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Abstract: With the development of 5G and the Internet of Things (IoT), mobile terminals are widely
used in various applications under multicast scenarios. However, due to the limited computation
resources of mobile terminals, reducing the computation cost of members in group key distribution
processes of dynamic groups has become an important issue. In this paper, we propose a computation-
efficient group key distribution (CEGKD) protocol. First, an improved secret sharing scheme is
proposed to construct faster encryption and decryption algorithms. Second, the tree structure of
logical key hierarchy (LKH) is employed to implement a simple and effective key-numbering method.
Theoretical analysis is given to prove that the proposed protocol meets forward security and backward
security. In addition, the experiment results show that the computation cost of CEGKD on the member
side is reduced by more than 85% compared with that of the LKH scheme.
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1. Introduction

Multicast is a one-to-many communication technology that can reduce the sender load and
increase network-bandwidth utilization. With the development of 5G and the Internet of Things
(IoT), application scenarios of multicast services are becoming increasingly abundant. Many emerging
applications, such as network video conferences, Internet of vehicles, and other multicast applications,
have higher requirements for bandwidth, continuity and real-time communication so the multicast
technology is used to reduce the consumption of network bandwidth and improve efficiency [1–3].
To ensure the security of group communication, the group key shared by all legitimate group members
is used to encrypt data in the communication channel [4]. Therefore, group key management is the
core issue of multicast security. It is difficult to effectively manage the group key of large dynamic
communication groups. Every time a member joins or leaves a communication group, the group key
must be changed. On the one hand, when a member joins, the new member cannot obtain the previous
group key, which is called backward security. On the other hand, when a member leaves, members still
in the group must be able to efficiently calculate the new key, while the leaving member cannot obtain
it, which is called forward security. Moreover, besides satisfying these security restrictions, it is also
necessary to minimize the communication, computation, and storage costs of the rekeying process.

Group key management has been extensively and intensively studied. According to the
introduction of the development of group key management in the literature [5,6], in the earliest
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group key management protocol (GKMP), a central group controller (GC) directly unicast the rekeying
message to each group member; thus, its computation and communication cost were linear with
group size, resulting in poor scalability. Therefore, researchers have proposed hierarchical rekeying
schemes [4,7–13] based on tree structure; the most typical scheme is the logical key hierarchy (LKH)
scheme proposed by K.W. Chung et al. [4] and D. Wallner et al. [12]. It is a centralized group key
management scheme that obviously reduces GC load. Tree structure is used to manage keys, where
a leaf node represents a group member, the internal node connected to it represents its private key, and
the other internal nodes are auxiliary keys, also known as key encryption keys. Each auxiliary key is
shared by the group members connected to it for multicast, and the root node represents the group key.
In the rekeying process, the LKH scheme uses a symmetric encryption algorithm and sends the rekeying
message encrypted by the auxiliary key through multicast. The communication and computation
cost are both 2 log N, where N is the group size, which makes group key management for large-scale
communication groups feasible. An improvement of LKH was proposed in the literature [14] in
which a one-way function tree (OFT) is employed to improve the key-generation and rekeying process.
The key of the leaf node is generated by GC, and the rest of the keys are calculated by a given formula.
In the rekeying process, nearly half of the bandwidth consumption is reduced, but the computation
cost of the group member to obtain the group key is increased.

Along with the extensive application of mobile terminals with limited computation capability,
it is a critical problem to reduce the computation cost of the rekeying process. Scholars have proposed
many lightweight protocols to balance security and efficiency. On the one hand, some protocols
simplify the process of key distribution, or use dynamic routing and maximum distance separable
code to distribute key update messages [15–19]. On the other hand, based on threshold secret sharing
scheme [20,21], lightweight encryption and decryption algorithms are implemented to replace the
traditional encryption algorithms used in LKH and OFT schemes [9,22–26]. Some polynomial-based
multicast key distribution framework has also achieved good results in reducing the overhead of
encryption and decryption algorithms [27,28].

1.1. Contributions

In this paper, inspired by threshold secret sharing, we propose a computation-efficient group key
distribution (CEGKD) protocol based on a new secret sharing scheme. The main contributions of this
paper can be summarized as follows:

• A new secret-sharing scheme is proposed. The corresponding polynomial degree of it is lower,
which greatly simplifies the process of secret recovery. In addition, this scheme enables GC to
construct an encrypted rekeying message when the secret shares of all authorized members have
been determined, which avoids the transmission of secret shares.

• A simple and efficient node-coding method for a logical key tree is proposed and its update
algorithm is given, which is the basis for implementing the new encryption and decryption scheme
in the tree structure of LKH.

• A CEGKD that satisfies forward security and backward security is proposed, and its specific
implementation is given. The number of polynomials to be constructed by GC is equal to the
depth of the key tree, and the degree of polynomials is equal to the degree of the key tree.

