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Abstract: In this manuscript, the notions of q-rung orthopair fuzzy sets (q-ROFSs) and complex fuzzy
sets (CFSs) are combined is to propose the complex q-rung orthopair fuzzy sets (Cq-ROFSs) and their
fundamental laws. The Cq-ROFSs are an important way to express uncertain information, and they
are superior to the complex intuitionistic fuzzy sets and the complex Pythagorean fuzzy sets. Their
eminent characteristic is that the sum of the qth power of the real part (similarly for imaginary part)
of complex-valued membership degree and the qth power of the real part (similarly for imaginary
part) of complex-valued non-membership degree is equal to or less than 1, so the space of uncertain
information they can describe is broader. Under these environments, we develop the score function,
accuracy function and comparison method for two Cq-ROFNs. Based on Cq-ROFSs, some new
aggregation operators are called complex q-rung orthopair fuzzy weighted averaging (Cq-ROFWA)
and complex q-rung orthopair fuzzy weighted geometric (Cq-ROFWG) operators are investigated,
and their properties are described. Further, based on proposed operators, we present a new method
to deal with the multi-attribute group decision making (MAGDM) problems under the environment
of fuzzy set theory. Finally, we use some practical examples to illustrate the validity and superiority
of the proposed method by comparing with other existing methods.

Keywords: pythagorean fuzzy sets; complex pythagorean fuzzy sets; q-rung orthopair fuzzy sets;
complex q-rung orthopair fuzzy sets

1. Introduction

To dispose unknown or undetermined information in the field of decision making, Zadeh [1]
proposed the innovative concept of fuzzy set (FS) in 1965, which is characterized by a membership
function limited to [0, 1], and it has been proven to be a very powerful tool to deal with uncertain
information in real-life problems. Now, there are many extensions of FSs, such as interval-valued fuzzy
set was proposed by Zadeh [2]. Moreover, Coupland and John [3] pioneered the idea of geometric type-1
and type-2 fuzzy logic systems and applied in practical decision making problems. As mentioned
above, although the fuzzy sets have many advantages, however there are some situations where it
is difficult or impossible to solve the issue by using only membership function. To handle this issue,
Atanassov [4] introduced the notion of intuitionistic fuzzy set (IFS) as a generalization of FS, which is
characterized by membership function, non-membership function, and indeterminacy or inconsistency
belonging to [0, 1]. The limitation of the IFS is that the sum of membership grade and non-membership
grade is less than or equal to 1. The concept of IFS is a more powerful tool than FS to cope with
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uncertain problems, and it is also a better way to explain the opinion of human being. Further, this
concept has drawn much attention and has been successfully applied in Mathematics, engineering,
information sciences and multi-attribute decision making (MADM) problems [5–9]. Especially, for
MADM problems, IFS has been an important technique to solve the different areas of decision making
problems [10–15].

However, when a decision maker provides such type of values for membership grade and for
non-membership grade, which cannot meet the condition that their sum must be in [0, 1] such as:
0 ≤ 0.6 + 0.7 = 1.3 � 1, obviously, this situation cannot be described by IFS. In order to overcome this
shortcoming, Yager [16] proposed the notion of Pythagorean fuzzy set (PyFS), whose constraint is that
the sum of square of membership degree and square of non-membership degree is less than or equal to
1. Furthermore, Zhang and Xu [17] proposed the TOPSIS methods to process the MCDM problems
with the Pythagorean fuzzy information. Mete [18] extended the AHP-MOORA methods to process
the MCDM problems with the Pythagorean fuzzy information. Yang et al. [19] extended the TOPSIS
methods to process the MCDM problems with the Pythagorean fuzzy information. Garg [20] proposed
some new generalized Pythagorean fuzzy information aggregations using Einstein operations and
discussed their applications to decision making. Peng and Yang [21] proposed Pythagorean fuzzy
Choquet integral and MABAC method based on Pythagorean fuzzy information. Grag [22] also
presented the generalized Pythagorean fuzzy geometric aggregation operators using Einstein t-norm
and t-conorm for Pythagorean fuzzy information. For more information related to PyFSs, we may refer
to [23–26].

Although IFSs and the PyFSs can describe the uncertain information precisely, there are still
problems that IFSs and PyFSs are unable to handle. For example, when a decision maker provides 0.7
for membership grade and 0.9 for non-membership grade, they have not satisfied the condition of
PyFs such as 0.72 + 0.92 = 1.30 > 1. So, for this type of problem, Yager [27] introduced the notion of
q-rung orthopair fuzzy set (q-ROFS) which is a more powerful and more general than IFS and PyFS to
deal with complicated and uncertain information in the environment of fuzzy set theory. Further, Liu
and Wang [28] introduced the q-ROF aggregation operators for averaging the evaluation information.
The q-ROF Bonferroni mean operators for q-ROFS information was investigated by Liu and Liu [29].
Peng et al. [30] presented the exponential operations and aggregation operator for q-ROFS, and the
other researches for the q-ROFS were also developed [31–37].

