
 information

Article

Task Assignment Algorithm Based on Trust in
Volunteer Computing Platforms

Ling Xu 1,2,*, Jianzhong Qiao 1, Shukuan Lin 1 and Ruihua Qi 2

1 School of Computer Science and Engineering, Northeastern University, Shenyang 110819, China
2 School of Software Engineering, Dalian University of Foreign Languages, Dalian 116044, China
* Correspondence: xuling@dlufl.edu.cn; Tel.: +86-158-4097-5069

Received: 28 May 2019; Accepted: 19 July 2019; Published: 23 July 2019
����������
�������

Abstract: In volunteer computing (VC), the expected availability time and the actual availability
time provided by volunteer nodes (VNs) are usually inconsistent. Scheduling tasks with precedence
constraints in VC under this situation is a new challenge. In this paper, we propose two novel
task assignment algorithms to minimize completion time (makespan) by a flexible task assignment.
Firstly, this paper proposes a reliability model, which uses a simple fuzzy model to predict the
time interval provided by a VN. This reliability model can reduce inconsistencies between the
expected availability time and actual availability time. Secondly, based on the reliability model,
this paper proposes an algorithm called EFTT (Earliest Finish Task based on Trust, EFTT), which
can minimize makespan. However, EFTT may induce resource waste in task assignment. To make
full use of computing resources and reduce task segmentation rate, an algorithm IEFTT (improved
earliest finish task based on trust, IEFTT) is further proposed. Finally, experimental results verify the
efficiency of the proposed algorithms.

Keywords: volunteer computing; task assignment; availability; reliability model

1. Introduction

In the past decades, volunteer computing (VC) has provided huge computing power
for large-scale scientific research projects by using idle resources over the Internet. A well-known
open volunteer computing platform (VCP) is BOINC [1] (Berkeley Open Infrastructure for Network
Computing), and some scientific research projects are running in BOINC, such as SETI@home [2]
and Einstein@ Home. In addition, there are also some VC projects running in other VC platforms,
such as Folding@home [3] and ATLAS@Home [4]. The network structure of these volunteer computing
platforms (VCPs) is usually a master-worker distributed network computing model [5], as is shown
in Figure 1. In Figure 1, the computers that provide computing resources are called volunteer nodes
(VNs) and the server is responsible for assigning tasks and recycling results.

Server

VolunteernVolunteer2Volunteer1

taskresult
task result result

task

...

task1 task2 taskn...
computing project

Figure 1. Master-worker model.

Information 2019, 10, 244; doi:10.3390/info10070244 www.mdpi.com/journal/information

http://www.mdpi.com/journal/information
http://www.mdpi.com
http://www.mdpi.com/2078-2489/10/7/244?type=check_update&version=1
http://dx.doi.org/10.3390/info10070244
http://www.mdpi.com/journal/information

Information 2019, 10, 244 2 of 18

As VC is recognized for high-throughput computing, more and more scientific problems have been
deployed in VCPs. Because the donated resources of VN are not available all the time, the completion
time (makspan) of a task is usually hours or days. Therefore, the goal of many task assignment
algorithms in prior studies [6–9] was to maximize the rate of task completion. However, as mentioned
in References [10,11], minimizing the turnaround time of a task or batches of tasks was very meaningful
for some special VC applications. Moreover, VC Applications such as SETI@home should be more
efficient if they use minimizing a turnaround as the goal of task assignments. However, there are few
studies about makespan in VC and the prior studies did not pay much attention to the reliability in
task assignment.

Reliability is often associated with fault tolerance and fault tolerance is often associated with task
failure or malfunctioning workers. Task failure or malfunctioning workers can be solved by redundant
tasks or other techniques such as rescheduling [12]. Although these techniques are helpful for reliable
task assignment, the performance of scheduling would be improved if reliability is taken into account
in task assignment.

Usually, the reliability of the distributed systems is defined as the probability that the task
can be executed successfully [13]. In the current context for task assignment, the definition can
be narrowed down to the gap between the expected availability time and actual availability time.
The gap characterizes the performance of task assignment, and the smaller the gap, the better
the performance of task assignment. Because VC differs from other distributed computing such
as grid computing and cloud computing. In VC, the expected availability time of VN is often
disturbed by some reasons, such as the non-VC CPU load exceeding a threshold or another purpose.
In such circumstances, there exists a gap between the actual makespan and the expected makespan,
which causes the performance degradation of task assignment. Consequently, reliability is very useful
for the task assignment of VCPs.

Moreover, many prior studies [7,9,14] about task assignment focused on independent tasks.
However, the tasks of some VC applications in practice are precedence-constrained. Generally
speaking, task priority can be represented by DAG (directed acyclic graph) [15], where nodes denote
tasks and each edge (ti → tj) denote task priority (i.e., task tj cannot be executed until task ti has
been completed). For example, as is shown in Figure 2, task t4 cannot be executed until t1 and t2 have
been completed. To facilitate the discussion of the task priority, a hypothetical root node is defined
for the DAG. A hypothetical root node is a start node, whose computation time is 0.

t1

t2

t3

t4

t5

t6
root

Figure 2. An example of the directed acrylic graph (DAG) with six tasks.

In this paper, we address the task assignment problem in VCPs and propose two task assignment
algorithms that take into account reliability, makespan and tasks with precedence-constrained.
The main contributions of this paper are summarized as follows:

(1) We propose a reliability model to reduce the inconsistencies between the expected availability
time and actual availability time in VCPs.

(2) We propose two novel algorithms on the basis of the reliability model, that is, EFTT algorithm
(earliest finish task based on trust, EFTT) and IEFTT algorithm (improved earliest finish task based

Information 2019, 10, 244 3 of 18

on trust, IEFTT). Unlike the existing algorithms, these two algorithms can minimize the makespan
by considering reliability and task priority.

(3) We conduct simulation experiments to evaluate the efficiency of the proposed
algorithms. The experimental results show that our proposed algorithms are more efficient than
the existing algorithms.

The remainder of this paper is organized as follows: in the next section, we review the related
work. Section 3 introduces the definition of the problems. Section 4 illustrates our task assignment
algorithms. Section 5 gives the experimental results and analysis of the proposed task scheduling
algorithms. Section 6 concludes this paper.

2. Related Work

In this section, we summarize the related work of task assignment in VCPs.
To more comprehensively describe the related work of task assignment, this paper introduces the
related work in two ways; one is a task assignment in distributed computing and the other is a task
assignment in volunteer computing.

