applying the cut-off (threshold) adaptation, χ2(9) = 38.0, p = 0.000 < 0.05. To distinguish
which of these effects were statistically significant, a Nemenyi post-hoc test was conducted to perform
a pairwise comparison, as illustrated in Figure 10.
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Overall, there were no significant differences in the RF’s accuracy when the Full, MDA and
MDABal. feature sets were used. However, the Full features set showed a significant difference over the
MDG and MDGBal. feature sets, which ranked lowest among the feature sets. This could be due to the
nature of the mean decrease Gini metric in selecting local features, which have low generalisation power.
However, even with these low accuracies, RF had the highest overall accuracy. As Figure 10 shows,
the data balance had no significant effect on the accuracy of RF. On the contrary, it sometimes negatively
affected the accuracy of models using the Full feature set with balanced data, as their difference to the
MDG and MDGBal. feature sets became insignificant. This was also evident in the results of Day 6 in
Table A5—in Appendix A—which showed a lower accuracy for all models for that day as the balanced
version of the data was used. Although that day only had 11 attacks, RF was able to build good
predictive models with good evaluation accuracy, except for Day 4’s traffic. The ability of RF to learn
from Day 6 traffic was linked to its bagging technique. In contrast to C5.0, this sampling technique
prevented RF from overfitting, which in turn produced models with good generalisation capabilities.
This gave RF more chance of detecting novel attacks, as demonstrated in these experiments.

The RF algorithm showed the best results of the evaluated ML algorithms. As illustrated by the
results in Table A5, RF’s accuracy would not have been better than that of the other algorithms if the
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fixed optimal (CV) threshold of its models had been used to assess their accuracy. However, with the
cut-off adaptation approach, RF’s accuracy improved significantly.

The RF algorithm can take longer to train, depending on the complexity of the training data.
However, once the model is built, its evaluation of a new instance is reasonably fast.

As expected, it consumed a lot of resources (memory) at the model building phase, and this
consumption increased with the size of the training data. This was a result of the number of bootstrap
samples it generated, which were used to build trees in parallel threads. The resulting models were
quite large compared to the SVM and C5.0 models, and their sizes increased as the complexity of the
training data increased.
SVM algorithm

Similar to C5.0 and RF algorithms, Friedman’s test was used to assess the above hypothesis for
the SVM models. This test revealed that there was not enough evidence to support this hypothesis,
χ2(9) = 13.1, p = 0.158 ≮ 0.05.

The SVM algorithm exhibited similar behaviour to the C5.0 algorithm. All of its statistical
tests revealed insignificant effects between one feature set and another, and there was no sign that
the improved accuracy of its models was influenced by any of the data balancing effects. As with
the C5.0 algorithm, different behaviours were exhibited on different days, as presented in Table 6
(see Appendix A), so no consistent pattern could be deduced.

Although the SVM algorithm showed some overall improvement on days when the reduced
feature sets were used instead of the Full features set, this behaviour was not consistent. As a linear
version of SVM was used, this effect could have been caused by the non-linear nature of the data on
those days where SVM failed to perform well.

Figure 11 summarises all of the accuracy readings in the tables (Tables A4–A6) after the threshold
adaptation process was applied. It compares the average accuracy of all the C5.0, RF and SVM
models. This plot shows the average accuracy for each day’s model for all of the tested ML algorithms.
The standard error of the average accuracy for each model is illustrated by vertical bars. For each
algorithm, the mean accuracy of all models across all days for every combination of feature sets and
data balance type is represented by a horizontal dashed line. As this plot shows, RF was always the
highest performing of the ML algorithms evaluated. Unlike C5.0 and SVM, RF showed the most stable
results with the least variability.

Although Figure 11 shows that the highest average accuracy of the RF models was attained
when the Full features set was used, the difference in the average accuracy of its models was very
small, unlike the accuracy of the C5.0 and SVM models, which showed higher variations in accuracy.
Therefore, RF models could be generated using a reduced feature set without any significant decrease
in their average accuracy, but with a significant gain in speed. Figure 11 also shows that there was only
a high variation in the accuracy of models for Day 6; however, given that this day was problematic,
with its skewed balance, this level of accuracy is more than acceptable. Moreover, in a real life scenario
it would not be sensible to build a model using such data, hence this example is an extreme case,
which is presented here merely to demonstrate that the RF algorithm performed reasonably well.

In general, although a linear SVM implementation was used in these experiments, it showed some
good results. For example, on average, the accuracy of models trained on the original and balanced
version of Day 4’s traffic, using MDG features, was above 90% (see Figure 11). The accuracy of models
trained using the MDA features on the original version of Day 6 traffic (which only had 11 attacks),
was also above 89%. With such results, more analysis is required to identify the right combination of
fast kernel function and parameter tuning to improve the overall SVM results. This would make it an
attractive solution for IDS problems.
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8. Conclusions

In this work, we have presented the effect of prediction threshold (cut-off) adaptation on improving
detection accuracy of binary-based prediction (IDS) models. We also presented how such an approach
will benefit the IDS domain is maintaining detection models for long periods of time. The results of
our experiments show that the adapted threshold provided a more accurate reading of a model’s true
accuracy in comparison to the use of a fixed threshold. From these experiments, we highlight the
following characteristics of threshold adaptation:

• An adaptive cut-off (threshold) approach results in better classification performance than a
fixed threshold.

• Using a single cut-off (threshold) will lead to misleading results, which could result in a decision
to terminate a good prediction model that merely required some tuning.

• Threshold adaptation approach may not show significant improvement to a model’s accuracy
when the testing data exhibits the same statistical properties as the training data.

The results of these analyses showed that RF outperformed the other algorithms (C5.0 and SVM)
in its ability to predict new traffic and the detection of novel anomalies. It also showed that, before
cut-off adaptation, all of the ML algorithms performed as poorly as each other, but that the adaptive
cut-off approach increased their overall accuracy, with RF performing the best. Moreover, RF suffered
no significant loss in accuracy when the reduced feature sets were used, and its predictions did not
improve when the data was balanced, given that the prediction threshold is constantly adapted.
This gives RF the advantage of being able to build models using original data with a reduced feature
set, which will save a considerable amount of time in training and testing, which makes this algorithm
more attractive for such problems.