However, many researchers also asked a question, what will be happened when we change the
co-domain of FS to some set of complex numbers instead of [0, 1]. The answer of this question was
given by Ramot [38] in 2002, who defined the concept of complex fuzzy set (CFS) as a generalization
of FS. The CFS is characterized by a complex valued function, i.e., Mτ(x) = Tτ(x).ei.2πWTτ (x) and
satisfied the condition: 0 ≤ Tτ(x), WTτ(x) ≤ 1. The notion related to CFSs are also proposed in [39–41].
As mentioned above, although the complex fuzzy sets have many advantages, however there are
some situations where it is difficult or impossible to solve the issue by using only complex-valued
membership function. To handle this issue, Alkouri and Salleh [42] proposed the novelty of complex
IFS (CIFS), where the CIFS is characterized by complex valued membership and complex valued
non-membership. The constraint of the CIFS is that the sum of the real part (similarly for imaginary
part) of complex-valued membership degree and the real part (similarly for imaginary part) of
complex-valued non-membership degree is equal to or less than 1. To overcome the information of
periodicity and uncertainty at the same time which is related to “complex” functionality. For further
work related to CIFS and their drawbacks, we may refer to [43–51].

As we all know that CIFSs have the complex-valued membership and complex-valued
non-membership functions, so it may be difficult to describe some complicated complex intuitionistic
fuzzy information, for example, when a decision maker provides 0.7ei2π(0.71) for membership grade
and 0.6ei2π(0.61) for non-membership grade, the CIFSs cannot describe this result i.e., 0.7 + 0.6 = 1.3 ≥ 1
and 0.71 + 0.61 = 1.32 ≥ 1. For dealing such types of situations, Ullah et al. [52] introduced
complex pythagorean fuzzy set (CPyFS), whose constraint is that the sum of the square of real part
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(similarly for imaginary part) of complex-valued membership grade and square of the real part
(similarly for imaginary part) of complex-valued non-membership grade is less than or equal to one.
The constraint of the CPYFS is more general than CIFS i.e., 0.72 + 0.62 = 0.49 + 0.36 = 0.85 ≤ 1 and
0.712 + 0.612 = 0.50 + 0.37 = 0.87 ≤ 1. They have greater expressiveness than CIFSs, therefore, CFSs
have also received much attention from researchers. For example, Akram and Naz [53] proposed the
idea of complex pythagorean fuzzy graph.

CPyFS and CIFS theory have been widely used by the researchers, but due to the complexity of
the decision making problems, sometimes decision-makers are not suitable to provide their judgment
in form of single-valued membership and non-membership degrees. Consequently, an extension of the
existing theories might be extremely valuable to depict the uncertainties because of his/her reluctant
judgment in complex decision-making problems. Therefore, to provide the more freedom to the
decision makers, it is advisable to ask the experts to describe their preferences by means of intervals.

Same situation occurs in CIFS and CPyFS, when the decision maker provides these types of data,
which do not satisfy the conditions of CIFS and the condition of CPyFS. For example, a decision
maker provides 0.9ei2π(0.8) for complex-valued membership grade and 0.8ei2π(0.7) for complex-valued
non-membership grade, the CIFSs and CPyFSs cannot describe this result i.e., 0.9 + 0.8 = 1.7 ≥
1, 0.8+ 0.7 = 1.5 ≥ 1 and 0.92 + 0.82 = 0.81+ 0.64 = 1.45 ≥ 1, 0.82 + 0.72 = 0.64+ 0.49 = 1.13 ≥ 1. For
dealing with such types of situations, in this article we examine the novel approach of complex q-rung
orthopair fuzzy sets (Cq-ROFSs) and their fundamental operational laws. Their eminent characteristic
is that the sum of the qth power of the real part (Similarly for imaginary part) of complex-valued
membership degree and the qth power of the real part (Similarly for imaginary part) of complex-valued
non-membership degree is equal to or less than 1, i.e., 0.95 + 0.85 = 0.92 ≤ 1, 0.85 + 0.75 = 0.5 ≤ 1.
The proposed Cq-ROFS is an important technique to deal with uncertain and more difficult information
and then apply it to solve the multi-attribute decision making (MADM) problems. The Cq-ROFS is
more generalized than existing methods like complex Pythagorean fuzzy set (CPyFS) and complex
intuitionistic fuzzy set (CIFS). If we will take the imaginary part is zero, in the terms of membership
grade and non-membership grade, then the proposed approach is convert into q-rung Orthopair
fuzzy set (q-ROFS). q-ROFS is the special case of the proposed method. If we considered the value of
parameter q = 1 in the environment of q-ROFS, then the q-ROFS is converted for intuitionistic fuzzy
set (IFS). Similarly, if we considered the value of parameter q = 2 in the environment of q-ROFS, then
the q-ROFS is converted for Pythagorean fuzzy set (PyFS). The IFS and PyFS are the particular cases of
the proposed approaches. Therefore, the motivation and goal of this paper are shown as follows.