1.2. Related Works

In general, most of the existing group-key distribution protocols focus on the balance between
communication cost, computation cost, storage cost, and communication security, and cannot be
applied well in the scenario where the terminal’s computation capability is weak and the requirement
for communication security is high. On the basis of LKH key update mechanism, using light encryption
algorithm to distribute secret key can improve efficiency. Therefore, the key distribution schemes based
on secret sharing, proposed by Shamir [20] and Blakley [21] in 1979, receive increasing attention [29],
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since secret sharing has many good characteristics. For example, its security does not depend on
any unproven assumptions, and the encryption and decryption algorithms are both very concise and
practical. The LKH [22], JKKO [23], and STL [24] schemes are all based on secret sharing, but they
can only distribute the group key once. The HL [25] scheme can distribute group keys multiple times,
but its communication cost is linear with the group size. Harn and Lin [9] propose an authenticated
group key transfer protocol (AGKTP) based on a secret-sharing scheme in which the members first
share a secret with GC when they join a group. In the rekeying process, GC broadcasts the rekeying
message to all group members, and only authorized group members can recover the group key.
Unfortunately, the degree of polynomials in this scheme is equal to the number of group members, so
the computational cost in large groups is enormous. Lih-Chyau Wuu et al. [26] proposed a group-key
management scheme based on (2, 2) secret sharing that reduces the degree of polynomials to 1, but
the number of polynomials to construct is equal to the number of members, which brings huge
computation cost in large commutation groups. Therefore, a new secret-sharing scheme is needed to
solve the key-distribution problem of large communication groups. Actually, the shamir threshold
secret sharing scheme is a method of hiding information using polynomials. Ganesan V.C. et al. [27]
and Mahmood Z. et al. [28] develop key distribution frameworks to distribute the group key using
polynomial expressions without encryption for improving the efficiency in terms of communication,
computation, and storage costs.

Based on the star topology, many scholars have proposed a lightweight key update mechanism
other than LKH to improve the efficiency of key distribution. X.S. Li et al. [15] proposed a periodic
batch rekeying method. In a given time period, GC collects join and leave requests of members,
and finally updates the key tree only once. The batch processing method reduces communication
and computation costs caused by frequent changes of group members but introduces security risks
and reduces service quality. Instead of using symmetric encryption algorithms, L. Xu et al. [16]
proposed a multicast key distribution scheme that used maximum-distance separable codes to reduce
the computation cost of the key-generation process. Xiang L. [17] proposed a multipath routing scheme
based on weak security-network coding, which can probabilistically guarantee the confidentiality
of data transmissions and improve efficiency. These above schemes reduce the computation cost
of multicast group members and improve communication efficiency, but the security of the group
communication is sacrificed to some extent. Yoneyama K. et al. [18] propose a new provably secure
two-round dynamic MKD (DMKD) protocol under the star topology with a central authentication
server in which the join and leave phases need smaller computation and communication costs than
the distribution phase. Chen Y.R. et al. [19] proposed KeyDer-GKM based on a semi-stateful rekey
mechanism to reduce the number of decryption operations.

The rest of this paper is organized as follows. In Section 2, some preliminaries are given. Our
proposed scheme is stated in Section 3. In Section 4, security and efficiency analysis is provided.
In Section 5, we evaluate the performance of the proposed scheme. Finally, the paper is concluded in
Section 6.

2. Preliminaries

2.1. Logical Key Hierarchy

LKH is a centralized group key management scheme based on a logical key tree, which is suitable
for managing the group keys of large groups. This solution introduces a trusted, secure central GC to
manage the group using the key tree. After a member is authenticated by GC, a private key of the
member shared with GC is stored in the leaf node of the key tree. The auxiliary key stored by the
internal node is shared with the connected members and is used to effectively and safely transfer the
rekeying message by multicast when the group members change. The key stored in the root node is
the group key (GK), also known as the traffic-encryption key. Each member holds all keys on the path
from the leaf node representing itself to the root node, while the GC holds all the keys on the tree; such
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a set of keys is called the key path. As shown in Figure 1, member m1 holds {k1−9, k123, k1}, where k1−9

is the GK, k123 is the auxiliary key shared by m1, m2, m3, and k1 is the private key of m1.
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The joining or leaving of members can be divided into two parts: updating the key tree and
distributing the new keys. Since only the GC holds the complete key tree, updating the key tree
only needs to be performed by the GC. Three rekeying strategies are proposed in the literature [4]:
User-Oriented, Key-Oriented, and Group-Oriented rekeying. The first strategy has a large computation
cost, while the other two have a large communication cost. The Group-Oriented rekeying strategy
was used below. Figure 1 shows the key-tree update process when the number of members changes
between 9 to 10.

(1) Joining a key tree

When a member joins the group, the GC authenticates the membership and generates the personal
key for the new member and inserts a corresponding node into the key tree. Then GC sends the key
to the new member through a secure unicast channel. In order to ensure backward security, the GC
updates all keys on the key path of the member in the logical key hierarchy and issues a rekeying
message. For example, in Figure 1, new member m10 requests to join, GC generates corresponding
private key k10 after verifying its identity, then updates all keys on the path from the parent node of k10

to the root node (k1−9 is updated as k1−10, k789 is updated as k7−10), and, finally, GC issues the rekeying
message:

S→ m10 : {k1−10, k7−10}k10

S→ {m1, · · · , m9} : {k1−10}k1−9, {k7−10}k789

where {k1−10}k1−9 represents k1−10 encrypted with k1−9.
The new member cannot calculate the previous group key k1−9 according to the new group key

k1−10, thus ensuring the security of multicast communication content. This property is defined as
backward security.

(2) Leaving a key tree

When a group member requests to leave, the GC deletes the corresponding leaf node in the key
tree, updates all keys on the path from its parent node to the root node to ensure forward security,
and finally issues a rekeying message. For example, in Figure 1, group member m10 requests to leave,
GC deletes node k10 from the key tree, then updates k1−10 and k7−10 to k1−9 and k789, respectively, and
finally the GC issues a rekeying message:

S→ {m1, · · · , m9} : {k789}k7, {k789}k8, {k1−9}k123, {k1−9}k456, {k1−9}k789

After the new key is generated, the new key generated in the GC is securely sent to the required
group members through key distribution. For a full d-ary tree T, if T contains N leaf nodes, the height
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of the tree is h = logd N, GC stores (dN − 1)/(d− 1) keys, and each member stores logd N auxiliary
keys. The communication and computation cost of the rekeying process are both O

(
logd N

)
. In the

worst case, group members need to perform logd N decryption operations. Compared with GKMP, the
tree structure of LKH greatly reduces the communication and computation cost of the GC caused by
the change of group members, but increases the storage cost of the GC and group members, and the
computation cost of group members.