2.1. Task Assignment in Other Distributed Computing Systems

How to assign parallel tasks to multiple computers has been extensively studied, such as HEFT
(Heterogeneous Earliest Finish Time, HEFT) [16], Min-min [17], and Max-min [18] . These prior studies
use DAG to assign tasks according to task priority in static task assignment. Moreover, there are also
other studies [19,20] about dynamic task assignment with task priority. However, the central issue
in these studies is that they did not take into account the reliability.

Some studies that paid attention to reliability in task assignment, such as the studies in
References [21,22]. These studies adopt search based on state space to obtain the optimal solution
in task assignment. However, these methods have high computational complexity. Therefore, some
studies adopted the heuristic algorithm to reduce computational complexity. Kang et al. [23] proposed
an iterated greedy algorithm to maximize reliability in task assignment. They adopted stochastic
local search to reduce the computational complexity. Furthermore, a dynamic resource assignment
MOC algorithm [24] for an independent task was proposed by Salehi. The objective of the algorithm
is to maximize the number of tasks completed while ensuring reliability. Specifically, the MOC
algorithm defines a stochastic robustness to assign tasks and discards tasks that miss their deadlines
to maximize the number of completed tasks. However, these studies are different from our work,
because they did not consider task priority in task assignment.

Moreover, there are also some task assignment algorithms for specific application scenarios,
such as cloud computing [25], mobile social networks [26] and grid computing [27] et al. Because these
scenarios are different from volunteer computing where volunteer nodes may be often disconnected
because of some reasons, such as the computer is in use, or the non-VC CPU load exceeds a threshold,
the task assignment algorithm for such scenarios cannot be directly applied to the VCPs.

2.2. Task Assignment in Volunteer Computing Platforms

Effective task assignment can improve the system performance, so many task assignment
algorithms have been extensively studied, such as the studies in References [28–30], which mainly
take into account the attributes of tasks and resources constraints, such as the deadline and size of the
tasks. However, these studies did not take into account that the VN is not always available. The study
proposed in Reference [31] shows that the VNs will not be always available all the time according
to the analysis of large scale real-world records in VCPs. Moreover, the expected availability time
provided by a volunteer node will be interrupted by some reasons as mentioned before, which will
make the turnaround of applications longer.

In this paper, we adopt a reliability model to reduce the disturbance caused by some reasons.
In our reliability model, we associate a trust value with each VN to predict the availability time

Information 2019, 10, 244 4 of 18

of each VN. Usually, trust value is defined as the credibility of each VN. In the context of this paper,
we define the trust value as the credibility that a VN can provide the expected availability time.
Moreover, the study in Reference [32] shows that the higher trust value of the VN, the closer its
expected availability time and the actual availability time are, so we associate a trust value with each
VN in our reliability model to reduce the disturbance and improve the performance in task assignment.

The closest work to our study is two novel task scheduling algorithms proposed by Essafi et al. [32].
These two algorithms are called the HEFT-AC algorithm, which mainly modifies the HEFT algorithm
to make it suitable for the volunteer computing platforms and the HEFT-ACU algorithm associates
the reputation value of each VN to improve reliability. However, the HEFT-AC algorithm and
the HEFT-ACU algorithm are mainly about the assignment of independent tasks, which are different
from our work. In our work, we mainly focus on the task assignment that meets task priority
requirement in VCP and the objective is to minimize the total completion time (makespan) on the basis
of improving the reliability by associating trust value of each VN.

3. Task Assignment Problem

3.1. Problem Description

Since VN is not always available over time, this paper associates the trust value of each VN
to establish a reliability model that aims at reducing the disturbances caused by some reasons
as mentioned before, and minimizing the makespan.The notations used in this paper are summarized
in Table 1.

Table 1. Notations used in problem description.

Notation Notation Meaning

T The set of tasks
ti The ith task of the set T
V The set of volunteer nodes
vj The jth volunteer node of the set V
|V| The number of nodes in the set V
hj The node vj contributes hj hours

vj.trust The trust value of the node vj
ti.cost The completion time needed of ti

Rangej[la, lb] The confidence interval of the node vj
ratiov the ratio of the actual availability time of node v to its expected availability time

probabilityv the probability of different ratios
D(vj) the total time assigned to the node vj

Although VC applications currently have no direct support for dividing long variable-sized tasks
into small-sized tasks, many studies have integrated VC with other distributed computing to meet
their special requirement, such as the study in Reference [33], which discussed the strategies about
how to divide long-running GARLI analyses into short BOINC workunits (a unit of work in the
BOINC platform). On this basis, to extend the VC, in this paper, we assume tasks of a VC application
are arbitrarily divisible.

Given a set of tasks in VCPs, denoted by the set T = {t1, t2, . . . , tm}. Suppose that each task
ti can be completed by any node vj or several other nodes in VCPs. In addition, we assume that
the volunteer nodes provide the same computing power to different tasks and a set of volunteer
nodes are denoted by the set V = {v1, v2, . . . , v2}. Moreover, we use the DAG known in advance
to represent the interdependency of tasks. These are different from our prior work [34], which mainly
focuses on how to assign independent tasks within deadline and the objective of task assignment
is maximizing the number of tasks completed. Although the two papers take into account the dynamic
of VC, this paper mainly uses a reliability model to predict the availability time to reduce the impact
of dynamic, unlike our prior work using monitoring mechanism to achieve dynamic task scheduling.

Information 2019, 10, 244 5 of 18

The related concepts are given as follows:

Definition 1 (task). Task ti is a double dimension array that is denoted by (id, ti.cost). The id represents the
order of the tasks arrived; ti.cost represents completion time and the unit of ti.cost s an hour. At the same time,
the cost of the task is only related to the number of task fragments, and it can be obtained by sampling.

For example, as shown in Figure 3a, t1.cost = 2, which means that the node vj will take two hours
to complete the task t1

Definition 2 (prerequisite task). Given a task set, denoted by the set T = t1, t2, . . . , tm,
and its corresponding DAG. When tj can be executed only after task ti has been completed, then task ti is called
the prerequisite task of task tj, and task tj is the post-order task of task ti.

For example, as shown in Figure 2, task t4 can be executed only after task t1 and task t2 have been
completed, so we call task t1 and task t2 are the prerequisite task of task t4.

Definition 3 (node). Given a volunteer node set, denoted by the set V = {v1, v, . . . , vj}, and each node vj
is a double dimension array, which is denoted by (hj, vj.trust). The hj represents the expected availability
time donated by the node vj is hj hours, and vj.trust represents the trust value that is the node vj can donate
availability time which is hj hours. The parameter vj.trust of a node in this paper can be calculated by its
historical records. In the future, we intend to study in depth the accurate calculation of parameter vj.trust.