(1) Propose the notion of Cq-ROFS and some operational laws, and then explain their characteristics
and comparison method;

(2) Develop some extended aggregation operators, such as complex q-rung orthopair fuzzy weighted
averaging operator (Cq-ROFWAO), complex q-rung orthopair fuzzy weighted geometric operator
(Cq-ROFWGO), and then verify their properties;

(3) Develop a new MADM method based on the proposed operators;
(4) Give some examples to show the flexibility and superiority of the developed method.

The construct of this manuscript is followed as: In Section 2, we review some basic notions of
PyFSs, CPyFSs, q-ROFSs, and their properties, while in Section 3, we proposed Cq-ROFSs by extending
each value of the membership and non-membership functions from real number to complex number of
the unit circle. We also proposed some basic operations on Cq-ROFS. In Section 4, we introduced the
aggregation operators such as averaging and geometric operators. In Section 5, we used the example
to show the steps of the MADM problems. further, we described the advantages of our proposed work
and also gave the comparative study. The conclusion of this paper is discussed in last section.
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2. Preliminaries

In this Section, we give the basic definitions of PyFSs, CPyFSs, q-ROFSs, and their properties.
For convenience, in this paper, we use X is to represent the non-empty finite discourse set, and Mτ(x) and
Nτ(x) to express the membership and non-membership grade in X and Tτ(x), Fτ(x), WTτ(x), WFτ(x) ∈
[0, 1] and i =

√
−1.

Definition 1. [16] A PyFS τ is defined as: τ =
{
(x, Mτ(x), Nτ(x))/x ∈ X

}
where Mτ : X→ [0, 1] ,

Nτ : X→ [0, 1] satisfying the conditions: 0 ≤ M2
τ(x) + N2

τ(x) ≤ 1. The term Hτ(x) =(
1−

(
M2
τ(x) + N2

τ(x)
)) 1

2 is considered as hesitancy degree of x. Further τ = (Mτ, Nτ) is called a Pythagorean
fuzzy number (PyFN).

Definition 2. [52] A CPyFS τ is defined as τ =
{
(x, Mτ(x), Nτ(x))/x ∈ X

}
where

Mτ : X→ {z1 : z1 ∈ τ, |z1| ≤ 1} Nτ : X→ {z2 : z2 ∈ τ, |z2| ≤ 1} such that Mτ(x) = z1 = a1 + ib1 and
Nτ(x) = z2 = a2 + ib2 provided that 0 ≤ |z1|

2 + |z2|
2
≤ 1 or Mτ(x) = Tτ(x).ei.2πWTτ (x) and

Nτ(x) = Fτ(x).ei.2πWFτ (x) satisfying the conditions: 0 ≤ T2
τ(x) + F2

τ(x) ≤ 1 and 0 ≤W2
Tτ
(x) + W2

Fτ
(x) ≤ 1.

Moreover, the term Hτ(x) = R.ei.2πWRc(x) such that R =
(
1−

(
T2
τ(x) + F2

τ(x)
)) 1

2 and WR(x) =(
1−

(
W2

Tτ
(x) + W2

Fτ
(x)

)) 1
2 is considered as Complex hesitancy degree of x. Further τ =

(
T.ei.2πWT , F.ei.2πWF

)
is called a complex pythagorean fuzzy number (CPyFN).

Definition 3. [27] A q-ROFS τ is defined as: τ =
{
(x, Mτ(x), Nτ(x))/x ∈ X

}
where Mτ : X→ [0, 1] ,

Nτ : X→ [0, 1] satisfying the conditions: 0 ≤ Mq
τ(x) + Nq

τ(x) ≤ 1 , (q > 1). The term is considered as
hesitancy degree of x. Further τ = (Mτ, Nτ) is called a q-rung orthopair fuzzy number (q-ROFN).

Definition 4. [27] Let τ j =
(
M j, N j

)
, j = 1, 2 be any two q-ROFNs and let γ > 0 be any real number, then

we have

(1) τ1 ⊕ τ2 =

((
Mq

1 + Mq
2 −Mq

1Mq
2

) 1
q , (N1N2)

)
;

(2) τ1 ⊗ τ2 =

(
(M1M2),

(
Nq

1 + Nq
2 −Nq

1Nq
2

) 1
q

)
;

(3) γτJ =

(1− (
1−Mq

j

)γ) 1
q
, Nγ

j

, j = 1, 2;

(4) τ
γ
J =

Mγ
j ,

(
1−

(
1−Nq

j

)γ) 1
q
, j = 1, 2.

3. Complex q-Rang Orthopair Fuzzy Set

In this Section, we propose the novel approach of Cq-ROFS, also to propose some basic operations.

Definition 5. A Cq-ROFS τ is defined as τ =
{
(x, Mτ(x), Nτ(x))/x ∈ X

}
where

Mτ : X→ {z1 : z1 ∈ τ, |z1| ≤ 1} Nτ : X→ {z2 : z2 ∈ τ, |z2| ≤ 1} such that Mτ(x) = z1 = a1 + ib1 and
Nτ(x) = z2 = a2 + ib2 provided that 0 ≤ |z1|

q + |z2|
q
≤ 1 or Mτ(x) = Tτ(x).ei.2πWTτ (x) and

Nτ(x) = Fτ(x).ei.2πWFτ (x) satisfying the conditions: 0 ≤ Tq
τ(x) + Fq

τ(x) ≤ 1 and 0 ≤Wq
Tτ
(x) + Wq

Fτ
(x) ≤ 1.