In these analyses, the gAcc measures were used as the model assessment criteria to avoid issues
with imbalanced data. The accuracy of all models was assessed using the non-parametric Friedman
test to identify any significant differences. Cut-off adaptation and the algorithm used were the most
important effects that contributed to any significant difference in a model’s accuracy.
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Furthermore, this study also showed that the K-folds cross-validation (CV) analysis on the entire
dataset reports over-optimistic results that would not reflect the true capability of detection models in
real life setups. This technique failed to reveal and assess the true power of the detection capability of
different ML models. For example, the C5.0 ranked higher than SVM when this technique was applied
on the entire datasets (as in the first setup of the first experiment), however, it was no better when
more a natural setup (prospective sampling technique) was in effect. As a result, research results using
the K-folds CV technique should be carefully addressed in domains such as IDS.

In future work, we will investigate new approaches in identifying the optimal adaptive prediction
threshold (cut-off) based on a small randomly selected sample of an evaluated traffic. Another potential
avenue for further investigation is including larger, real industrial datasets with real world attacks
and unknown labels, to determine if this research can be generalised and to compare the detection
accuracy to some production IDS.
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Appendix A

This section presents the results of the experiments conducted in this paper. Tables A1–A3 present
the results of the second setup of the first set of experiments (discussed in Section 6) for every algorithm
(C5.0, RF and SVM) with different datasets (gureKDD, SEA and AGR).

Tables A4–A6 present the results of the second set of experiments (discussed in Section 7) for every
algorithm (C5.0, RF and SVM) on the STA2018 dataset. These tables show the results of each model
under different feature sets (Full, MDA, MDG, MDABal. and MDGBal.) and data balances (original
and balanced).

Each shaded cell—of these tables—contains the maximum G-mean accuracy (gAcc) achieved at
the K-folds cross-validation stage, where the model’s threshold was set. Every other cell contains two
performance measures. The top measure is the model’s gAcc on the test file when its fixed optimal
(CV) cut-off was used, and the second measure is the model’s gAcc when the cut-off was adapted for
the test data. The measure in bold is the greater of the two measures.
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Table A1. C5.0 model’s performance on different datasets with various effects (before and after
threshold adaptation).
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 File 1 File 2 File 3 File 4 File 5 File 6 File 7 

g
u

re
K

D
D

 

Model 1 0.3904 
0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

Model 2 
0.2181 

0.8125 
0.9981 

0.2108 

0.9740 

0.7154 

0.9248 

0.2162 

0.9715 

0.5786 

0.9646 

0.1850 

0.9805 

Model 3 
0.0000 

0.8884 

0.7127 

0.9150 
0.9995 

0.8198 

0.8997 

0.9874 

0.9956 

0.9849 

0.9928 

0.9981 

0.9994 

Model 4 
0.8727 

0.9770 

0.4109 

0.8656 

0.9948 

0.9949 
0.9981 

0.9862 

0.9965 

0.9740 

0.9944 

0.9988 

0.9995 

Model 5 
0.8448 

0.9740 

0.3315 

0.7145 

0.9963 

0.9965 

0.9107 

0.9453 
0.9998 

0.8525 

0.9977 

0.9995 

0.9995 

Model 6 
0.8451 

0.9997 

0.9610 

0.9948 

0.9986 

0.9989 

0.9093 

0.9128 

0.9996 

0.9997 
0.9998 

0.9994 

0.9994 

Model 7 
0.8161 

0.9504 

0.9894 

0.9903 

0.8435 

0.9908 

0.8454 

0.9308 

0.9321 

0.9959 

0.9802 

0.9939 
0.9998 

S
E

A
 

Model 1 0.8731 
0.8740 

0.8744 

0.8046 

0.8517 

0.8052 

0.8522 

0.8361 

0.8502 

0.8362 

0.8503 

N
o

 r
es

u
lt

s 
as

 t
h

er
e 

w
er

e 
o

n
ly

  

6 
fi

le
s.

 

Model 2 
0.8726 

0.8736 
0.8731 

0.8086 

0.8486 

0.8074 

0.8493 

0.8373 

0.8471 

0.8372 

0.8468 

Model 3 
0.8320 

0.8574 

0.8319 

0.8586 
0.8898 

0.8896 

0.8901 

0.8592 

0.8599 

0.8593 

0.8600 

Model 4 
0.8317 

0.8612 

0.8319 

0.8617 

0.8906 

0.8906 
0.8902 

0.8599 

0.8603 

0.8599 

0.8603 

Model 5 
0.8387 

0.8700 

0.8394 

0.8704 

0.8781 

0.8821 

0.8775 

0.8821 

0.2959 

0.8567 

0.8568 

0.8569 

Model 6 
0.8391 

0.8686 

0.8395 

0.8691 

0.8762 

0.8819 

0.8759 

0.8821 

0.8563 

0.8570 
0.8559 

A
G

R
 

Model 1 0.9449 
0.9443 

0.9445 

0.4844 

0.4932 

0.4850 

0.4930 

0.6873 

0.6888 

0.6873 

0.6885 

N
o

 r
es

u
lt

s 
as

 t
h

er
e 

w
er

e 
o

n
ly

  

6 
fi

le
s.

 

Model 2 
0.9447 

0.9448 
0.9448 

0.4835 

0.4938 

0.4829 

0.4934 

0.6871 

0.6882 

0.6867 

0.6882 

Model 3 
0.4925 

0.4932 

0.4925 

0.4929 
0.9341 

0.9341 

0.9341 

0.6968 

0.6984 

0.6976 

0.6990 

Model 4 
0.4907 

0.4916 

0.4900 

0.4911 

0.9328 

0.9334 
0.9339 

0.6956 

0.6977 

0.6964 

0.6985 

Model 5 
0.7114 

0.7492 

0.7114 

0.7484 

0.7382 

0.7623 

0.7386 

0.7624 
0.7059 

0.7079 

0.7081 

Model 6 
0.7147 

0.7463 

0.7140 

0.7459 

0.7360 

0.7626 

0.7376 

0.7628 

0.7082 

0.7085 
0.7101 
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Figure A1. The gAcc curves for the C5.0 algorithm (see Table A1). Figure A1. The gAcc curves for the C5.0 algorithm (see Table A1).
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Table A2. Random Forest (RF) model’s performance on different datasets with various effects (before
and after threshold adaptation).
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 File 1 File 2 File 3 File 4 File 5 File 6 File 7 

g
u

re
K

D
D

 