For example, as shown in Figure 3b, h2 = 4, v2.trust = 30%, which means the availability time
donated by node v2 is four hours and the trust value of this availability time is 30%.

T ti.cost

t1 2

1

3

4

2

3

t2

t3

t4

t5

t6

(a)

V hj

v1 4

4

3

4

3

v2

v3

v4

v5

vj.trust

70%

30%

60%

50%

40%

(b)

Figure 3. Task set and volunteer node set at time l1. (a) task set at time l1; (b) volunteer node set at time l1.

VN may often be disconnected as mentioned before, so the expected availability time is different
from the actual availability time. As shown in Figure 4, there is a difference between the expected
availability time and the actual availability time provided by the node v2. To reduce the gap between
these values, this paper associates a trust value with each volunteer node and builds a reliability model.

l1 l1+1 l1+2 l1+3 l1+4 l1+5 l1+6

actual availability time of v2

time

expected availability time of v2

Figure 4. The expected availability time and the actual availability time of the node v2.

Information 2019, 10, 244 6 of 18

3.2. Reliability Model

The computational resources donated by VNs can be represented by some scattered time
intervals [31]. Based on this viewpoint, this paper defines the confidence interval of the node
in the reliability model.

Definition 4 (confidence interval). The confidence interval of the node vj at time l1 is denoted by
Rangej[la, lb], which means that the node vj can keep the state of donating resources before time la and disconnect
at any time in the time interval [la, lb].

The confidence interval is very important for both the EFTT algorithm and IEFTT algorithm.
Specifically, we estimate the confidence interval of each VN by a simple fuzzy model according
to the relationship between actual availability time and expected availability time in the historical
record. Although the availability time of a node may be online longer than what it originally claimed,
we only assign tasks to a node within its expected availability time. Therefore, in our algorithms,
the upper bound “Range” is the expected online time. Because a node is not often available within
its expected availability time, it is very hard to make sure the availability extra online time. In future,
we will take into account how to assign tasks to extra online time.

The lower bound of “Range” is computed by the interpolation method. Specifically, we analyze
the actual availability time and expected availability time of a node v for nearly 100 times.
After the statistical analysis of these values, we obtained the probability that different ratios
of the actual availability time and expected availability time of node v appeared is shown in Figure 5a.
In Figure 5a, ratiov represents the ratio of the actual availability time of node v to the expected
availability time and the probabilityv represents the probability of different ratios. Therefore,
for any expected availability time provided by node v we can calculate the probability of node different
actual availability time appeared by interpolation according to the statistical data in Figure 5a.

For example, the expected availability time of node v is six hours, we can get the probability
that node v will keep the state of donating resources for at least six hours is 50% according
to Figure 5a and the node v will keep the state of donating resources for at least three hours is 100%.
Similarly, we can calculate the different probabilities corresponding to different actual availability time
of the node v. Therefore, we can obtain the fuzzy membership function image of the actual availability
time of the node v according to Figure 5a, and the fuzzy membership function image of node v whose
expected availability time is six hours is shown in Figure 5b. We can calculate the lower bound
of “Range” is 3 according to Figure 5b. Therefore, we abstracted out two parameters as mentioned
in Section 3.1 to describe node v and calculated the confidence interval by their values.

<=50% probabilityv

<=50% 100%

90%

80%

70%

60%

60%

70%

80%

90%

ratiov

50%100%

<=50% probabilityv

<=50% 100%

90%

80%

70%

60%

60%

70%

80%

90%

ratiov

50%100%

(a)
timetime0 1 2 3 4 5

probability

50%

100%

6 time0 1 2 3 4 5

probability

50%

100%

6

(b)

Figure 5. The statistics of actual availability time and expected availability time of the node
v and membership function image of node v expected availability time which is six hours.
(a) Statistics of actual availability time and expected availability time of the node v; (b) The membership
function image of the node v expected availability time which is six hours.

Information 2019, 10, 244 7 of 18

By analyzing the ratio of the actual availability time of multiple nodes to their expected
availability time, we found that the parameter vj.trust of the node decreases monotonically with
the parameter hj. For simplicity, suppose that the parameter vj.trust is linearly decreasing with the
parameter hj, and the decreasing function is denoted by Φ(t). However, the nodes’ behaviors are
uncertain in VCPs, so the decreasing function can be designed in the form of a nonlinear decreasing
function, as mentioned in the literature [13,21]. Although the function image of each VN is different
because of its historical performance, for easy calculation, we assume that the decreasing function
satisfies the equation as follows:

Φ(t + ∆t)−Φ(t) = −0.5∆t (1)

For example, the parameters of the node v2 are shown in Figure 3b, v2.trust = 0.3, hj = 4,
and the decreasing function image of the node v2 is shown in Figure 6a. Suppose that the current
time is 0, the confidence interval of the node v2 is Range2[2.6, 4] according to its decreasing function.
From the confidence interval of the node v2, it can be seen that it will keep the state of donating
resources within 2.6 h, and it will disconnect at any time in the time interval from 2.6 to 4. Similarly,
it can be applied to the confidence interval of the other nodes in Figure 3b, as shown in Figure 6b.

timetime0 1 2 3 4 5

probability

50%

100%

2.6

30%

(a)

V-List Confidence interval

v1 Range1[3.4,4]

Range2[2.6,4]

Range3[2.2,3]

Range4[3,4]

Range5[2,3]

v2

v3

v4

v5

VV-List Confidence interval

v1 Range1[3.4,4]

Range2[2.6,4]

Range3[2.2,3]

Range4[3,4]

Range5[2,3]

v2

v3

v4

v5

V

(b)

Figure 6. The decreasing function image of the node v2 and the confidence interval of each node.
(a) The decreasing function image of the node v2; (b) The confidence interval of each node.

The objective of our task scheduling is to minimize the total completion time under the available
resource constraints. The available resource constraints are as follows:

D(vj) <= hj, (2)

where D(vi) represents the total time assigned to the node vj. Constraint (2) ensures that the total time
assigned to the node vj must not exceed the expected time provided by the node vj.

In this paper, we use the reliability model to reduce the gap between the expected total completion
time and the actual total completion time, which makes the expected minimum total completion time
approximated to the actual minimum total completion time.

4. Algorithm Description

In this section, we introduce the EFTT and IEFTT algorithms in detail.

Information 2019, 10, 244 8 of 18

4.1. The EFTT (Earliest Finish Task Based on Trust) Algorithm

The EFTT algorithm is a task scheduling algorithm under the constraints of available resources
and prerequisite task sets, it minimizes the makespan and has two phases: a calculation phase of task
execution order for computing the order of assignment and a node selection phase for selecting the most
suitable VNs according to task priority.