The leaving member cannot calculate the current group key k1−9 according to the previous group
key k1−10. This property is defined as forward security.

2.2. Shamir Threshold Secret-Sharing Scheme

In the Shamir threshold secret sharing scheme, each member in the group M(|M| = n) denoted as
mi(1 ≤ i ≤ n) holds a secret share. A secret s to be distributed can be recovered as long as any t of the n
secret shares are obtained, and t is called the threshold value. In the following, the secret distributor is
the GC above, q is a large prime number, and GF(q) is the finite field of prime order q.

Secret division: First, the distributor GC randomly selects a polynomial f (x) =
∑t−1

j=0 a jx j mod q
with a maximum degree of t − 1 over GF(q), Where a1, · · · , a j are random numbers on GF(q) and
a0 = s. Second, the GC randomly selects n non-zero and mutually different numbers xi, where
xi ∈ GF(q), (1 ≤ i ≤ n), and calculates si = f (xi) mod q for all i. Then, the distributor GC secretly
transmits si to member mi, which is the secret share of member mi. Finally, GC publishes all xi as
public parameters.

Secret recovery: Secret s can be recovered by the cooperation of any t members. A set of t
numbers is denoted as B = {1, 2, . . . , t}(|B| = t), and f (x) is calculated from the Lagrange interpolation
method [20]:

f (x) =
∑
iεB

CBi(x)·simod q (1)

where CBi(x) =
∏

jεB\{i}

x−x j
xi−x j

mod q, so the secret is:

s = f (0) =
∑
iεB

CBi ·simod q (2)

where CBi =
∏

jεB\{i}

x j
x j−xi

mod q.

The Shamir threshold secret sharing scheme has the following good properties:
Security: When the number of shares obtained by an adversary are fewer than the threshold

value t, the adversary cannot obtain any information about the secret. In addition, it is a scheme for
Anticollusion Attacks

Idealism: Each secret share si is the same size as the secret.
Scalability: When the threshold value is unchanged and new users join, the GC can calculate the

corresponding new secret shares without affecting the existing secret share and distribute them to the
new users.

3. Our Proposed Protocol CEGKD

In the LKH scheme, when the membership changes, the members who are still in the group need
to update all keys on their key paths. In the case of a large communication group, group members
need to perform decryption operations several times. Due to the limited computation resources of
mobile terminals, if traditional symmetric encryption algorithms, such as AES, are used in the rekeying
process, it takes too long for mobile terminals to decrypt the rekeying messages which lead to a long
processing delay shown in Table 5 and they cannot participate in group communication in time. This
is unacceptable for some time-sensitive communication requirements. Therefore, a faster encryption
and decryption scheme is needed to reduce the computation cost of group members in decrypting the
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rekeying messages. In the LKH scheme, each member holds all the keys in its key path, which can be
regarded as secret sharing. This enables the GC to distribute the group key using the secret-sharing
scheme. However, in the traditional threshold secret-sharing scheme, secret shares need to be generated
by the secret distributor and transmitted to all encrypted members. It is meaningless to transmit other
encrypted information in order to safely transmit the group key. In this section, we first propose a new
form of secret-sharing scheme that enables the secret distributor to directly encrypt the message when
the secret shares held by each member have been determined, and its decryption algorithm is simpler
on the group-member side. Then, a simple and effective key-numbering method is implemented on
the tree structure of LKH. Based on these, CEGKD is proposed, and the rekeying process is described
in detail.

3.1. New Form of Secret Sharing Scheme

In this section, we give another form of a secret-sharing scheme, which enables the secret distributor
to calculate the corresponding polynomial when the secret shares of all authorized members have
been determined, so that any authorized member can obtain the secret. This avoids the computation
and communication cost caused by encrypting and transmitting secret shares between GC and
group members. In fact, if encrypted transmission is required between GC and group member, the
transmission content can be directly set as the group key to be updated without any subsequent
protocols. The polynomial degree is high if the threshold value is large, which leads to an excessive
encryption and decryption cost. Therefore, a new secret sharing scheme with no extra transmission
and a faster secret recovery algorithm is necessary.

A set of existing secret shares is denoted as S = {s1, s2, . . . , st}(|S| = t), and their number set is
X = {x1, · · · , xt}(|X| = t).

Secret division: First, the distributor GC randomly selects a random number r, and then calculates
yi = s + H(r, si) for each secret share si, where H is a hash function, and obtains a series of different
points (x1, y1), · · · , (x1, yt). Then, according to the Lagrange interpolation method, a polynomial with
a maximum number of t − 1 is obtained on GF(q):

f (x) =
∑
iεB

CBi(x)·yimod q (3)

where CBi(x) =
∏

jεB\{i}

x−x j
x j−xi

mod q. After uniting like terms, f (x) is converted into the following form:

f (x) = at−1xt−1 + · · ·+ a1x + a0 (4)

Finally, GC publishes public parameters P =
{
r, coe f

}
, where coe f = {at−1, · · · , a0}.