Model 1 0.9987 
0.9752 

0.9777 

0.8538 

0.9914 

0.7948 

0.9423 

0.6733 

0.9937 

0.7410 

0.9929 

0.9673 

0.9952 

Model 2 
0.3085 

0.9930 
0.9984 

0.9807 

0.9851 

0.9103 

0.9359 

0.9657 

0.9699 

0.9531 

0.9563 

0.9859 

0.9963 

Model 3 
0.2182 

0.9205 

0.6430 

0.9902 
0.9996 

0.5304 

0.9324 

0.9898 

0.9951 

0.8262 

0.9930 

0.9815 

0.9994 

Model 4 
0.8448 

0.9970 

0.7060 

0.9894 

0.9953 

0.9966 
0.9983 

0.9862 

0.9990 

0.9747 

0.9947 

0.9987 

0.9995 

Model 5 
0.8165 

0.9736 

0.6326 

0.8836 

0.9968 

0.9969 

0.9311 

0.9418 
0.9999 

0.9980 

0.9981 

0.9996 

0.9996 

Model 6 
0.8863 

0.9981 

0.9542 

0.9965 

0.9989 

0.9991 

0.9082 

0.9486 

0.9998 

0.9998 
0.9999 

0.9994 

0.9996 

Model 7 
0.8448 

0.9754 

0.9841 

0.9908 

0.9884 

0.9986 

0.9300 

0.9352 

0.9914 

0.9970 

0.9961 

0.9974 
0.9999 

S
E

A
 

Model 1 0.8750 
0.8758 

0.8758 

0.8696 

0.8764 

0.8027 

0.8053 

0.8358 

0.8364 

0.8358 

0.8364 

N
o

 r
es

u
lt

s 
as

 t
h

er
e 

w
er

e 
o

n
ly

 6
 f

il
es

. 

Model 2 
0.8752 

0.8752 
0.8757 

0.8026 

0.8053 

0.8680 

0.8759 

0.8357 

0.8363 

0.8357 

0.8363 

Model 3 
0.8536 

0.9113 

0.8323 

0.8338 
0.8920 

0.8924 

0.8926 

0.8609 

0.8610 

0.8604 

0.8607 

Model 4 
0.8319 

0.8333 

0.8636 

0.9113 

0.8921 

0.8921 
0.8925 

0.8609 

0.8612 

0.8606 

0.8609 

Model 5 
0.8389 

0.8685 

0.8393 

0.8695 

0.8782 

0.8832 

0.8786 

0.8839 
0.8576 

0.8572 

0.8576 

Model 6 
0.8369 

0.8691 

0.8368 

0.8695 

0.8806 

0.8829 

0.8815 

0.8835 

0.8579 

0.8579 
0.8574 

A
G

R
 

Model 1 0.9483 
0.9482 

0.9484 

0.4774 

0.5042 

0.4812 

0.5040 

0.6869 

0.6895 

0.6871 

0.6893 

N
o

 r
es

u
lt

s 
as

 t
h

er
e 

w
er

e 
o

n
ly

 6
 f

il
es

. 
Model 2 

0.9488 

0.9490 
0.9486 

0.4788 

0.5059 

0.4762 

0.5054 

0.6858 

0.6894 

0.6856 

0.6895 

Model 3 
0.4900 

0.4939 

0.4933 

0.4940 
0.9387 

0.9387 

0.9395 

0.6989 

0.7007 

0.6995 

0.7019 

Model 4 
0.4928 

0.4939 

0.4902 

0.4942 

0.9390 

0.9391 
0.9398 

0.6995 

0.7011 

0.6997 

0.7016 

Model 5 
0.7208 

0.7620 

0.7212 

0.7620 

0.7401 

0.7785 

0.7402 

0.7779 
0.7127 

0.7144 

0.7149 

Model 6 
0.7248 

0.7607 

0.7243 

0.7608 

0.7351 

0.7788 

0.7367 

0.7805 

0.7139 

0.7140 
0.7129 
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Table A3. SVM model’s performance on different datasets with various effects (before and after
threshold adaptation).
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 File 1 File 2 File 3 File 4 File 5 File 6 File 7 

g
u
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K

D
D

 
Model 1 0.9250 

0.6471 

0.6545 

0.8171 

0.9727 

0.2401 

0.3504 

0.8974 

0.9695 

0.8250 

0.9123 

0.9665 

0.9715 

Model 2 
0.0000 

0.8253 
0.9869 

0.1701 

0.5024 

0.3076 

0.4525 

0.1176 

0.5163 

0.3457 

0.5285 

0.1116 

0.6131 

Model 3 
0.8092 

0.8303 

0.7206 

0.9022 
0.9977 

0.7544 

0.9028 

0.9699 

0.9793 

0.9583 

0.9636 

0.9791 

0.9878 

Model 4 
0.9195 

0.9196 

0.2794 

0.6683 

0.9678 

0.9941 
0.9591 

0.9766 

0.9958 

0.9783 

0.9840 

0.9867 

0.9986 

Model 5 
0.8724 

0.9757 

0.2233 

0.6778 

0.9865 

0.9922 

0.9172 

0.9339 
0.9992 

0.8503 

0.8507 

0.9983 

0.9985 

Model 6 
0.8443 

0.9531 

0.2804 

0.6929 

0.9894 

0.9907 

0.9145 

0.9270 

0.9976 

0.9979 
0.9970 

0.9986 

0.9986 

Model 7 
0.8165 

0.8518 

0.3163 

0.8853 

0.9944 

0.9944 

0.9107 

0.9366 

0.9960 

0.9962 

0.8476 

0.9434 
0.9994 

S
E

A
 

Model 1 0.8763 
0.8771 

0.8771 

0.8018 

0.8936 

0.8016 

0.8941 

0.8358 

0.8617 

0.8360 

0.8615 

N
o

 r
es

u
lt

s 
as

 t
h

er
e 

w
er

e 
o

n
ly

 6
 f

il
es

. 