The calculation phase of the task execution order: This phase calculates the task priority of
each task according to the DAG. In this paper, task priority is equal to the distance between a node
and the root node in the DAG. Then, this phase sorts the tasks in descending order according to task
priority, and the sort result is the task execution order R. If the tasks have the same task priority,
we sort the tasks according to their order of joining (i.e., first-come-first-scheduled policy).

Significantly, in this phase, the task is assigned according to task priority in the task set T.
When task ti is assigned, all prerequisite tasks need to be completed. Otherwise the task cannot be
assigned and the tasks that need to be redone will be assigned first in the next round.

The node selection phase:In the node selection phase, the EFTT algorithm obeys the following
two principles:

• Principle 1 (confidence interval preference principle) since the volunteer node is often
disconnected, which will make a turnaround time of a task become slower. To reduce its impact,
the EFTT algorithm selects the confidence interval first to assign the task.

• Principle 2 (task allocation principle) to ensure that the prerequisite task ti has been completed
when task tj starts to be executed, the EFTT algorithm first schedules all the computing resources
to calculate task ti. In this way, task ti will be divided into |V| equal parts, |V| is the number
of online volunteer nodes, and each volunteer node is assigned a time interval to calculate task ti
The size of each time interval is ti.cost/|V|.

Suppose the current time m is 0. Firstly, the EFFT algorithm calculates the confidence interval
of each node according to the descending function of each volunteer node. Secondly, the EFFT
algorithm determines the computation time l′ of task t according to the cost of t and the number
of volunteer nodes |V|.

For a volunteer node v in the volunteer node set V, if the time interval assigned to task t is
within v′s confidence interval, that is, m + l′ < la, we could believe that task t assigned to a volunteer
node v can be completed; if the time interval assigned to task t exceeded v′ s confidence interval,
that is, m + l′ > la, according to confidence interval preference principle, volunteer node v will stop
computing task t at time la and it will be added to non-confidence node set V′.

If V was null at time l1, we could believe that the confidence interval of VNs have been completely
allocated. If there was still uncompleted task t′, t′ would be assigned to the node v′ with the largest
trust value in V′ until the node v′ disconnect or the task is completed. Specifically, the EFTT algorithm
is described in detail in Algorithm 1. To select the most suitable node to assign tasks, we use bubble
sort algorithm to preprocess data. In the future, considering the time complexity of our algorithms,
other sorting algorithms such as quicksort and parallel sorting algorithm [35] will be adopted to use
in pre-processing data.

To facilitate a clearer understanding of the implementation process of Algorithm 1, examples are
as follows:

Information 2019, 10, 244 9 of 18

Algorithm 1 The EFTT algorithm

Input: volunteer node set V, task set T and corresponding TAG, the current time m = 0
Output: task assignment set T.assign

1: Calculate the task execution set R
2: V′ = ∅
3: for each v ∈ V do

4: Calculate the confidence interval of v
5: end for
6: while R 6= ∅ and (V′ 6= ∅ or V 6= ∅) do

7: Take the first task t′ form T
8: if V 6= ∅ then

9: l′ = t′.cost/|V|
10: for each v ∈ V do

11: if la > m + l′ then

12: Add < v, l′ > toT.assign
13: t′.cost = t; .cost− 1
14: else

15: Add < v, la −m > toT.assign
16: Add v to V′
17: t′.cost = t′.cost− (la −m)
18: end if
19: end for
20: m = m + l′
21: else

22: while V′ 6= ∅ do

23: Take v′ who has the biggest v.trust in V′//use bubble sort algorithm to find the maximum

value
24: if v′ is offline then

25: Continue
26: else

27: t′.cost = t′.cost− (lb −m)
28: m = m + (lb −m)
29: Add < v′, lb −m > 0 to T.assign
30: end if
31: if t′.cost = 0 then

32: Delete t′ from R
33: end if
34: end while
35: end if
36: end while
37: return T.assign

Given a task set T, a volunteer node set V and the DAG are as shown in Figures 2 and 3.
According to task priority, we can calculate task execution order set R = {t1, t2, t3, t4, t5, t6}.
Suppose the current time m = 0. In the EFTT algorithm, step one: the task t1 is assigned,
since t1.cost/5 = 0.4. Since all the nodes satisfy the inequality m + l′ < la, all nodes can complete
t1 under the constraints of their confidence intervals. After t1 is completed, m is updated to
0.4. Step two: it can be seen that all nodes can complete tasks t2 and t3 under their confidence
interval constraints. After t3 is completed, m is updated to 1.2. Step three: the EFTT algorithm
takes task t4 from R, since t4.cost = 4, l′ = t4.cost/5 = 0.8, and la of node v5 is not greater

Information 2019, 10, 244 10 of 18

than m + l′ = 1.2 + 0.8 = 2, the EFTT algorithm deletes v5 from the node set V and add it to
the set V′. At this time, m is updated to 2. Step four: the EFTT algorithm takes task t5 from R,
since t5.cost = 2, l′ = t5.cost/4 = 0.5, and la of the node v3 is not greater than m + l′ = 2 + 0.5 = 2.5.
At the same time, departure of the node v3 at time 2.2, so v3 provides the calculation time is 0.2,
and the task t5 cannot be completed at time 2.5. Step five: the EFTT algorithm takes the rest of
the task t5 to assign, t5.cost = 2− 1.7 = 0.3, l′ = t5.cost/3 = 0.1, since the la of the node v2 is not
greater than m + l′ = 2.5 + 0.1 = 2.6, the EFTT algorithm deletes v2 from the node set V and add
it to the set V′. At this time, m s updated to 2.6. Step six: the EFTT algorithm takes task t6 from
R, since t6.cost = 3, l′ = t6.cost/2 = 1.5, and la of the node v1 and node V4 are not greater than
m + l′ = 2.6 + 1.5 = 4.1, the EFTT algorithm deletes v1 and v4 from the node set V and add them
to the set V′. At this time, m is updated to 2.6. Finally, the EFTT algorithm continually selects the node
in V′ to calculate the rest of t6 until the node v′ is empty and then the algorithm stops. The specific
task assignment is shown in Figure 7.

timeo 1 2 3 4 5

v1

v2

v3

v4

v5

0.2 0.6 1.2 2.2 2.5 2.6 3.4

node time assigned to t1
time assigned to t2

time assigned to t3

time assigned to t4

time assigned to t5

time assigned to t6

time assigned to t6

Figure 7. The specific task assignment of the EFTT algorithm.