Secret recovery: Any authorized member can recover the secret GC through its secret share si and
its number ni, as well as public parameter P. After receiving the public parameters, members recover
polynomial f (x) = at−1xt−1 + · · ·+ a1x + a0 according to coe f , and calculate the secret as follows:

s = f (xi) −H(r, si) (5)

Security analysis

Theorem 1. The authorized members can calculate the secret according to the parameters, and the calculation
result is unique.

Proof. There are t points on the plane (x1, s + H(r, si)), · · · , (xt, s + H(r, st)), according to Lagrange
interpolation theorem [30], the only t − 1 degree polynomial passing through these t points on the
plane can be determined. For all x1, · · · , xt, the difference s between f (xi) and H(r, si) is the same value
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s. Therefore, all authorized members can calculate f (xi) and H(r, si) in Equation (5) according to their
corresponding number xi and the random number r in the public parameters. �

Theorem 2. The attacker cannot calculate secret using the public parameters provided by GC.

Proof. In our scheme, the secret is hidden in the polynomial generated by Equation (3), and the
adversary can only obtain public parameter P. The adversary can infer the number of secret shares
through P and calculate f (x1), · · · , f (xt), but since the adversary does not know s1, . . . , st, it is impossible
to calculate H(r, s1), · · · , H(r, st), and thus, s cannot be calculated. That is, the enemy cannot calculate
secret s without obtaining the secret share. �

Theorem 3. The authorized members cannot calculate the secret shares of others through the obtained secret.

Proof. Once the member obtains the secret s, the hash function value H(r, si) = f (xi)− s corresponding
to any secret share si can be calculated. Due to the unidirectionality of the hash function, it is impossible
to find the value of si according to the H(r, si). �

Actually, the two secret-sharing schemes are different applications of the Lagrange interpolation
method, and they obviously have equivalent security. However, it is necessary to make such changes
that enable the secret sharing scheme to be applied more efficiently in the encryption and decryption
algorithm of the key distribution process. For the convenience of the following description, the
encryption and decryption method are first defined before introducing the key-distribution protocol.

Encrypt (s, S, X) The input of the encryption algorithm consists of a secret s, a secret share set S,
and a set X = {x1, · · · , xt}, and outputs a public parameter P.

Decrypt (r, roe, xi si) The input of the decryption algorithm consists of public parameter P and
secret share si, owned by the decrypter and its corresponding number xi, and the secret s is output.

3.2. Group-Key Distribution Protocol

In this paper, an LKH tree structure is used to manage keys. Based on the secret-sharing scheme
proposed above, the CEGKD is proposed. Taking the key represented by the child node of the new
key as the secret share, GC encrypts the new key to form a rekeying message, and group members
decrypt the rekeying message, layer by layer, using the key they have mastered. The encryption and
decryption method adopt the new form of the secret-sharing scheme proposed in the previous section,
and the protocol is described below by taking the trigeminal tree as an example.

3.2.1. Key-Numbering Rule

Since the key number is required in the encryption and decryption process of the secret-sharing
scheme, and the number does not need to be kept secret, a simple but effective recursive key-numbering
rule using string concatenation is proposed:

1. Number the group key as (01)2

2. For other keys k, assuming that the parent node number of k is n, the number of k is d||n, where ||

represents string concatenation, and d is a binary string. If k is the first child of its parent node,
then d = (01)2; if k is the second child, then d = (10)2; if k is the third child, then d = (11)2.

For example, in the ternary key tree shown in Figure 1, the key number of k1 is n1 = (010101)2,
the key number of k5 is n5 = (101001)2, and the key number of k789 is n789 = (1101)2.



Information 2019, 10, 175 8 of 18

3.2.2. Joining a Group

(1) Apply to join

After the new member applies to join, the GC verifies the group member’s identity, generates the
group member’s personal key and leaf node leaf, then finds the internal node insert with the shallowest
depth and the number of its child nodes less than 3 from the key tree, and inserts leaf into the tree as
the child node of insert. If the key tree is a full trigeminal tree, the splitting operation as shown in
Figure 1 is performed to generate a new tree node k9−10, and then k10 is inserted into the tree as a child
node of k9−10. Finally, GC sends the personal key to the new member through a secure channel.

(2) Update keys and send rekeying message

The GC updates all keys on the path from the parent node of the joining node to the root node,
from bottom to top, and each new key corresponds to a key update polynomial on GF(q):

f (x) = at−1xt−1 + · · ·+ a1x + a0

The construction of the polynomial method is as follows: denote the updated node as node, the key
to update is k′, the node has t children, and the corresponding numbers and keys are (n1, k1), · · · , (nt, kt);
then, the GC takes k′ as the secret, sets S = {k1, · · · , kt} as the secret share set, sets X = {n1, · · · , nt},
and calculates public parameters P = Encrypt(k′,K,X). P corresponds to key update polynomial
f (x) = at−1xt−1 + · · ·+ a1x + a0.

Assuming that h keys are updated after the group members join, the GC constructs and multicasts
a rekeying message to the group members:

RM =
{
r, coe f1, · · · , coe fh, SN

}
(6)

where coe fi is the coefficient of key update polynomial fi(x) and SN is the update serial number. If the
key tree is split when the new node joins, SN is the key number of the parent node of the new member;
otherwise, SN is the number of the joining node.

(3) Obtain updated key

Suppose a member has a total of l keys km1, · · · , kml, km arranged in the order from the root
node to the leaf node, i.e., km1 is the group key GK and kml is the member’s private key. Private key
km1, · · · , kml corresponds to key number n1 · · · , nl. After receiving RM, group members update their
stored keys as follows:

1. Align private key number nl to the right of SN. If nl = SN, and it is not the new member, update
the private key number to nl+1 = 01

∣∣∣∣∣∣n , and set kml+1 = kml.
2. From right to left, compare nl and the SN of each two bits to obtain the same number in succession.