Model 2 
0.8759 

0.8760 
0.8765 

0.8021 

0.8928 

0.8018 

0.8933 

0.8356 

0.8613 

0.8359 

0.8610 

Model 3 
0.8319 

0.8763 

0.8320 

0.8770 
0.8933 

0.8939 

0.8940 

0.8615 

0.8617 

0.8613 

0.8615 

Model 4 
0.8319 

0.8763 

0.8321 

0.8769 

0.8933 

0.8933 
0.8938 

0.8615 

0.8616 

0.8612 

0.8613 

Model 5 
0.8325 

0.8759 

0.8326 

0.8765 

0.8924 

0.8928 

0.8929 

0.8932 
0.8614 

0.8610 

0.8611 

Model 6 
0.8331 

0.8756 

0.8332 

0.8760 

0.8914 

0.8923 

0.8918 

0.8927 

0.8612 

0.8612 
0.8609 

A
G

R
 

Model 1 0.5529 
0.5614 

0.5615 

0.4695 

0.5106 

0.4676 

0.5079 

0.5148 

0.5211 

0.5112 

0.5178 

N
o

 r
es

u
lt

s 
as

 t
h

er
e 

w
er

e 
o

n
ly

 6
 f

il
es

. 

Model 2 
0.5494 

0.5498 
0.5479 

0.4829 

0.5045 

0.4813 

0.5032 

0.5148 

0.5174 

0.5125 

0.5161 

Model 3 
0.4879 

0.4995 

0.4877 

0.5004 
0.6440 

0.6460 

0.6462 

0.5656 

0.5659 

0.5676 

0.5685 

Model 4 
0.4862 

0.4991 

0.4861 

0.5005 

0.6450 

0.6453 
0.6467 

0.5652 

0.5664 

0.5673 

0.5688 

Model 5 
0.4867 

0.4990 

0.4862 

0.5003 

0.6338 

0.6348 

0.6352 

0.6365 
0.5598 

0.5620 

0.5623 

Model 6 
0.4892 

0.4996 

0.4889 

0.5006 

0.6357 

0.6374 

0.6362 

0.6384 

0.5615 

0.5617 
0.5632 

 

 



Information 2019, 10, 159 34 of 42

Information 2019, 10, x FOR PEER REVIEW 36 of 44 

 

 
Figure A3. The gAcc curves for the SVM algorithm (see Table A3). Figure A3. The gAcc curves for the SVM algorithm (see Table A3).



Information 2019, 10, 159 35 of 42

Table A4. The gAcc of models for the fixed optimal (CV) and adapted cut-off (threshold) for the
C5.0 algorithm.
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  Original Balance 