4.2. The IEFTT (Improved Earliest Finish Task Based on Trust) Algorithm

The basic scheduling algorithm EFTT establishes a reliability model by associating a trust value
with each volunteer node to improve the performance of task assignment and minimize the makespan.
However, the EFFT algorithm results in some idle computing resources and a larger number of task
fragments. On the basis of the EFFT algorithm, this paper proposes an improved scheduling
algorithm IEFTT. The IEFTT algorithm optimizes task scheduling in two ways: task completion time
and task fragment rate. Although our second algorithm, the IEFTT algorithm shown in Algorithm 2,
has a calculation phase of task execution order and a node selection phase, it uses a different method
for selecting the most suitable VN for each selected task.

To reduce task segmentation rate, the concept of time period is proposed and the IEFTT algorithm
divides variable-sized tasks into small-sized tasks according to task priority. Firstly, according
to the confidence interval of each VNs, the IEFTT algorithm divides up total computing time donated
by VNs into small-sized time periods. Secondly, the IEFTT algorithm adds the left and right endpoints
of the nodes’ confidence intervals to the set L in ascending order. After removing all duplicate elements
from the set L, the IEFTT algorithm takes every two adjacent elements of the set L to form a time
period. Thirdly, the IEFTT algorithm calculates total computing time of each time period, and the total
computing time of time period n is denoted by Vn.con. Fourth, the IEFTT algorithm takes out the tasks
with the highest task priority from the task execution order set R. Suppose the highest task priority
denoted by p and total computing time of the tasks with task priority p is T(p).cost. Finally, the IEFTT
algorithm compares the value between Vn.con and T(p).cost, if Vn.con is larger T(p).cost, then the value
of task slice is T(p).cost/|V|, otherwise the value of task slice is Vn.con/|V|. Moreover, the IEFTT

Information 2019, 10, 244 11 of 18

algorithm did not stop until that the task execution order set R was empty or the volunteer set V was
empty. The IEFTT algorithm is described in detail in Algorithm 2.

Algorithm 2 The IEFTT algorithm

Input: task set T and its corresponding TAG at time l1, the volunteer set V the number set V is |V|
Output: task assignment T.assign.

1: Calculate the task execution set R
2: L = ∅, T′ = ∅, T′u.cost = 0, u = 0
3: for each v ∈ V do

4: Calculate the confidence interval Range[la, lb] of v
5: Add la and lb to L
6: end for
7: Remove all duplicate elements from the set L and take every two adjacent elements of the set L

to form a time period
8: the number of time period is |L| and the total computing time of time period n is Vn.con
9: for each the nth time period ∈ total |L| time period do

10: Calculate the total computing time of time period n is Vn.con
11: while Vn.con > 0 do

12: Call the Algorithm 3 ComTSet(Vn.con, R, |V|, T′) // calculate the size of task slice v.compute
13: for each v ∈ V do

14: for each t ∈ R do

15: u = u + 1
16: T′(u).cost = T′(u).cost + tu.cost//T′(u).cost represents the total computing time of the tasks

from the 1st task to the uth task in task execution order set R.
17: if T′(u).cost >= v.compute then

18: break
19: else

20: Add < tu, v > toT.assign
21: end if
22: end for
23: if T′(u).cost >= v.compute then

24: The task tu continues to be divided up into two task slices, whose sizes are

T′(u).cost-v.compute and tu.cost-(T′(u).cost-v.compute)
25: end if
26: if v keeps online then

27: Delete the first (u− 1) task from the set T′
28: else

29: Delete v from the set V
30: end if
31: end for
32: end while
33: end for

To facilitate a clearer understanding of the implementation process of Algorithm 2, examples are
shown as follows:

Given a task set T, a volunteer node set V, the DAG and the confidence interval of each node are
as shown in Figures 2, 3 and 6. According to task priority, we can calculate task execution order set
R = {t1, t2, t3, t4, t5, t6}. Suppose the current time m = 0. In the IEFTT algorithm, Step one: According
to line 7 of the Algorithm 2, the set L is {2, 2.2, 2.6, 3, 3.4, 4}, and the set L forms six time periods, which
are [0,2], [2,2.2], [2.2,2.6], [2.6,3], [3,3.4] and [3.4,4] as are shown in Figure 8. Step two: the IEFTT

Information 2019, 10, 244 12 of 18

algorithm calculates the total computing time of the first time period V1.con = 10, and the total
computing time of the tasks with task priority 1 is T(1).cost = 6. Step three: the IEFTT algorithm
compares the value of V1.con and T(1).cost, and according to the Algorithm 3, the task slice v.compute
is 6/5 in the first time period and the current task set to be executed is T′ = {t1, t2, t3}. Step four:
According to lines 21 to 23 of the Algorithm 2, the task t1 continues to be divided up into two
different task slices, whose values are 1.2 and 0.8, and the two task slices are assigned to the volunteer
node v1 and v2. Similarly, the assignment of task t2 and t3 can be calculated, as shown in Figure 9.
Step five: after completing task t1, t2 and t3, V1.con = 4, the IEFTT algorithm takes out tasks whose
task priority is 2 to assign according to lines 11 and 12 of the Algorithm 3. Since T(2).cost = 6
and V1.con < T(2).cost, the IEFTT algorithm compares the values between V1.con and T(1).cost and
according to the Algorithm 3, the task slice v.compute is 4/5 in the left of its first time period and
the current task set is to be executed T′ = {t4, t5}. Step six: According to line 12 of the Algorithm 3,
the task t4 continues to be divided up into five task slices, whose values are 0.8, and the five task slices
are assigned to the volunteer node v1, v2, v3, v4 and v5 correspondingly. Finally, after completing the
task t1, t2 and t3, V1.con = 0, the IEFTT algorithm did not stop assigning the left tasks in the next time
period in a similar way until V1.con was zero. The specific task assignment is shown in Figure 9.

Algorithm 3 The task slice function ComTSet (Vn.con,R,|V|,T’)

Input: the total computing time of time period n is Vn.con, task execution order set R, the number

of the volunteer nodes, the current task set T′ to be executed
Output: the size of task slice v.compute,

1: Seek the highest task priority p from R
2: T′.cost = 0//T′.cost represents the total computing time of the current task set T′ to be executed
3: while T′.cost < Vn.con and there is also the task with task priority p in R do

4: Take the task t′ with task priority p from R
5: Add t′ the set T′
6: T′.cost = T′.cost + t′.cost
7: end while
8: if Vn.con < T′.cost then

9: v.compute = Vn.con/|V|
10: else

11: v.compute = T′.cost/|V|
12: end if
13: return v.compute

timeo 1 2 3 4 5

v1

v2

v3

v4

v5

The time period that the node can keep the state of donating resources

The time period that the node can disconnect at any time

2.2 2.6 3.4

node

Figure 8. Time periods of the set L.