Once the difference is found, the process is terminated. Denote the result as i. For the new
member, the result is set to i− 1.

3. Calculate new key kmi according to the following formula:

kmi = Decrypt(r, roei, ni, kmi+1) (7)

4. Replace the i-th key stored by the member with kmi.
5. Reduce the value of I by 1 and repeat Steps 2 to 5 until km1 is obtained.

For example, in Figure 1, member m10 requests to join the group communication. The GC updates
k9, k789, k1−9 to k9−10, k7−10, k1−10, respectively, and then calculates:

P3 = Encrypt(k9−10,
{
k9,k10

}
,
{
n9,n10

}
)
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P2 = Encrypt(k7−10,
{
k7,k8, k9−10

}
,
{
n7,n8, n9−10

}
)

P1 = Encrypt
(
k1−10,

{
k123,k456, k7−10

}
,
{
n123,n456, n7−10

})
Extract coe f1, coe f2, coe f3 from P1, P2, P3, and broadcast rekeying message

RM =
{
r, coe f1, coe f2, coe f3, (111101)2

}
After receiving the rekeying message, group member m9 updates the private key number to

n9 = (01111101)2, and then calculates, in turn:

k9−10 = Decrypt(r, coe f3, n9 k9)

k7−10 = Decrypt(r, coe f2, n9−10 k9−10)

k1−10 = Decrypt(r, coe f1, n7−10 k7−10)

Finally, replace k1−9, k789 with k1−10, k7−10.

3.2.3. Leaving a Group

(1) Send a leave message

When a member leaves a communication group, the member sends their private key number
to the GC. The GC determines the corresponding node on the key tree and then deletes it. Delete
the node as leaf 1 and its parent node as insert. If only one child node leaf 2 is left in the insert after
deletion, node insert is deleted, and leaf 2 is used to replace its position in the key tree.

(2) Update key and send a rekeying message

If no key tree-node replacement occurs when members leave, all keys on the path from the
leaving node to the root node are updated; if a key tree-node replacement occurs, all keys on the
path from the parent node of the replacement node to the root node are updated. In the process
of updating the key from bottom to top, each new key corresponds to key-updating polynomial
f (x) = at−1xt−1 + · · ·+ a1x + a0 over GF(q), and its construction method is the same as that in the
previous section. Next, assuming that h keys are updated after group members join, the GC constructs
and multicasts a rekeying message to the group members:

RM =
{
r, coe f1, · · · , coe fh, SN

}
If key tree-node replacement does not occur when members leave, SN is the key number of the

leaving node; otherwise, SN is the number of the parent node of the replaced node.

(3) Get updated key

After receiving the RM, group members update their stored keys in the same way as above.
For example, in Figure 1, after member m10 leaves, the GC deletes k10 and replaces node k9−10,

with k9, updates k7−10, k1−10 to k789, and k1−9, respectively, and then calculates:

P2 = Encrypt(k789,
{
k7,k8, k9

}
,
{
n7,n8, n9

}
)

P1 = Encrypt
(
k1−9,

{
k123,k456, k789

}
,
{
n123,n456, n789

})
Extract coe f1, coe f2 from P1 and P2, and then broadcast rekeying message

RM =
{
r, coe f1, coe f2, (1101)2

}
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After receiving the rekeying message, group member m9 updates the private key number to
n9 = (111101)2, deletes k9−10 and n9−10, and then compares n9 and SN = (1101)2 to obtain i = 2; then,
it is calculated in turn:

k789 = Decrypt(r, coe f2, n9 k9)

k1−9 = Decrypt(r, coe f1, n789 k789)

Finally, replace k1−10, k7−10 with k1−9, k789.

4. Security and Efficiency Analysis

4.1. Security Analysis

The Shamir threshold secret-sharing scheme is the most practical and effective secret-sharing
scheme. It has been tested in practice for many years since it was proposed. In Section 3.1, we proved
that, in the new form of the secret-sharing scheme, the adversary cannot decrypt secret s without
obtaining the secret share. CEGKD applies a new secret-sharing scheme to construct and decrypt the
rekeying message. In this process, random number r, polynomial coefficient coe f , and key number
SN are all public, and only the keys held by members are confidential. The security of the proposed
CEGKD is analyzed in terms of forward and backward security.

(1) Forward security

Taking the case shown in Figure 1 as an example, GC updates k1−10, k7−10 to k1−9, and k789,
respectively, after m10 leaves the communication group. k1−9 and k789 can be obtained by the following
method:

k789 = Decrypt(r, coe f2, n7 k7)

k789 = Decrypt(r, coe f2, n8 k8)

k789 = Decrypt(r, coe f2, n9 k9)

k1−9 = Decrypt(r, coe f1, n123 k123)

k1−9 = Decrypt(r, coe f1, n456 k456)

k1−9 = Decrypt(r, coe f1, n789 k789)

m10 holds the following information:

1. r and coe f1, coe f2 obtained from RM;
2. key and key number on the path before leaving; and
3. all key numbers inferred from key number rules.

As m10 does not have any secret shares in k7, k8, k9, k123, k456, k789, it cannot execute any of the
above six-decrypt algorithm. Therefore, m10 cannot calculate group key GK = k1−9 after leaving and
cannot decrypt the contents of the group communication after leaving. Therefore, CEGKD satisfies
forward security.