Moreover, the term Hτ(x) = R.ei.2πWRc(x) such that R =
(
1−

(
Tq
τ(x) + Fq

τ(x)
))1/q

and WR(x) =(
1−

(
Wq

Tτ
(x) + Wq

Fτ
(x)

))1/q
is considered as Complex hesitancy degree of x. Further τ =

(
T.ei.2πWT , F.ei.2πWF

)
is called a Cq-ROFN.
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Where, Mτ(x) and Nτ(x) of Cq-ROFS are clearly complex numbers in polar/Cartesian form.
Further we are taking Tτ(x) = Fτ(x) = r and 2π. WTτ(x) = θ1, 2π.WFτ(x) = θ2 then these two types
of notations are interconvertible as follows:

Mτ(x) = Tτ(x).ei.2πWTτ (x) = Tτ(x). (τos 2πWTτ(x) + iSin 2πWTτ(x))
= Tτ(x).τos 2πWTτ(x) + iTτ(x).Sin 2πWTτ(x)
= r.τos θ1 + ir.Sin θ1 = a1 + ib1 = z1,

Nτ(x) = Fτ(x).ei.2πWFτ (x) = Fτ(x). (τos 2πWFτ(x) + iSin 2πWFτ(x))
= Fτ(x).τos 2πWFτ(x) + iFτ(x).Sin 2πWFτ(x) = r.τos θ2 + ir.Sin θ2

= a2 + ib2 = z2.

Here we will demonstrate the limitation of CIFS and show the advantages of Cq-ROFS by
some examples.

Consider an example of CIFS of the form
{
(x, (0.499 + 0.016 i), (0.298 + 0.036 i))

}
. This set

satisfies the basic definition of CIFS as |0.499 + 0.016 i| = 0.499 and |0.498 + 0.036 i| = 0.499 and
0 ≤ 0.499 + 0.298 ≤ 1. The polar form of this CIFNs is

{(
x, 0.499 ei (0.016), 0.298 ei (0.036)

)}
.

On the other hand, consider the representation of an uncertain event as{
(x, 0.799948 + 0.029363i, 0.496693 + 0.06267 i)

}
. Then |0.799948 + 0.029363i| = 0.8 and

|0.496693 + 0.06267 i| = 0.5 and 0 ≤ 0.8 + 0.5 � 1. This means that CIFS is not enough to
deal with this type of information. However, the concept of Cq-ROFS can handle such information
0 ≤ 0.72 + 0.62 = 0.85 ≤ 1. Hence, the number,

{
(x, 0.799948 + 0.029363i, 0.496693 + 0.06267 i)

}
which

can be written as
{(

x, 0.799948 ei (0.029363),
0.496693 ei (0.06267)

)}
, is considered as a Cq-ROFN.

The following Figure 1 shows the comparison of the restrictions of CIFS and CFS.
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Figure 1. Comparisons of restrictions of complex intuitionistic fuzzy set (CIFS), complex pythagorean
fuzzy set (CPyFS), and complex q-rung orthopair fuzzy sets (Cq-ROFS).

Similar to the operations of CIFSs and CFSs, now we will propose the basic operations like
inclusion, complement, and equality of Cq-ROFSs.

Remark 1. Every CIFS can be considered as Cq-ROFS but not conversely.

Definition 6. For a two Cq-ROFNs A =

 TA(x).e
i.2πWTA (x),

FA(x).e
i.2πWFA (x)

 and B =

 TB(x).e
i.2πWTB (x),

FB(x).e
i.2πWFB (x)

, then

(1) A ⊆ B iff TA(x) ≤ TB(x), FA(x) ≥ FB(x) and WTA(x) ≤WTB(x), WFA(x) ≥WFB(x).
(2) A = B iff TA(x) = TB(x), FA(x) = FB(x) and WTA(x) = WTB(x), WFA(x) = WFB(x).
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(3) Ac =
{
FA(x).e

i.2πWFA (x), TA(x).e
i.2πWTA (x)

}
.

Definition 7. A score function S and accuracy function H on τ =
(
T.ei.2πWT , F.ei.2πWF

)
is defined as:

S(τ) =
1
2

∣∣∣(Tq
− Fq) + (WTq −WFq)

∣∣∣, (1)

H(τ) =
1
2

∣∣∣(Tq + Fq) + (WTq + WFq)
∣∣∣. (2)

where (τ) ∈ [−1, 1], H(τ) ∈ [0, 1].

Definition 8. An order relation between two Cq-ROFNs τ and
.
τ is can be defined as

1. If S(τ) > S
( .
τ
)

then τ >
.
τ,

2. If S(τ) = S
( .
τ
)

and

(1) If H(τ) > H
( .
τ
)

then τ >
.
τ.

(2) If H(τ) = H
( .
τ
)

then τ =
.
τ.