Information 2019, 10, 244 13 of 18

timeo 1 2 3 4 5

v1

v2

v3

v4

v5

2.2 2.6 3.41.2

node v3 is disconnected

time assigned to t1

time assigned to t5

node
time assigned to t2

time assigned to t3

time assigned to t4

time assigned to t5

time assigned to t6

time assigned to t6

node v3 is disconnected

Figure 9. The specific task assignment of the EFTT algorithm.

5. Experimental Evaluation

In this section, we use a static task set and dynamic task set to test the performance
of the proposed algorithms and compare the results with the HEFT-AC algorithm and the HEFT-ACU
algorithm mentioned before. This paper conducts experiments to simulate the volunteer computing
environment. In the simulation experiment environment, we used one master node and fifty sub nodes.
All nodes are configured with Intel Core i7 4790 CPU@3.4GHZ, 8GB DDR3 memory, 1TB hard disk
and Windows 10 operating system. To be closer to the real-world volunteer computing environment,
15–30 threads are opened on each host to simulate the nodes and the number of this type of nodes
will be between 750–1500. At the same time, we need to calculate a membership function for each VN.
Specifically, we adopted the interpolation method to get the trust decreasing function.

5.1. Experimental Results and Analysis on Static Task Sets

In the experiment with a static task set, three common tasks were used: word frequency statistics,
inverted index and distributed Grep. The input files are the data and dump files provided by Wikipedia
(the main contents are entries, templates, picture descriptions and basic meta-pages, etc.). We mainly
consider the influence of two main parameters as follows:

• The task set scale which is the number of tasks included in the task set T.
• The average size of tasks in task set T measured by the number of task input file fragments.

We assume that the size of a task fragment is 64 MB and the completion time of each task fragment
is 70 s. Table 2 shows the default values and ranges of the main parameters.

Table 2. Experimental default parameters.

Parameter Default Value Range

average size of tasks(MB) 128 64–320
task set scale 500 200–1000

number of VN 1000 750–1500

In this paper, the task completion time of set T is the primary performance index. In addition, this
paper also uses the rework rate to measure the performance of the algorithm more comprehensively.
Obviously, the lower the rework rate is, the higher the system reliability is. The rework rate is defined
as follows:

rework rate = the number of rework tasks/the number of tasks in setT, (3)

Information 2019, 10, 244 14 of 18

To evaluate our algorithms, we choose HEFT-AC and HEFT-ACU as comparison algorithms.
This is because these two algorithms are the most relevant to our study. At the same time, these two
algorithms are more effective than many famous algorithms, so we choose these two algorithms for
comparison. In addition, in this paper, the objective of our work is to reduce the rework rate and
complete all tasks as soon as possible. Therefore, to evaluate the performance of our algorithms,
we take task completion time and rework rate as performance indicators and compare them with
HEFT-AC and HEFT-ACU. The two algorithms are described briefly below.

The HEFT-AC algorithm calculates the completion time of the first unscheduled task completed
by each VN at each step, and it selects the VN with the minimum completion time to assign.
This process does not stop until all the tasks are scheduled. On the basis of the HEFT-AC algorithm,
the HEFT-ACU algorithm selects the VN with the maximum reputation value to assign the first
unscheduled task of a set. The HEFT-ACU algorithm can reduce the rework rate. Since the two
algorithms mainly focus on the independent task assignment, we adjust the two algorithms to deal with
the assignment of the task priority so that we can compare the results with our proposed algorithms.

5.1.1. The Impact of Average Size of Tasks

As shown in Figure 10, we test the impact of the different average size of tasks on the performance
of the four algorithms. It can be seen that IEFTT performs the best among the four algorithms
in both total completion time and rework rate, and the HEFT-ACU algorithm is slightly worse
than the IEFTT algorithm. The other two algorithms are much less efficient. This is because
the IEFTT algorithm and the HEFT-ACU algorithm take the system reliability into account. Even if they
encounter a suddenly offline volunteer node, they can still give a flexible task assignment.

64 128 192 256 320
0

600

500

400

300

200

c
o

m
p

le
ti

o
n

 t
im

e
(m

in
)

average size of tasks(MB)

EFTT
IEFTT

HEFT-AC
HEFT-ACU

(a)

64 128 192 256 320
0

50

40

30

20

10

re
w

o
rk

 r
a
te

(%
)

EFTT
IEFTT

HEFT-AC
HEFT-ACU

average size of tasks(MB)

(b)

Figure 10. The impact of average size of tasks on the performance of the algorithms: (a) The impact
of average size of tasks on task completion time; (b) The impact of average size of tasks on rework rate.

5.1.2. The Impact of Task Set Scale

Figure 11 tests the effect of the task set scale on the performance of the algorithms. With the
increase of task set scale, the completion time will gradually increase. However, the rework rate does
not change significantly when the task set scale reaches a certain size. This also fully demonstrates
the robustness of the proposed algorithms. As expected, the IEFTT algorithm has the best performance
among the four algorithms.

Information 2019, 10, 244 15 of 18

200 400 600 800 1000
0

600

500

400

300

200

EFTT
IEFTT
HEFT-AC
HEFT-ACU

c
o

m
p

le
ti

o
n

 t
im

e
(m

in
)

task set scale

(a)

200 400 600 800 1000
0

50

40

30

20

10

EFTT
IEFTT

HEFT-AC
HEFT-ACU

task set scale

re
w

o
rk

 r
a
te

(%
)

(b)

Figure 11. The impact of task set scale on the performance of the algorithms: (a) The impact of task set
scale on task completion time; (b) The impact of task set scale on rework rate.

5.1.3. The Impact of the Number of Volunteer Nodes

In Figure 12, we analyze the impact of volunteer nodes. It can be noticed that the number
of volunteer nodes increase, while both the completion time and the redo rate decrease. This is because
the more volunteer nodes exist in a volunteer platform, the more computing power it has in a volunteer
platform, and more computing resources can be selected.

750 900 1050 1200 1350
0

600

500

400

300

200

The number of the volunteer nodes

EFTT
IEFTT

HEFT-AC
HEFT-ACU

c
o

m
p

le
ti

o
n

 t
im

e
(m

in
)

(a)

750 900 1050 1200 1350
0

50

40

30

20

10

EFTT
IEFTT
HEFT-AC
HEFT-ACU

re
w

o
rk

 r
a
te

(%
)

The number of the volunteer nodes

(b)

Figure 12. The impact of the number of volunteer nodes on the performance of the algorithms:
(a) The impact of the number of volunteer nodes on completion time; (b) The impact of the number
of volunteer nodes on rework rate.