(2) Backward security

Taking the case shown in Figure 1 as an example, GC updates k1−9, k789 to k1−10, and k7−10,
respectively, after new member m10 joins the communication group. k1−9 and k789 can be obtained by
the following method:

k789 = Decrypt(r, coe f2, n7 k7)

k789 = Decrypt(r, coe f2, n8 k8)

k789 = Decrypt(r, coe f2, n9 k9)
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k1−9 = Decrypt(r, coe f1, n123 k123)

k1−9 = Decrypt(r, coe f1, n456 k456)

k1−9 = Decrypt(r, coe f1, n789 k789)

m10 holds the following information:

1. r and coe f1, coe f2 obtained from RM;
2. key and key number on the path before leaving; and
3. all key numbers inferred from key number rules.

As m10 does not have any secret shares in k7, k8, k9, k123, k456, k789, it cannot execute any of the
above six-decrypt algorithm. Therefore, m10 cannot calculate group key GK = k1−9 before joining
and cannot decrypt the contents of the group communication before encryption. Therefore, CEGKD
satisfies backward security.

4.2. Efficiency Analysis

In this section, we evaluate the performance of the proposed CEGKD from three aspects:
computation cost, communication cost, and storage cost. Denote the current number of members for
group communication as N. In order to compare with the AES algorithm with 128 bits of key length in
LKH, the key and key number were set to be 16 and 4 bytes, respectively.

4.2.1. Computation Cost

In this section, we evaluate the computation cost of the GC and group members in two ways.
Method 1 evaluates computation cost by the number of encryption and decryption algorithms required
for a rekeying process. Considering that the basic operation in the encryption and decryption algorithm
in this scheme is a modular operation over GF(q), which is quite different from the time required for
a basic operation in AES, Method 2 evaluates the computation cost by the number of basic operations
over GF(q) required for the encryption and decryption algorithm.

Method 1. The GC constructs the RM through encryption algorithm Encrypt(k′,K,X). For a full
d-ary tree with N leaf nodes, logd N nonprivate keys are updated when new members join, so the
GC needs to execute logd N Encrypt(k′,K,X). After receiving the RM, the group member executes
decryption algorithm Decrypt(r, roe, xi si) to obtain the updated key, and needs to execute logd N times
Decrypt(r, roe, xi si) at most. Similarly, for a full d-ary tree with N leaf nodes, when the group member
leaves, the number of times the GC needs to perform the encryption calculation is logd N − 1, and
group members need to perform a decryption calculation at most logd N − 1. The computation cost
calculated by Method 1 is shown in Table 1.

Table 1. Computation cost of computation-efficient group-key distribution (CEGKD) under Method 1.

Cost Member Join Member Left

Group controller (GC) logd N logd N − 1

Group member logd N logd N − 1

Method 2. Operations include modular addition, modular subtraction, modular multiplication,
modular division, and hash operations. When there are d secret shares, that is, |K| = |X| = d, the GC
needs to construct a polynomial with the maximum order not exceeding d − 1. From Equation (3),
it can be seen that d·2d−1 modulo addition, d(d− 1) modulo subtraction, d(d− 3)2d−2 + d2

− d modulo
multiplication, d modulo division, and d hash are required in the process of calculating polynomial
coefficients and merging similar terms. The GC needs to execute logd N times the encryption algorithm,
where |X| = 2 in 1 encryption algorithm, and |X| = d in logd N − 1 encryption algorithm. The number
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of operations required by the GC are shown in Table 2. From Equation (5), it can be seen that, in
the decryption algorithm |X| = d, since group members know all node numbers of their paths, they
can perform a preoperation on node number n2, so only d− 1 modulo addition operation, 1 modulo
subtraction operation, d− 1 modulo multiplication operation, 0 modulo division operation, and 1 hash
operation are required. The maximum number of operations required by group members is shown in
Table 2.

Table 2. CEGKD computation cost under Method 2.

Operations GC Group Member

Modular addition d
(
logd N − 1

)
·2d−1 + 4 (d− 1)

(
logd N − 1

)
+ 1

Modular subtraction d(d− 1)
(
logd N − 1

)
+ 2 logd N

Modular multiplication d
(
logd N − 1

)(
d− 1 + (d− 3)2d−2

)
(d− 1)

(
logd N − 1

)
+ 1

Modular division d
(
logd N − 1

)
+ 2 0

Hash operations d
(
logd N − 1

)
+ 2 logd N

Because the basic operation of a symmetric encryption algorithm is different from this scheme,
computation cost cannot be directly compared. In the next section, we compare the computation cost
of CEGKD with that of other schemes through simulation experiments.

4.2.2. Communication Cost

In this section, we use the number of bytes occupied by RM to evaluate the communication cost.
When the group-communication members change, the GC updates the keys and multicasts RM to all
group members, so the communication cost is the size of the RM. Assuming that h keys are updated,
the rekeying message multicast by the GC to the group members is:

RM =
{
r, coe f1, · · · , coe fh, SN

}
(8)

For a full d-ary tree with N leaf nodes, when a new member joins, the GC needs to construct
logd N polynomials, where the number of coefficients of one polynomial is 2, and the remaining
logd N − 1. The polynomial contains d coefficients, so there are (d− 1)(logd N − 1) + 2 coefficients
in the RM. When the group members leave, the GC needs to construct logd N − 1 polynomials, and
each contains d coefficients, so there are d

(
logd N − 1

)
coefficients in the RM. Each coefficient size is

16 bytes. In addition, the random number r is 16 bytes, and key number SN is 4 bytes. Therefore, the
communication overhead of this solution is shown in Table 3.

Table 3. CEGKD communication cost.