Remark 2. (Monotonicity of score function). Let τ =
(
T.ei.2πWT , F.ei.2πWF

)
be a Cq-ROFN. Then, the

score function S(τ) = 1
2

∣∣∣(Tq
− Fq) + (WTq −WFq)

∣∣∣, is a monotonic increasing function with T, WT, and a
monotonic decreasing function with F, WF.

Theorem 1. (Symmetry of score function). Let τ j =
(
T j.e

i.2πWTj , F j.e
i.2πWFj

)
, j = 1, 2 be two Cq-ROFNs,

then τ j
c =

(
F j.e

i.2πWFj , T j.e
i.2πWTj

)
, j = 1, 2 is their associated inverse (complement) function respectively.

Then we have the following conclusion S(τ1) ≤ S(τ2) if and only if S(τ2
c) ≤ S(τ1

c).

Proof. By Definition 9, applying on Cq-RFNs τj =
(
Tj.e

i.2πWTj , Fj.e
i.2πWFj

)
, j = 1, 2, we have

S(τ1) =
1
2

∣∣∣∣(T1
q
− F1

q) +
(
WT1

q −WF1
q
)∣∣∣∣,

S(τ2) =
1
2

∣∣∣∣(T2
q
− F2

q) +
(
WT2

q −WF2
q
)∣∣∣∣.

By direct part we assume that

S(τ1) ≤ S(τ2) if and only if
∣∣∣∣(T1

q
− F1

q) +
(
WT1

q −WF1
q
)∣∣∣∣ ≤ ∣∣∣∣(T2

q
− F2

q) +
(
WT2

q −WF2
q
)∣∣∣∣

S(τ1) ≤ S(τ2) if and only if
∣∣∣∣(−F1

q + T1
q) +

(
−WF1

q + WT1
q
)∣∣∣∣ ≥ ∣∣∣∣(−F2

q + T2
q) +

(
−WF2

q + WT2
q
)∣∣∣∣

S(τ1) ≤ S(τ2) if and only if S(τ2
c) ≤ S(τ1

c).

�

Remark 3. (Monotonicity of accuracy function). Let τ =
(
T.ei.2πWT , F.ei.2πWF

)
be a Cq-ROFN, then the

accuracy function H(τ) = 1
2

∣∣∣(Tq + Fq) + (WTq + WFq)
∣∣∣ is a monotonic increasing function with T, WT, F, WF.

Remark 4. (Symmetry of accuracy function). Let τ j =
(
T j.e

i.2πWTj , F j.e
i.2πWFj

)
, j = 1, 2 be two

Cq-ROFNs, then τ j
c =

(
F j.e

i.2πWFj , T j.e
i.2πWTj

)
, j = 1, 2 is their associated inverse (complement) function

respectively. Then we have H(τ1) = H(τ2).
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Next, we will propose the operational laws for Cq-ROFNs based on the Archimedean t-norm
operations as follows.

Definition 9. Let τ j =
(
T j.e

i.2πWTj , F j.e
i.2πWFj

)
, j = 1, 2 be any two Cq-ROFNs and let γ > 0 be any real

number, then we have
τc

j =
(
F j.e

i.2πWFj , T j.e
i.2πWTj

)
, j = 1, 2; (3)

τ1 ∨ τ2 =
(
max(T1, T2).e

i.2π.max(WT1 ,WT2 ), min(F1, F2).e
i.2π.min(WF1 ,WF2 )

)
; (4)

τ1 ∧ τ2 =
(
min(T1, T2).e

i.2π.min(WT1 ,WT2 ), max(F1, F2).e
i.2π.max(WF1 ,WF2 )

)
; (5)

τ1 ⊕ τ2 =

(Tq
1 + Tq

2 − Tq
1Tq

2

) 1
q .e

i.2π.(Wq
T1
+Wq

T2
−Wq

T1
Wq

T2
)

1
q

, (F1F2).e
i.2π(WF1 WF2 )

; (6)

τ1 ⊗ τ2 =

(T1T2).e
i.2π(WT1 WT2 ),

(
Fq

1 + Fq
2 − Fq

1Fq
2

) 1
q .e

i.2π.(Wq
F1
+Wq

F2
−Wq

F1
Wq

F2
)

1
q
; (7)

γτJ =

(1− (
1− Tq

j

)γ) 1
q
.e

i.2π(1−(1−Wq
Tj
)
γ
)

1
q

, Fγj .e
i.2πWγ

Fj

, j = 1, 2; (8)

τ
γ
J =

Tγj .e
i.2πWγ

Tj ,
(
1−

(
1− Fq

j

)γ) 1
q
.e

i.2π(1−(1−Wq
Fj
)
γ
)

1
q
, j = 1, 2. (9)

Theorem 2. Let τ j =
(
T j.e

i.2πWTj , F j.e
i.2πWFj

)
, j = 1, 2 be any two Cq-ROFNs and let n1, n2 > 0 be any real

number, then we have
τ1 ⊕ τ2 = τ2 ⊕ τ1; (10)

τ1 ⊗ τ2 = τ2 ⊗ τ1; (11)

n1(τ1 ⊕ τ2) = n1τ1 ⊕ n1τ2; (12)

n1τ1 ⊕ n2τ1 = (n1 + n2)τ1; (13)

τn1
1 ⊗ τ

n2
1 = τn1+n2

1 ; (14)

τn1
1 ⊗ τ

n1
2 = (τ1 ⊗ τ2)

n1 . (15)

Proof. We are investigating Equations (10), (12), and (14) and the others are straightforward.