 
  Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 

F
u

ll
 

MDL 2 0.9996 
0.0099 0.0176 0.0053 0.8062 0.0568 

0.9999 
0.0100 0.0241 0.0053 0.8995 0.0562 

0.5882 0.5045 0.0148 0.9999 0.9934 0.9044 0.6387 0.0144 1.0000 0.9879 

MDL 3 
0.5967 

0.9834 
0.8106 0.0105 0.0000 0.9477 0.9014 

0.9823 
0.8661 0.0130 0.6304 0.7753 

0.9745 0.9137 0.0211 0.5650 0.9776 0.9487 0.9043 0.0134 0.9652 0.8440 

MDL 4 
0.0375 0.9373 

0.9813 
0.0000 0.0000 0.0316 0.9916 0.9249 

0.9815 
0.0129 0.9985 0.7109 

0.9937 0.9507 0.0130 0.9514 0.0616 0.9931 0.9271 0.0176 0.9989 0.9900 

MDL 5 
0.9982 0.0000 0.0216 

0.9977 
0.9045 0.0875 0.8820 0.0100 0.3610 

0.9975 
0.8523 0.7759 

0.9993 0.1950 0.4956 0.9999 0.9895 0.9934 0.1419 0.6242 0.9966 0.9907 

MDL 6 
0.0000 0.0000 0.0000 0.0000 

0.4606 
0.0000 0.9910 0.0200 0.0250 0.0479 

1.0000 
0.7458 

0.0000 0.0000 0.0000 0.0000 0.0000 0.9988 0.1485 0.0278 0.0480 0.9980 

MDL 7 
0.9901 0.9151 0.4357 0.0043 0.9998 

0.9999 
0.9956 0.3826 0.3916 0.0092 0.9999 

1.0000 
0.9945 0.9413 0.7629 0.0132 0.9998 0.9962 0.9210 0.6703 0.0258 1.0000 

M
D

A
 

MDL 2 0.9998 
0.0000 0.0279 0.0479 0.8528 0.0568 

1.0000 
0.0000 0.0279 0.0479 0.8528 0.0568 

0.0940 0.0279 0.0479 0.8528 0.0568 0.0940 0.0279 0.0479 0.8528 0.0568 

MDL 3 
0.9814 

0.9838 
0.5062 0.2146 0.7327 0.1403 0.5278 

0.9826 
0.8504 0.8807 0.8344 0.8673 

0.9845 0.5720 0.7332 0.9890 0.4531 0.7520 0.8558 0.9420 0.8395 0.9405 

MDL 4 
0.1127 0.8999 

0.9802 
0.0402 0.3013 0.0283 0.7905 0.9193 

0.9800 
0.0790 0.9985 0.0647 

0.6653 0.9476 0.3447 0.8502 0.1108 0.9882 0.9299 0.3659 0.9992 0.4175 

MDL 5 
0.9902 0.0100 0.0983 

0.9977 
0.8528 0.0550 0.9087 0.0100 0.6697 

0.9974 
0.9478 0.8538 

0.9990 0.4568 0.4944 0.9504 0.1438 0.9857 0.0378 0.8277 0.9896 0.9923 

MDL 6 
0.0000 0.0000 0.0000 0.0000 

0.4606 
0.0000 0.9808 0.0141 0.0128 0.0473 

1.0000 
0.0532 

0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.8035 0.4143 0.7486 0.9999 

MDL 7 
0.9923 0.8980 0.4348 0.0485 0.9998 

0.9998 
0.9469 0.1264 0.0249 0.7837 1.0000 

0.9998 
0.9976 0.9286 0.4498 0.9837 1.0000 0.9940 0.9236 0.8137 0.9907 1.0000 

M
D

G
 

MDL 2 0.9998 
0.0000 0.0279 0.0479 0.8528 0.0568 

1.0000 
0.0000 0.0279 0.0479 0.8528 0.0568 

0.0940 0.0279 0.0479 0.8528 0.0568 0.0940 0.0279 0.0479 0.8528 0.0568 

MDL 3 
0.1309 

0.9702 
0.8138 0.5949 0.0000 0.6922 0.4031 

0.9656 
0.8976 0.5522 0.5120 0.7539 

0.8279 0.8979 0.7917 0.4171 0.7796 0.8978 0.9092 0.6895 0.7127 0.8859 

MDL 4 
0.6496 0.9160 

0.9431 
0.9906 0.0000 0.9976 0.5688 0.8835 

0.9165 
0.9049 0.0000 0.9666 

0.9799 0.9246 0.9912 0.9815 0.9977 0.8639 0.9026 0.9100 0.0000 0.9792 

MDL 5 
0.9208 0.0200 0.0176 

0.9969 
0.0000 0.9611 0.9927 0.0141 0.3249 

0.9972 
0.8519 0.9978 

0.9896 0.2523 0.8186 0.9529 0.9836 0.9961 0.8160 0.8821 0.9965 0.9982 

MDL 6 
0.0000 0.0000 0.0000 0.0000 

0.4606 
0.0000 0.0614 0.0100 0.0000 0.0092 

1.0000 
0.0142 

0.0000 0.0000 0.0000 0.0000 0.0000 0.9935 0.8094 0.4154 0.0822 0.9993 

MDL 7 
0.9943 0.8910 0.4342 0.0485 0.9999 

0.9999 
0.9867 0.9068 0.4390 0.5440 0.9525 

0.9997 
0.9976 0.9253 0.4423 0.9837 1.0000 0.9944 0.9142 0.6559 0.9853 0.9962 

M
D

A
B

al
. 

MDL 2 0.9998 
0.0000 0.0279 0.0479 0.8528 0.0568 

1.0000 
0.0000 0.0279 0.0479 0.8528 0.0568 

0.0940 0.0279 0.0479 0.8528 0.0568 0.0940 0.0279 0.0479 0.8528 0.0568 

MDL 3 
0.9849 

0.9833 
0.5069 0.8782 0.5156 0.4736 0.7077 

0.9821 
0.6074 0.5015 0.7124 0.0816 

0.9876 0.5967 0.9296 0.9843 0.8484 0.8853 0.8378 0.8607 0.7731 0.4364 

MDL 4 
0.1337 0.9435 

0.9802 
0.0580 0.3013 0.0245 0.9852 0.6290 

0.9805 
0.0627 0.9958 0.4256 

0.6646 0.9492 0.9824 0.8496 0.1062 0.9906 0.9232 0.1455 0.9971 0.6606 

MDL 5 
0.9984 0.1142 0.0993 

0.9977 
0.7977 0.0568 0.8156 0.0100 0.0278 

0.9974 
0.7368 0.3558 

0.9995 0.4586 0.7236 0.9367 0.6729 0.9888 0.1569 0.6789 0.9954 0.9915 

MDL 6 
0.0000 0.0000 0.0000 0.0000 

0.4606 
0.0000 0.0614 0.0100 0.0125 0.0092 

1.0000 
0.0142 

0.0000 0.0000 0.0000 0.0000 0.0000 0.9985 0.8062 0.4115 0.7465 0.9996 

MDL 7 
0.9923 0.8952 0.4348 0.0485 0.9998 

0.9998 
0.9873 0.1978 0.0892 0.7895 0.9999 

0.9998 
0.9976 0.9285 0.4445 0.9829 1.0000 0.9940 0.9236 0.8137 0.9907 1.0000 

M
D

G
B

al
. 

MDL 2 0.9998 
0.0000 0.0279 0.0479 0.8528 0.0568 

1.0000 
0.0000 0.0279 0.0479 0.8528 0.0568 

0.0940 0.0279 0.0479 0.8528 0.0568 0.0940 0.0279 0.0479 0.8528 0.0568 

MDL 3 
0.2910 

0.9827 
0.6145 0.1415 0.0000 0.4229 0.8819 

0.9820 
0.8189 0.9222 0.5312 0.6688 

0.4477 0.8308 0.7589 0.0000 0.8031 0.8896 0.8388 0.9300 0.5783 0.8254 

MDL 4 
0.6499 0.9485 

0.9811 
0.9764 0.3011 0.0567 0.9824 0.9265 

0.9803 
0.7625 0.8510 0.0615 

0.9342 0.9497 0.9799 0.9918 0.3565 0.9826 0.9265 0.9326 0.9341 0.0756 

MDL 5 
0.9673 0.0158 0.1048 

0.9976 
0.7977 0.0531 0.8201 0.0000 0.0736 

0.9973 
0.8510 0.4139 

0.9985 0.4339 0.4977 0.9522 0.0680 0.9485 0.1562 0.7646 0.9005 0.8068 

MDL 6 
0.0000 0.0000 0.0000 0.0000 

0.4606 
0.0000 0.0614 0.0100 0.0000 0.0092 

1.0000 
0.0142 

0.0000 0.0000 0.0000 0.0000 0.0000 0.9935 0.8094 0.4154 0.0822 0.9993 

MDL 7 
0.9929 0.1801 0.0729 0.7814 0.9997 

0.9998 
0.9883 0.0064 0.0139 0.0533 0.9998 

0.9999 
0.9954 0.9267 0.4813 0.9778 1.0000 0.9900 0.9054 0.5412 0.9913 1.0000 
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Table A5. The gAcc of models for the fixed optimal (CV) and adapted cut-off (threshold) for the
Random Forest (RF) algorithm.
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F
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MDL 2 1.0000 
0.0042 0.0279 0.0482 1.0000 0.0602 