Cost
Member Join Member Left

16
(
(d− 1)(logd N − 1

)
+ 2) + 20 16d

(
logd N − 1

)
+ 20

Therefore, the communication cost of this scheme is the same as the communication cost of the
LKH scheme [4].

4.2.3. Storage Cost

In this section, we evaluate the storage cost of the GC and group members based on the number
of bytes of keys and the key numbers stored by the GC and group members.

A full d-ary tree with N leaf nodes has a total of dN−1
d−1 nodes, corresponding to dN−1

d−1 keys and key
numbers stored by the GC. The depth of the key tree is logd N, so that there are logd N nodes in the path
from the leaf node to the root node, corresponding to logd N keys and key numbers stored by group
members. In order to speed up the calculation, group members also need to store the precalculation
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results of each power of the key number. Therefore, the storage overhead of this scheme is shown in
Table 4.

Table 4. CEGKD storage cost.

Storage cost
GC Group Member

20· dN−1
d−1 (16 + 4(d− 1)) logd N

The storage costs of the GC and group members in the LKH scheme are 16(dN − 1)/(d− 1) and
16 logd N, respectively. Therefore, the storage costs of the GC and group members in this scheme are
greater than those in LKH scheme [4].

5. Experiments

In this section, we compare the performance of CEGKD with the LKH scheme and the others
through experiments. The performance of the LKH scheme reached the best [4] when the degree of the
key tree was 4. Therefore, the key-tree degree used in the LKH scheme was set to 4, an AES algorithm
with a 128 secret key length was used, and ECB codebook encryption mode was adopted. For the
balance of security and efficiency, SHA1 was chosen as the secure one-way hash function in this scheme;
in addition, R is a 128-bit strong random number, and q is a 130-bit secure prime number. The degree
of the key tree used by the CEGKD scheme was tested under various conditions. The experiments
were carried out on a core i7 2.30 GHz machine with a 12 Gbyte memory running Linux Redhat 9.0.

5.1. Computation Cost

In this section, we compare and analyze the computation costs of CEGKD and other group-key
distribution protocols. Results are shown in Figures 2 and 3.

(1) GC computation cost. In addition to the computation cost analyzed in the Section 4, GC
computation cost also comes from operations such as generating key tree nodes and traversing
the key tree. As can be seen from Figure 2, except that the computation cost of PMUKD scheme is
constant, the cost of other methods is logarithmic to the group size. Under the same key-tree
degree, the computation cost of the LKH scheme is close to that of the CEGKD scheme. For the
CEGKD scheme, the bigger the degree of the key tree, the higher the GC computation cost is.

(2) Computation cost of group members. After receiving the rekeying message, the group members
in the CEGKD scheme obtain the updated key by modulo operation and hash operation over finite
field GF(q), which is faster than the AES decryption algorithm in the LKH scheme. In addition,
group members can precalculate the powers of numbers in polynomials, which also makes the
CEGKD scheme more efficient on the group-member side. As can be seen from Figure 3, although
the computation costs of all schemes except PMUKD are logarithmically related to the number of
group members; the computation cost of the CEGKD scheme on the group-member side is much
lower than that of the LKH scheme and the others’. The larger the communication-group size is,
the greater the computation-efficiency advantage of CEGKD at the member side. Although the
computation cost of PMUKD scheme is constant, the computation cost of CEGKD on the group
member side is still the smallest among all schemes within the foreseeable range of group size.
For the CEGKD scheme, the bigger the degree of the key tree is, the lower the computation cost
of the group members.

The computation time of the rekeying process compared to other key-distribution schemes
proposed in References [16,19,26,27] was as shown in Table 5, for a selected multicast-group size. Since
the number of encryption basic operations of various protocols except PMUKD is logarithmic to the
group size, and the operation time of basic operations is independent of the group size, results under
other multicast-group sizes were similar.



Information 2019, 10, 175 14 of 18

Information 2019, 10, x FOR PEER REVIEW 13 of 17 

 

In this section, we compare and analyze the computation costs of CEGKD and other group-key 
distribution protocols. Results are shown in Figure 5; Figure 6. 

(1) GC computation cost. In addition to the computation cost analyzed in the Section 4, GC 
computation cost also comes from operations such as generating key tree nodes and 
traversing the key tree. As can be seen from Figure 2, except that the computation cost of 
PMUKD scheme is constant, the cost of other methods is logarithmic to the group size. Under 
the same key-tree degree, the computation cost of the LKH scheme is close to that of the 
CEGKD scheme. For the CEGKD scheme, the bigger the degree of the key tree, the higher the 
GC computation cost is. 

 

Figure 2. GC computation cost. 

(2) Computation cost of group members. After receiving the rekeying message, the group 
members in the CEGKD scheme obtain the updated key by modulo operation and hash 
operation over finite field GF(q), which is faster than the AES decryption algorithm in the 
LKH scheme. In addition, group members can precalculate the powers of numbers in 
polynomials, which also makes the CEGKD scheme more efficient on the group-member side. 
As can be seen from Figure 3, although the computation costs of all schemes except PMUKD 
are logarithmically related to the number of group members; the computation cost of the 
CEGKD scheme on the group-member side is much lower than that of the LKH scheme and 
the others’. The larger the communication-group size is, the greater the 
computation-efficiency advantage of CEGKD at the member side. Although the computation 
cost of PMUKD scheme is constant, the computation cost of CEGKD on the group member 
side is still the smallest among all schemes within the foreseeable range of group size. For the 
CEGKD scheme, the bigger the degree of the key tree is, the lower the computation cost of the 
group members. 

 

Figure 2. GC computation cost.