1. For Equation (10), we have

τ1 ⊕ τ2 =

(Tq
1 + Tq

2 − Tq
1Tq

2

) 1
q .e

i.2π.(Wq
T1
+Wq

T2
−Wq

T1
Wq

T2
)

1
q

, (F1F2).e
i.2π(WF1 WF2 )


=

(Tq
2 + Tq

1 − Tq
2Tq

1

) 1
q .e

i.2π.(Wq
T2
+Wq

T1
−Wq

T2
Wq

T1
)

1
q

, (F2F1).e
i.2π(WF2 WF1 )

 = τ2 ⊕ τ1

2. Obviously.
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3. For Equation (12), for the left hand, we have

n1(τ1 ⊕ τ2) = n1

(Tq
1 + Tq

2 − Tq
1Tq

2

) 1
q .e

i.2π.(Wq
T1
+Wq

T2
−Wq

T1
Wq

T2
)

1
q

, (F1F2).e
i.2π(WF1 WF2 )


=

((1− (
1−

(
Tq

1 + Tq
2 − Tq

1Tq
2

))n1
) 1

q
)q

.e
i.2π.((1−(1−(Wq

T1
+Wq

T2
−Wq

T1
Wq

T2
))

n1 )
1
q )

q

, (F1F2)
n1 .ei.2π(WF1 WF2 )

n1


For right hand, we have

n1τ1 =

(1− (
1− Tq

1

)n1
) 1

q .e
i.2π(1−(1−Wq

T1
)

n1 )
1
q

, Fn1
1 .e

i.2πW
n1
F1


and

n1τ2 =

(1− (
1− Tq

2

)n1
) 1

q .e
i.2π(1−(1−Wq

T2
)

n1 )
1
q

, Fn1
2 .e

i.2πW
n1
F2


then, we have

n1τ1 ⊕ n1τ2 =


(
1−

(
1− Tq

1

)n1
) 1

q .e
i.2π(1−(1−Wq

T1
)

n1 )
1
q

,

Fn1
1 .e

i.2πW
n1
F1

⊕


(
1−

(
1− Tq

2

)n1
) 1

q .e
i.2π(1−(1−Wq

T2
)

n1 )
1
q

,

Fn1
2 .e

i.2πW
n1
F2



=





((
1−

(
1− Tq

1

)n1
) 1

q
)q

+((
1−

(
1− Tq

2

)n1
) 1

q
)q

−((
1−

(
1− Tq

1

)n1
) 1

q
)q((

1−
(
1− Tq

2

)n1
) 1

q
)q



1
q

.e

i.2π(

((1− (1−Wq
T1
)

n1)
1
q )

q
+

((1− (1−Wq
T2
)

n1)
1
q )

q
−

((1− (1−Wq
T1
)

n1)
1
q )

q
((1− (1−Wq

T2
)

n1)
1
q )

q

)

1
q

(F1F2)
n1 .ei.2π(WF1 WF2 )

n1

,


=

(1− (
1− Tq

1 − Tq
2 + Tq

1Tq
2

)n1
) 1

q .e
i.2π.(1−(1−Wq

T1
−Wq

T2
+Wq

T1
Wq

T2
)

n1 )
1
q

, (F1F2)
n1 .ei.2π(WF1 WF2 )

n1


=

(1− (
1−

(
Tq

1 + Tq
2 − Tq

1Tq
2

))n1
) 1

q .e
i.2π.(1−(1−(Wq

T1
+Wq

T2
−Wq

T1
Wq

T2
))

n1 )
1
q

, (F1F2)
n1 .ei.2π(WF1 WF2 )

n1


Hence Equation (12) has provided.

4. Obviously.
5. For the Equation (14), we have

τn1
1 =

Tn1
1 .e

i.2πW
n1
T1 ,

(
1−

(
1− Fq

1

)n1
) 1

q .e
i.2π(1−(1−Wq

F1
)

n1 )
1
q


and

τn2
1 =

Tn2
1 .e

i.2πWn2
T1 ,

(
1−

(
1− Fq

1

)n2
) 1

q .e
i.2π(1−(1−Wq

F1
)

n2 )
1
q
.
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then, we have

τn1
1 ⊗ τ

n2
1 =

 Tn1
1 .e

i.2πW
n1
T1 ,(

1−
(
1− Fq

1

)n1
) 1

q .e
i.2π(1−(1−Wq

F1
)

n1 )
1
q

⊕
 Tn2

1 .e
i.2πWn2

T1 ,(
1−

(
1− Fq

1

)n2
) 1

q .e
i.2π(1−(1−Wq

F1
)

n2 )
1
q



=



(
Tn1

1 Tn2
1

)
.e

i.2π(W
n1
T1

Wn2
T1
)
,



((
1−

(
1− Fq

1

)n1
) 1

q
)q

+((
1−

(
1− Fq

1

)n2
) 1

q
)q

−((
1−

(
1− Fq

1

)n1
) 1

q
)q((

1−
(
1− Fq

1

)n2
) 1

q
)q



1
q

.e

i.2π(

((1− (1−Wq
F1
)

n1)
1
q )

q
+

((1− (1−Wq
F1
)

n2)
1
q )

q
−

((1− (1−Wq
F1
)

n1)
1
q )

q
((1− (1−Wq

F1
)

n2)
1
q )

q

)