5.2. Experimental Results and Analysis on Dynamic Task Sets

In order to be closer to the real application scenario, this section uses a dynamic set of application
tasks. The experiment generated forty task sets, and the size of each task fragment is 64 MB.
In the experiment, the system is monitored every 10 min to obtain the number of tasks completed
and task rework rate.

Figure 13 shows the experimental results. It can be seen that the IEFTT algorithm has obvious
advantages on dynamic task sets, regardless of the number of tasks completed or the task rework
rate. In particular, the task rework rate of the EFFT algorithm is lower than that of IEFFT algorithm,

Information 2019, 10, 244 16 of 18

this is mainly because at the beginning EFFT algorithm dose not select the interval that the volunteer
node can be offline suddenly. Through the above experimental results, the validity of the algorithms
proposed in this paper is further proved.

100 200 300 400 500
0

250

200

150

100

50

time(min)

EFTT
IEFTT

HEFT-AC
HEFT-ACU

th
e
 n

u
m

b
e

r
o

f
ta

s
k

s
c
o
m

p
le

te
d

(a)

100 200 300 400 500
0

50

40

30

20

10

EFTT
IEFTT

time(min)

HEFT-AC
HEFT-ACU

re
w

o
rk

 r
a
te

(%
)

(b)

Figure 13. Performance comparisons of the algorithms on dynamic task set: (a) Comparison
of the number of task completed; (b) Comparison of the rework rate.

6. Conclusions

In this paper, to complete all tasks as soon as possible by considering system reliability, firstly,
we proposed a reliability model, which can calculate the time interval that volunteer node can keep
the state of donating resources. Secondly, on this basis, we propose an EFTT algorithm that satisfies
the task priority constraint to complete all the tasks as soon as possible. However, the EFFT algorithm
results in the idling of some computing resources and a high task segmentation rate. Thus, on the
basis of the EFFT algorithm, we propose an improved scheduling algorithm IEFTT. Finally, compared
with the well-known algorithms, our proposed algorithms can complete the task faster. Moreover,
the study of efficient task assignment in volunteer computing has important practical significance,
which not only provides convenient conditions for the analysis and processing of big data, but can also
be applied to high-performance computing in a small range, such as the management of computing
resources in university laboratories. In future, we will consider more factors that may affect task
scheduling in VCPs such as heterogeneity, dynamics and scalability.

Author Contributions: L.X. designed and wrote the paper; J.Q. supervised the work; L.X. performed
the experiments; S.L. and R.Q. analyzed the data. All authors have read and approved the final manuscript.

Funding: This work was supported by the National Social Science Foundation of China (No. 15BYY028)
and Dalian University of Foreign Languages Research Foundation (No. 2015XJQN05).

Conflicts of Interest: The authors declares no conflict of interest.

References

1. Anderson, D.P. BOINC: A Platform for Volunteer Computing. arXiv 2019, arXiv:1903.01699.
2. Anderson, D.P.; Cobb, J.; Korpela, E.; Lebofsky, M.; Werthimer, D. SETI@home: An experiment

in public-resource computing. Commun. ACM 2002, 45, 56–61. [CrossRef]
3. Beberg, A.L.; Ensign, D.L.; Jayachandran, G.; Khaliq, S.; Pande, V.S. Folding@home: Lessons From Eight

Years of Volunteer Distributed Computing. In Proceedings of the 2009 IEEE International Symposium
on Parallel & Distributed Processing, Rome, Italy, 23–29 May 2009.

4. Adambourdarios, C.; Wu, W.; Cameron, D.; Lancon, E.; Filipčič, A. ATLAS@Home: Harnessing Volunteer
Computing for HEP; IOP Publishing: Bristol, UK, 2015.

http://dx.doi.org/10.1145/581571.581573

Information 2019, 10, 244 17 of 18

5. Filep, L. Model for Improved Load Balancing in Volunteer Computing Platforms. In Proceedings
of the European, Mediterranean, and Middle Eastern Conference on Information Systems, Limassol, Cyprus,
4–5 October 2018; pp. 131–143.

6. Javadi, B.; Matawie, K.; Anderson, D.P. Modeling and analysis of resources availability in volunteer
computing systems. In Proceedings of the 2013 IEEE 32nd International Performance Computing
and Communications Conference (IPCCC), San Diego, CA, USA, 6–8 December 2013.

7. Guler, H.; Cambazoglu, B.B.; Ozkasap, O. Task allocation in volunteer computing networks under monetary
budget constraint. Peer-to-Peer Netw. Appl. 2015, 8, 938–951. [CrossRef]

8. Ghafarian, T.; Deldari, H.; Javadi, B. CycloidGrid: A proximity-aware P2P-based resource discovery
architecture in volunteer computing systems. Future Gener. Comput. Syst. 2013, 29, 1583–1595. [CrossRef]

9. Ghafarian, T.; Javadi, B. Cloud-aware data intensive workflow scheduling on volunteer computing systems.
Future Gener. Comput. Syst. 2015, 51, 87–97. [CrossRef]

10. Watanabe, K.; Fukushi, M.; Horiguchi, S. Optimal spot-checking to minimize the computation time
in volunteer computing. In Proceedings of the 22nd IEEE International Symposium on Parallel
and Distributed Processing, Miami, FL, USA, 14–18 April 2008.

11. Heien, E.M.; Anderson, D.P.; Hagihara, K. Computing Low Latency Batches with Unreliable Workers
in Volunteer Computing Environments. J. Grid Comput. 2009, 7, 501–518. [CrossRef]

12. Lee, Y.C.; Zomaya, A.Y.; Siegel, H.J. Robust task scheduling for volunteer computing systems. J. Supercomput.
2010, 53, 163–181. [CrossRef]

13. Shatz, S.M.; Wang, J.P.; Goto, M. Task allocation for maximizing reliability of distributed computer systems.
IEEE Trans. Comput. 1992, 41, 1156–1168. [CrossRef]

14. Sebastio, S.; Gnecco, G.; Bemporad, A. Optimal distributed task scheduling in volunteer clouds.
Comput. Oper. Res. 2017, 81, 231–246. [CrossRef]

15. Maheswaran, M.; Siegel, H.J. A dynamic matching and scheduling algorithm for heterogeneous computing
systems. In Proceedings of the Seventh Heterogeneous Computing Workshop (HCW’98), Orlando, FL, USA,
30 March 1998; pp. 57–69.