1.0000 
0.0100 0.0216 0.0476 0.9535 0.0559 

0.9272 0.9478 0.9094 1.0000 0.9987 0.9293 0.9413 0.9257 1.0000 0.9987 

MDL 3 
0.9521 

0.9849 
0.9213 0.6884 0.8560 0.9411 0.9663 

0.9848 
0.9191 0.7498 0.9530 0.9758 

0.9932 0.9739 0.9577 0.9870 0.9976 0.9925 0.9688 0.9340 0.9793 0.9987 

MDL 4 
0.9428 0.9301 

0.9827 
0.8425 0.8832 0.9404 0.9762 0.9237 

0.9829 
0.8991 0.9268 0.9688 

0.9945 0.9560 0.9920 0.9998 0.9978 0.9948 0.9471 0.9858 0.9997 0.9882 

MDL 5 
0.9997 0.0133 0.0648 

0.9978 
0.9535 0.0585 0.9888 0.2259 0.6808 

0.9981 
0.9934 0.9925 

0.9999 0.9205 0.9395 1.0000 0.9976 0.9971 0.9156 0.9302 0.9998 0.9926 

MDL 6 
0.9912 0.0000 0.0250 0.0479 

1.0000 
0.0568 0.0217 0.0100 0.0125 0.0053 

1.0000 
0.0142 

1.0000 0.9120 0.5737 0.9671 0.9998 0.9999 0.8685 0.6837 0.1048 0.9998 

MDL 7 
0.9964 0.9140 0.4314 0.7864 1.0000 

1.0000 
0.0217 0.0100 0.0125 0.0341 0.5279 

1.0000 
0.9979 0.9351 0.9340 0.9911 1.0000 0.9998 0.9381 0.9319 0.9755 1.0000 

M
D

A
 

MDL 2 1.0000 
0.0463 0.0279 0.0482 1.0000 0.0585 

1.0000 
0.0100 0.0216 0.0476 0.8528 0.0564 

0.9308 0.9417 0.9322 1.0000 0.9983 0.9281 0.9504 0.7999 1.0000 0.9984 

MDL 3 
0.9790 

0.9848 
0.9636 0.9089 0.9570 0.9890 0.9683 

0.9848 
0.9197 0.8158 0.8781 0.9282 

0.9895 0.9738 0.9490 0.9844 0.9963 0.9927 0.9690 0.9336 0.9839 0.9983 

MDL 4 
0.9493 0.9374 

0.9826 
0.8913 0.8956 0.9448 0.9463 0.9269 

0.9827 
0.8882 0.9024 0.9467 

0.9947 0.9557 0.9917 0.9971 0.9984 0.9948 0.9449 0.9889 0.9993 0.9942 

MDL 5 
0.9997 0.0141 0.0872 

0.9978 
0.9535 0.0619 0.9891 0.2439 0.6620 

0.9981 
0.9935 0.9933 

0.9999 0.9162 0.9388 1.0000 0.9951 0.9996 0.9218 0.9411 0.9981 0.9935 

MDL 6 
0.9983 0.0100 0.0250 0.0479 

1.0000 
0.0568 0.0217 0.0100 0.0176 0.0053 

1.0000 
0.0142 

1.0000 0.8553 0.4649 0.3326 0.9999 1.0000 0.9320 0.4956 0.1731 1.0000 

MDL 7 
0.9933 0.9309 0.4459 0.9875 1.0000 

1.0000 
0.0217 0.0100 0.0125 0.0367 0.4053 

1.0000 
0.9971 0.9360 0.9370 0.9911 1.0000 0.9998 0.9355 0.9280 0.9699 1.0000 

M
D

G
 

MDL 2 1.0000 
0.0452 0.0279 0.0482 1.0000 0.0585 

1.0000 
0.0100 0.0216 0.0473 0.8528 0.0561 

0.9296 0.9317 0.8425 1.0000 0.9982 0.9287 0.9457 0.9430 1.0000 0.9984 

MDL 3 
0.5035 

0.9780 
0.9171 0.6307 0.0000 0.7868 0.5308 

0.9698 
0.9051 0.5622 0.0000 0.6543 

0.8340 0.9185 0.8195 0.7887 0.9471 0.8000 0.9112 0.7204 0.7087 0.8924 

MDL 4 
0.7032 0.9160 

0.9432 
0.9856 0.0000 0.9884 0.6800 0.8996 

0.8906 
0.9829 0.0000 0.9531 

0.7703 0.9242 0.9913 0.8236 0.9974 0.8676 0.9000 0.9829 0.7499 0.9538 

MDL 5 
0.1390 0.0100 0.0254 

0.9978 
0.6742 0.0375 0.9897 0.0223 0.5450 

0.9981 
0.9999 0.3540 

0.9992 0.8518 0.9138 0.9996 0.9976 0.9926 0.8016 0.8817 1.0000 0.9982 

MDL 6 
0.9982 0.0000 0.0250 0.0479 

1.0000 
0.0568 0.0217 0.0100 0.0125 0.0053 

1.0000 
0.0142 

1.0000 0.8573 0.4349 0.6449 0.9998 1.0000 0.8710 0.7446 0.0767 1.0000 

MDL 7 
0.9926 0.9353 0.4493 0.9911 0.9999 

1.0000 
0.0217 0.0100 0.0125 0.0136 0.4116 

1.0000 
0.9972 0.9357 0.9354 0.9912 1.0000 1.0000 0.9376 0.9377 0.9700 1.0000 

M
D

A
B

al
. 