1
q


=

(Tn1
1 Tn2

1

)
.e

i.2π(W
n1
T1

Wn2
T1
)
,
(
1−

(
1− Fq

1

)n1
(
1− Fq

1

)n2
) 1

q .e
i.2π(1−(1−Wq

F1
)

n1 (1−Wq
F1
)

n2 )
1
q


=

Tn1+n2
1 .e

i.2πW
n1+n2
T1 ,

(
1−

(
1− Fq

1

)n1+n2
) 1

q
.e

i.2π(1−(1−Wq
F1
)

n1+n2 )
1
q
 = τn1+n2

1

Hence τn1
1 ⊗ τ

n2
1 = τn1+n2

1 .

6. Obviously.

�

4. Some Complex q-Rung Orthopair Fuzzy Aggregation Operators

In this section, we propose some aggregation operators, which are the Cq-ROFWA operator
and the Cq-ROFWG operator respectively. Where, ω = (ω1,ω2 . . . ,ωk)

T denoted the weight vectors

and
k∑

j=1
ω j = 1, ω j ∈ [0, 1], j = 1, 2, . . . , k. Moreover τ j =

(
T j.e

i.2πWTj , F j.e
i.2πWFj

)
, j = 1, 2, . . . , k are

represented the collection of Cq-ROFNs.

Definition 10. The Cq-ROFWA is described as:

Cq−ROFWA : Mk
→M, i f

Cq−ROFWA(τ1, τ2, . . . , τk) = ω1τ1 ⊕ω2τ2 ⊕ . . .⊕ωkτk = ⊕
k
j=1ω jτ j (16)

Based on the operational laws of the Cq-ROFNs, we give the following Theorem.

Theorem 7. Let us consider Definition 10, then we can obtain

Cq−ROFWA(τ1, τ2, . . . , τk) =



1−

k∏
j=1

(
1− Tq

j

)ω j


1
q

.e
i.2π(1−

∏k
j=1 (1−Wq

Tj
)
ω j )

1
q
,

k∏
j=1

F
ω j

j .e
i.2π(

∏k
j=1 W

ω j
Fj

)

 (17)

Proof. We used the mathematical indication to prove Equation (17), we have
Case 1. For k = 2, since

ω1τ1 =

(1− (
1− Tq

1

)ω1
) 1

q .e
i.2π(1−(1−Wq

T1
)
ω1 )

1
q

, Fω1
1 .e

i.2πW
ω1
F1

,
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and

ω2τ2 =

(1− (
1− Tq

2

)ω2
) 1

q .e
i.2π(1−(1−Wq

T2
)
ω2 )

1
q

, Fω2
2 .e

i.2πWω2
F2

,

then

Cq−ROFWA(τ1, τ2) = ω1τ1 ⊕ω2τ2

=


(
1−

(
1− Tq

1

)ω1
) 1

q .e
i.2π(1−(1−Wq

T1
)
ω1 )

1
q

,

Fω1
1 .e

i.2πW
ω1
F1

⊕


(
1−

(
1− Tq

2

)ω2
) 1

q .e
i.2π(1−(1−Wq

T2
)
ω2 )

1
q

,

Fω2
2 .e

i.2πWω2
F2



=





((
1−

(
1− Tq

1

)ω1
) 1

q

)q

+((
1−

(
1− Tq

2

)ω2
) 1

q

)q

−((
1−

(
1− Tq

1

)ω1
) 1

q

)q((
1−

(
1− Tq

2

)ω2
) 1

q

)q



1
q

.e

i.2π(

((1− (1−Wq
T1
)
ω1)

1
q )

q
+

((1− (1−Wq
T2
)
ω2)

1
q )

q
−

((1− (1−Wq
T1
)
ω1)

1
q )

q
((1− (1−Wq

T2
)
ω2)

1
q )

q

)

1
q

(
Fω1

1 Fω2
2

)
.e

i.2π(W
ω1
F1

Wω2
F2

)

,


=

(1− (
1− Tq

1

)ω1
(
1− Tq

2

)ω2
) 1

q .e
i.2π(1−(1−Wq

T1
)
ω1 (1−Wq

T2
)
ω2 )

1
q

,
(
Fω1

1 Fω2
2

)
.e

i.2π(W
ω1
F1

Wω2
F2

)


=



1−

2∏
j=1

(
1− Tq

j

)ω j


1
q

.e
i.2π(1−

∏2
j=1 (1−Wq

Tj
)
ω j )

1
q
,

2∏
j=1

F
ω j

j .e
i.2π(

∏2
j=1 W

ω j
Fj

)


Obviously, Equation (17) is kept.
Case 2. Let k = m, then Equation (17) holds.