16. Topcuoglu, H.; Hariri, S.; Wu, M.Y. Performance-effective and low-complexity task scheduling
for heterogeneous computing. IEEE Trans. Parallel Distrib. Syst. 2002, 13, 260–274. [CrossRef]

17. Blythe, J.; Jain, S.; Deelman, E. Task scheduling strategies for workflow-based applications in grids.
In Proceedings of the CCGrid 2005. IEEE International Symposium on Cluster Computing and the Grid,
Wales, UK, 9–12 May 2005; pp. 759–767.

18. Braun, T.D.; Siegel, H.J.; Beck, N. A comparison of eleven static heuristics for mapping a class of independent
tasks onto heterogeneous distributed computing systems. J. Parallel Distrib. Comput. 2001, 61, 810–837.
[CrossRef]

19. Sahni, J.; Vidyarthi, D. A Cost-Effective Deadline-Constrained Dynamic Scheduling Algorithm for Scientific
Workflows in a Cloud Environment. IEEE Trans. Cloud Comput. 2015, 6, 2–18. [CrossRef]

20. Liu, T.; Liu, Y.; Song, P. DScheduler: Dynamic Network Scheduling Method for MapReduce in Distributed
Controllers. In Proceedings of the IEEE International Conference on Parallel Distributed Systems,
Wuhan, China, 13–16 December 2017.

21. Kartik, S.; Murthy, C.S.R. Task allocation algorithms for maximizing reliability of distributed computing
systems. IEEE Trans. Comput. 1997, 46, 719–724. [CrossRef]

22. Mahmood, A. Task allocation algorithms for maximizing reliability of heterogeneous distributed computing
systems. Control Cybern. 2001, 30, 115–130.

23. Kang, Q.; He, H.; Wei, J. An effective iterated greedy algorithm for reliability-oriented task allocation
in distributed computing systems. J. Parallel Distrib. Comput. 2013, 73, 1106–1115. [CrossRef]

24. Salehi, M.A.; Smith, J.; Maciejewski, A.A. Stochastic-based robust dynamic resource allocation
for independent tasks in a heterogeneous computing system. J. Parallel Distrib. Comput. 2016, 97, 96–111.
[CrossRef]

25. Panda, S.K.; Jana, P.K. Load balanced task scheduling for cloud computing: A probabilistic approach.
Knowl. Inf. Syst. 2019. [CrossRef]

26. Xiao, M.; Wu, J.; Huang, L. Multi-task assignment for crowdsensing in mobile social networks. In Proceedings
of the 2015 IEEE Conference on Computer Communications (INFOCOM), Kowloon, Hong Kong, China,
26 April–1 May 2015; pp. 2227–2235.

http://dx.doi.org/10.1007/s12083-014-0301-3
http://dx.doi.org/10.1016/j.future.2012.08.010
http://dx.doi.org/10.1016/j.future.2014.11.007
http://dx.doi.org/10.1007/s10723-009-9131-6
http://dx.doi.org/10.1007/s11227-009-0326-1
http://dx.doi.org/10.1109/12.165396
http://dx.doi.org/10.1016/j.cor.2016.11.004
http://dx.doi.org/10.1109/71.993206
http://dx.doi.org/10.1006/jpdc.2000.1714
http://dx.doi.org/10.1109/TCC.2015.2451649
http://dx.doi.org/10.1109/12.600888
http://dx.doi.org/10.1016/j.jpdc.2013.03.008
http://dx.doi.org/10.1016/j.jpdc.2016.06.008
http://dx.doi.org/10.1007/s10115-019-01327-4

Information 2019, 10, 244 18 of 18

27. Buyya, R.; Murshed, M. Gridsim: A toolkit for the modeling and simulation of distributed resource
management and scheduling for grid computing. Concurr. Comput. Pract. Exp. 2002, 14, 1175–1220.
[CrossRef]

28. Anderson, D.P.; McLeod, J. Local scheduling for volunteer computing. In Proceedings of the 2007 IEEE
International Parallel and Distributed Processing Symposium, Rome, Italy, 26–30 March 2007; pp. 1–8.

29. Kondo, D.; Anderson, D.P.; Vii, J.M.L. Performance evaluation of scheduling policies for volunteer computing.
In Proceedings of the Third IEEE International Conference on e-Science and Grid Computing (e-Science 2007),
Bangalore, India, 10–13 December 2007; pp. 415–422.

30. Anderson, D.P. Emulating volunteer computing scheduling policies. In Proceedings of the 2011 IEEE
International Parallel Distributed Processing Symposium Workshops and PhD Forum, Shanghai, China,
16–20 May 2011; pp. 1839–1846.

31. Javadi, B.; Kondo, D.; Vincent, J.M. Discovering statistical models of availability in large distributed systems:
An empirical study of seti@ home. IEEE Trans. Parallel Distrib. Syst. 2011, 22, 1896–1903. [CrossRef]

32. Essafi, A.; Trystram, D.; Zaidi, Z. An efficient algorithm for scheduling jobs in volunteer computing platforms.
In Proceedings of the Parallel Distributed Processing Symposium Workshops (IPDPSW), Phoenix, AZ, USA,
19–23 May 2014; pp. 68–76.

33. Bazinet, A.L.; Cummings, M.P. Subdividing Long-Running, Variable-Length Analyses Into Short,
Fixed-Length BOINC Workunits. J. Grid Comput. 2016, 14, 1–13. [CrossRef]

34. Xu, L.; Qiao, J.; Lin, S.; Zhang, W. Dynamic Task Scheduling Algorithm with Deadline Constraint
in Heterogeneous Volunteer Computing Platforms. Future Internet 2019, 11, 121. [CrossRef]

35. Inoue, H.; Moriyama, T.; Komatsu, H.; Nakatani, T. AA-sort: A new parallel sorting algorithm
for multi-core SIMD processors. In Proceedings of the 16th International Conference on Parallel Architecture
and Compilation Techniques, Brasov, Romania, 15–19 September 2007; pp. 189–198.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1002/cpe.710
http://dx.doi.org/10.1109/TPDS.2011.50
http://dx.doi.org/10.1007/s10723-015-9348-5
http://dx.doi.org/10.3390/fi11060121
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Task Assignment in Other Distributed Computing Systems
	Task Assignment in Volunteer Computing Platforms

	Task Assignment Problem
	Problem Description
	Reliability Model

	 Algorithm Description
	The EFTT (Earliest Finish Task Based on Trust) Algorithm
	The IEFTT (Improved Earliest Finish Task Based on Trust) Algorithm

	Experimental Evaluation
	Experimental Results and Analysis on Static Task Sets
	The Impact of Average Size of Tasks
	The Impact of Task Set Scale
	The Impact of the Number of Volunteer Nodes

	Experimental Results and Analysis on Dynamic Task Sets

	Conclusions
	References