MDL 2 1.0000 
0.0418 0.0279 0.0482 1.0000 0.0586 

1.0000 
0.0100 0.0216 0.0473 0.8528 0.0559 

0.9331 0.9434 0.9739 1.0000 0.9985 0.9277 0.9460 0.9603 1.0000 0.9985 

MDL 3 
0.9758 

0.9848 
0.9558 0.8755 0.8884 0.9777 0.9742 

0.9849 
0.9122 0.8515 0.8980 0.9522 

0.9933 0.9747 0.9604 0.9826 0.9965 0.9919 0.9715 0.9103 0.9833 0.9983 

MDL 4 
0.9505 0.9349 

0.9824 
0.8801 0.8903 0.9464 0.9508 0.9275 

0.9827 
0.8870 0.8912 0.9422 

0.9947 0.9560 0.9913 0.9960 0.9982 0.9945 0.9442 0.9897 0.9991 0.9864 

MDL 5 
0.9996 0.0141 0.0671 

0.9978 
0.9535 0.0619 0.9868 0.2331 0.6778 

0.9981 
0.9933 0.9934 

0.9999 0.9163 0.9402 0.9999 0.9984 0.9973 0.9141 0.9344 0.9969 0.9941 

MDL 6 
0.9947 0.0000 0.0250 0.0479 

1.0000 
0.0568 0.0217 0.0100 0.0125 0.0053 

1.0000 
0.0142 

1.0000 0.8610 0.4367 0.9482 0.9998 1.0000 0.8753 0.4526 0.3582 1.0000 

MDL 7 
0.9955 0.9148 0.4329 0.9083 1.0000 

1.0000 
0.0217 0.0100 0.0125 0.0465 0.9535 

1.0000 
0.9976 0.9366 0.9349 0.9907 1.0000 0.9997 0.9335 0.9364 0.9680 1.0000 

M
D

G
B

al
. 

MDL 2 1.0000 
0.0457 0.0279 0.0482 1.0000 0.0585 

1.0000 
0.0100 0.0216 0.0473 0.8528 0.0560 

0.9257 0.9409 0.9439 1.0000 0.9983 0.9272 0.9512 0.8091 1.0000 0.9984 

MDL 3 
0.9795 

0.9850 
0.9346 0.8227 0.8250 0.8990 0.9710 

0.9850 
0.8950 0.7824 0.7985 0.8641 

0.9849 0.9556 0.8257 0.9309 0.9231 0.9892 0.9517 0.8583 0.9215 0.9974 

MDL 4 
0.9571 0.9339 

0.9827 
0.8879 0.8889 0.9422 0.9438 0.9313 

0.9826 
0.8991 0.9096 0.9547 

0.9923 0.9540 0.9696 0.9346 0.9962 0.9947 0.9411 0.9752 0.9521 0.9949 

MDL 5 
0.9975 0.0141 0.0330 

0.9978 
0.9535 0.0531 0.9881 0.0903 0.6163 

0.9981 
0.9931 0.9366 

0.9993 0.8693 0.9049 0.9995 0.9954 0.9941 0.9133 0.9340 0.9951 0.9927 

MDL 6 
0.9952 0.0141 0.0250 0.0479 

1.0000 
0.0568 0.0217 0.0100 0.0125 0.0053 

1.0000 
0.0142 

1.0000 0.8642 0.4449 0.9611 0.9999 1.0000 0.8675 0.5907 0.0747 1.0000 

MDL 7 
0.9970 0.9036 0.4303 0.0505 1.0000 

1.0000 
0.0217 0.0100 0.0125 0.0053 0.4273 

1.0000 
0.9974 0.9391 0.9365 0.9908 1.0000 1.0000 0.9339 0.9412 0.9893 1.0000 
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Table A6. The gAcc of models for the fixed optimal (CV) and adapted cut-off (threshold) for the
SVM algorithm.
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MDL 2 1.0000 
0.1630 0.3695 0.0573 0.9857 0.9681 