Information 2019, 10, x FOR PEER REVIEW 13 of 17 

 

In this section, we compare and analyze the computation costs of CEGKD and other group-key 
distribution protocols. Results are shown in Figure 5; Figure 6. 

(1) GC computation cost. In addition to the computation cost analyzed in the Section 4, GC 
computation cost also comes from operations such as generating key tree nodes and 
traversing the key tree. As can be seen from Figure 2, except that the computation cost of 
PMUKD scheme is constant, the cost of other methods is logarithmic to the group size. Under 
the same key-tree degree, the computation cost of the LKH scheme is close to that of the 
CEGKD scheme. For the CEGKD scheme, the bigger the degree of the key tree, the higher the 
GC computation cost is. 

 

Figure 2. GC computation cost. 

(2) Computation cost of group members. After receiving the rekeying message, the group 
members in the CEGKD scheme obtain the updated key by modulo operation and hash 
operation over finite field GF(q), which is faster than the AES decryption algorithm in the 
LKH scheme. In addition, group members can precalculate the powers of numbers in 
polynomials, which also makes the CEGKD scheme more efficient on the group-member side. 
As can be seen from Figure 3, although the computation costs of all schemes except PMUKD 
are logarithmically related to the number of group members; the computation cost of the 
CEGKD scheme on the group-member side is much lower than that of the LKH scheme and 
the others’. The larger the communication-group size is, the greater the 
computation-efficiency advantage of CEGKD at the member side. Although the computation 
cost of PMUKD scheme is constant, the computation cost of CEGKD on the group member 
side is still the smallest among all schemes within the foreseeable range of group size. For the 
CEGKD scheme, the bigger the degree of the key tree is, the lower the computation cost of the 
group members. 

 
Figure 3. Group-member computation cost.

Table 5. Computation time compared to other schemes (multicast-group size of 8192).

Time (µs) CEGKD PMUKD [27] RS(MD5) [16] Scheme in [26] KeyDer-GKM [19] LKH [4]

GC 894 178 294 14963 706 840
member 26 36 45 49 170 211

5.2. Communication Cost

In this part, we compare and analyze the communication cost of LKH and CEGKD and count the
RM size when a group member joins or leaves the group. Results are shown in Figure 4.

As can be seen from Figure 4, the communication cost is logarithmically related to the number of
group members. In the case where the number of group members is the same, the greater the number
of key trees is, the greater the communication cost of the CEGKD scheme. When the key tree degrees
are the same, the communication cost complexity of the two schemes is O(logd N), but the actual
communication cost of the LKH scheme is slightly smaller than the communication overhead of the
CEGKD scheme. This is because CEGKD’s rekeying message contains a random number R with a size
of 16 bytes.
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5.3. Storage Cost

In this section, we compare the storage cost of LKH and CEGKD, and compare the storage cost
of the GC and the members when a group member joins or leaves the group. Results are shown in
Figure 5.

(1) GC-side storage cost. As can be seen from Figure 5, as the size of the communication group
increases, storage-cost increases of the two schemes are both linear with member size. GC storage
cost under the CEGKD scheme is slightly larger than the value under the LKH scheme. For the
CEGKD scheme, the greater the degree of the key tree is, the smaller the GC storage overhead.

(2) Group-member-side storage cost. As can be seen from Figure 5, the storage costs of the two
schemes are both logarithmically related to member size. The storage cost of group members
under the CEGKD scheme is greater than that of LKH scheme because the precomputation results
of the powers of the key numbers are both to be stored.
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5.4. Analysis

Considering the computation cost, communication cost, and storage cost of the GC and group
members, CEGKD has the best performance when the key-tree degree is 4, which is the same as the
LKH. When the degrees of the key tree in CEGKD and LKH are both 4, the cost of CEGKD compared
with LKH is shown in Table 6.

Table 6. Cost of CEGKD compared with LKH.

Change Computation Cost Communication Cost Storage Cost

GC Increase by about 3%
Increase by 16 bytes

Increase by 25%

Member Decrease by more than 87.7% Increase by 75%

Experiment results show that CEGKD can effectively reduce the computation cost of group
members. At the same time, its communication cost and storage cost are both close to the LKH scheme.
Although the storage cost on the group-member side increases by 75%, this is due to its small base.
In fact, when the group size reaches 8192, the storage cost on the CEGKD member side is only 182 bytes.
However, compared with other schemes, CEGKD has a higher computation cost on the GC side.
In particular, the computation cost of PMUKD is a small constant on both GC and group members
sides, which has great advantages in large-scale group communication.

Therefore, considering all kinds of situations, PMUKD is a better choice when the performance
of communication group manager is insufficient. CEGKD is a good choice when the terminal’s
computation resource is extremely limited.

6. Conclusions

To solve the problem of insufficient computation resource of mobile terminals in the key distribution
process, based on the LKH scheme, we propose a computation-efficient group-key distribution protocol
based on a new secret-sharing scheme. Firstly, by designing a new secret sharing scheme, an efficient
encryption and decryption algorithm is proposed. The degree of the corresponding polynomial is
reduced in the proposed scheme. Moreover, precalculating makes the CEGKD scheme more efficient
on the group-member side. On the premise of ensuring security, the efficiency of decrypting rekeying
messages by group members was improved. Then, in the case of managing the key using the tree
structure of the LKH, a simple and effective key-numbering method was realized. According to
the experiment results, our proposed protocol could significantly reduce the computation cost of
group members in the rekeying process. The wireless terminal may occasionally disconnect in group
communication. In the future, we will study the key distribution scheme in which group members
can obtain the latest group key in the case of missing key update messages in the middle period. The
safety of the proposed scheme is still analyzed with various attacks.
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