0.9996 
0.9076 0.5294 0.6040 0.9997 0.8786 

0.1756 0.3977 0.1891 0.9875 0.9703 0.9137 0.5622 0.9011 0.9999 0.9966 

MDL 3 
0.5133 

0.9809 
0.5184 0.3624 0.7800 0.8279 0.4939 

0.9754 
0.4641 0.4042 0.4023 0.4473 

0.9312 0.5200 0.8053 0.9517 0.8661 0.8235 0.6112 0.7456 0.8289 0.8026 

MDL 4 
0.3545 0.9161 

0.9814 
0.0538 0.9182 0.4942 0.1242 0.7312 

0.9800 
0.0160 0.0000 0.0200 

0.9397 0.9457 0.3852 0.9589 0.7560 0.9154 0.9405 0.7563 0.9677 0.8836 

MDL 5 
0.0000 0.1026 0.7030 

0.9961 
0.0000 0.7385 0.0000 0.1387 0.5176 

0.9913 
0.4249 0.7042 

0.8674 0.1761 0.8065 0.9531 0.8429 0.9490 0.1474 0.5208 0.9242 0.7166 

MDL 6 
0.9806 0.8750 0.6296 0.0575 

0.9994 
0.9985 0.3346 0.0282 0.0216 0.1027 

1.0000 
0.5148 

0.9913 0.8931 0.6411 0.5101 0.9990 0.9978 0.1468 0.2367 0.9575 0.8563 

MDL 7 
0.9820 0.1070 0.4882 0.0599 0.9532 

0.9999 
0.9860 0.0489 0.1797 0.9667 0.9995 

0.9999 
0.9906 0.2143 0.6021 0.7417 0.9997 0.9931 0.1611 0.5437 0.9843 0.9995 

M
D

A
 

MDL 2 1.0000 
0.9206 0.4812 0.0542 0.9534 0.0585 

0.9997 
0.6143 0.4374 0.2112 0.9534 0.0568 

0.9224 0.7470 0.1977 0.9999 0.9911 0.6945 0.7889 0.8507 1.0000 0.9921 

MDL 3 
0.0000 

0.9809 
0.8553 0.0237 0.8381 0.1051 0.9330 

0.9765 
0.8737 0.4306 0.7185 0.8755 

0.2443 0.8658 0.0382 0.9337 0.6997 0.9621 0.8743 0.8487 0.9143 0.9184 

MDL 4 
0.6177 0.9447 

0.9810 
0.4665 0.9038 0.0722 0.1466 0.9397 

0.9792 
0.9226 0.0000 0.0317 

0.9725 0.9454 0.5871 0.9978 0.7330 0.8707 0.9413 0.9360 0.9749 0.7675 

MDL 5 
0.0000 0.0307 0.5224 

0.9957 
0.0000 0.0000 0.9178 0.1268 0.5203 

0.9914 
0.0000 0.0000 

0.9743 0.1444 0.6106 0.9529 0.7213 0.9865 0.1812 0.5285 0.9433 0.4924 

MDL 6 
0.9953 0.8535 0.7474 0.9685 

0.9998 
0.0568 0.9992 0.8966 0.3735 0.9686 

1.0000 
0.0568 

0.9993 0.9134 0.8951 0.9806 0.9908 0.9992 0.9242 0.4774 0.9821 0.9402 

MDL 7 
0.2622 0.0691 0.5673 0.8781 0.9515 

0.9999 
0.9795 0.1287 0.2820 0.9669 0.9526 

0.9995 
0.9931 0.1308 0.6090 0.9117 0.9971 0.9922 0.1891 0.6485 0.9902 0.9989 

M
D

G
 

MDL 2 1.0000 
0.7706 0.6099 0.0429 0.9998 0.0602 

0.9997 
0.6713 0.4638 0.0480 0.9534 0.0568 

0.7912 0.8736 0.1953 0.9999 0.9962 0.7400 0.4888 0.4182 1.0000 0.9905 

MDL 3 
0.0000 

0.9391 
0.6141 0.0000 0.0000 0.0000 0.0000 

0.9357 
0.6555 0.0000 0.0000 0.0000 

0.5136 0.6847 0.5639 0.3726 0.3531 0.5481 0.6685 0.5900 0.3930 0.5643 

MDL 4 
0.8259 0.7480 

0.8851 
0.9870 0.9831 0.9910 0.9773 0.8656 

0.9092 
0.9834 0.9888 0.9888 

0.9675 0.8062 0.9879 0.9927 0.9956 0.9833 0.8665 0.9884 0.9928 0.9958 

MDL 5 
0.0000 0.0331 0.7649 

0.9950 
0.9528 0.0000 0.0803 0.0695 0.4730 

0.9849 
0.9479 0.0647 

0.9378 0.1450 0.7727 0.9967 0.3657 0.7791 0.1176 0.4839 0.9935 0.2488 

MDL 6 
0.9994 0.0895 0.0250 0.8181 

0.9999 
0.0585 0.9916 0.0000 0.0210 0.7853 

1.0000 
0.0550 

0.9996 0.8718 0.5703 0.9710 0.8849 0.9992 0.8828 0.4595 0.9673 0.9852 

MDL 7 
0.0000 0.9120 0.4510 0.6801 0.9519 

0.9998 
0.8579 0.9096 0.5099 0.9655 0.9517 

0.9995 
0.9742 0.9201 0.6205 0.7580 0.9974 0.9903 0.9100 0.6328 0.9849 0.9982 

M
D

A
B

al
. 

MDL 2 1.0000 
0.8373 0.6823 0.0727 0.9999 0.0585 

0.9994 
0.9202 0.4744 0.0480 0.9999 0.0778 

0.8590 0.8670 0.2976 0.9999 0.9943 0.9307 0.5384 0.7213 1.0000 0.9972 

MDL 3 
0.0000 

0.9807 
0.7562 0.0237 0.8247 0.2069 0.9366 

0.9761 
0.8781 0.4806 0.7460 0.8900 

0.3185 0.7765 0.0382 0.9415 0.7326 0.9593 0.8804 0.8301 0.9235 0.9226 

MDL 4 
0.8749 0.9298 

0.9810 
0.4613 0.9512 0.0837 0.1365 0.9384 

0.9791 
0.9123 0.0000 0.0245 

0.9727 0.9416 0.5578 0.9957 0.6791 0.8578 0.9399 0.9160 0.9818 0.7552 

MDL 5 
0.0000 0.0223 0.4724 

0.9957 
0.0000 0.0000 0.9151 0.1754 0.5767 

0.9924 
0.0000 0.0000 

0.9745 0.1443 0.5477 0.9531 0.7137 0.9868 0.2139 0.6023 0.9410 0.6056 

MDL 6 
0.9789 0.0479 0.5601 0.9336 

1.0000 
0.1291 0.5956 0.7399 0.2373 0.1566 

1.0000 
0.0492 

0.9940 0.3377 0.7603 0.9640 0.9749 0.9984 0.9135 0.4465 0.9562 0.9925 

MDL 7 
0.0795 0.0582 0.6014 0.3942 0.9982 

0.9999 
0.6721 0.1356 0.4007 0.9694 0.9529 

0.9996 
0.9902 0.1513 0.6418 0.5782 0.9986 0.9925 0.2104 0.6328 0.9849 0.9992 

M
D

G
B

al
. 

MDL 2 1.0000 
0.9263 0.7197 0.0474 0.9534 0.0585 

0.9995 
0.8279 0.4580 0.0484 0.9998 0.0776 

0.9311 0.9164 0.5652 0.9999 0.9974 0.9140 0.5588 0.8278 0.9999 0.9976 

MDL 3 
0.8727 

0.9780 
0.6410 0.3583 0.7586 0.8608 0.5333 

0.9695 
0.4830 0.4616 0.6226 0.7089 

0.9800 0.7587 0.5333 0.9002 0.8995 0.8954 0.4834 0.4654 0.6894 0.7755 

MDL 4 
0.1225 0.9035 

0.9801 
0.7684 0.0000 0.0316 0.1238 0.9446 

0.9781 
0.8969 0.0000 0.0245 

0.9823 0.9435 0.9535 0.9851 0.4872 0.8983 0.9449 0.8983 0.8981 0.6145 

MDL 5 
0.0307 0.0141 0.6289 

0.9958 
0.7384 0.0000 0.8877 0.0518 0.0889 

0.9900 
0.0000 0.0000 

0.9694 0.1687 0.6689 0.9521 0.6616 0.9827 0.1426 0.3074 0.9714 0.5188 

MDL 6 
0.9978 0.0100 0.7001 0.5854 

1.0000 
0.1670 0.7335 0.8746 0.3746 0.9650 

1.0000 
0.0531 

0.9996 0.2816 0.7927 0.9595 0.9908 0.9961 0.9199 0.4683 0.9665 0.9930 

MDL 7 
0.0000 0.6830 0.8442 0.5596 0.9527 

0.9998 
0.8509 0.1288 0.2795 0.9692 0.9990 

0.9996 
0.9320 0.7189 0.8991 0.7260 0.9978 0.9921 0.2576 0.6870 0.9873 0.9994 
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