Cq−ROFWA(τ1, τ2, . . . , τm)

=



1−

m∏
j=1

(
1− Tq

j

)ω j


1
q

.e
i.2π(1−

∏m
j=1 (1−Wq

Tj
)
ω j )

1
q
,

m∏
j=1

F
ω j

j .e
i.2π(

∏m
j=1 W

ω j
Fj

)


Case 3. We check for k = m + 1, we have

Cq−ROFWA(τ1, τ2, . . . , τm+1)

=



1−

m∏
j=1

(
1− Tq

j

)ω j


1
q

.e
i.2π(1−

∏m
j=1 (1−Wq

Tj
)
ω j )

1
q
,

m∏
j=1

F
ω j

j .e
i.2π(

∏m
j=1 W

ω j
Fj

)

⊕ωm+1τm+1

=








1−

m∏
j=1

(
1− Tq

j

)ω j


1
q


q

+((
1−

(
1− Tq

m+1

)ωm+1
) 1

q

)q

−
1−

m∏
j=1

(
1− Tq

j

)ω j


1
q


q((
1−

(
1− Tq

m+1

)ωm+1
) 1

q

)q



1
q

.e

i.2π(

((1−
∏m

j=1 (1−Wq
T j
)
ω j)

1
q )

q
+

((1− (1−Wq
Tm+1

)
ωm+1)

1
q )

q
−

((1−
∏m

j=1 (1−Wq
T j
)
ω j)

1
q )

q
((1− (1−Wq

Tm+1
)
ωm+1)

1
q )

q

)

1
q

m∏
j=1

F
ω j

j Fωm+1
m+1 .e

i.2π(
∏m

j=1 W
ω j
Fj

W
ωm+1
Fm+1

)



,


=



1−

m+1∏
j=1

(
1− Tq

j

)ω j


1
q

.e
i.2π(1−

∏m+1
j=1 (1−Wq

Tj
)
ω j )

1
q
,

m+1∏
j=1

F
ω j

j .e
i.2π(

∏m+1
j=1 W

ω j
Fj

)


So Equation (17) is kept. �

Remark 5. From Theorem 3, we can prove that the result of Cq−ROFWA(τ1, τ2, . . . , τk) is still a Cq-ROFN.

(1) For the real part, we have
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T =
(
1−

∏m+1
j=1

(
1− Tq

j

)ω j
) 1

q
and F =

∏m+1
j=1 F

ω j

j , and because 0 ≤ T j, F j ≤ 1. Then, we have

0 ≤ 1− Tq
j ≤ 1⇒ 0 ≤

(
1− Tq

j

)ω j
≤ 1⇒ 0 ≤

k∏
j=1

(
1− Tq

j

)ω j
≤ 1

⇒ 0 ≤
(
1−

∏m+1
j=1

(
1− Tq

j

)ω j
) 1

q
≤ 1;

0 ≤ F
ω j

j ≤ 1⇒ 0 ≤
∏k

j=1 F
ω j

j ≤ 1.

So 0 ≤ T j, F j ≤ 1.

Tq
j + Fq

j ≤ 1, then Fq
j ≤ 1− Tq

j ⇒ F
ω j

j ≤

(
1− Tq

j

)ω j
⇒

∏k
j=1 F

ω j

j ≤
∏k

j=1

(
1− Tq

j

)ω j

0 ≤ Tq
j + Fq

j =


1−

 k∏
j=1

(
1− Tq

j

)ω j


1
q


q

+

 k∏
j=1

F
ω j

j

q

= 1−
k∏

j=1

(
1− Tq

j

)ω j
+

 k∏
j=1

F
ω j

j

q

≤ 1−
k∏

j=1

(
1− Tq

j

)ω j
+

k∏
j=1

(
1− Tq

j

)ω j
= 1

So 0 ≤ Tq
j + Fq

j ≤ 1

(2) For the imaginary parts, it can also be proven clearly.

So, it is also a Cq-ROFN and Theorem 3 is proven.

Example 1. Let τ1 =
(
0.6ei.2π(0.7), 0.8ei.2π(0.5)

)
, τ2 =

(
0.5ei.2π(0.5), 0.9ei.2π(0.8)

)
, τ3 =(

0.6ei.2π(0.25), 0.75ei.2π(0.78)
)

and τ4 =
(
0.56ei.2π(0.57), 0.88ei.2π(0.78)

)
be four Cq-ROFNs and

ω = (0.35, 0.1, 0.25, 0.3)T be the weight vectors, then we determined the Cq-ROFWA operator for q = 4
such that

Cq−ROFWA(τ1, τ2, τ3, τ4)

=



1−

4∏
j=1

(
1− Tq

j

)ω j


1
q

.e
i.2π(1−

∏4
j=1 (1−Wq

Tj
)
ω j )

1
q
,

4∏
j=1

F
ω j

j .e
i.2π(

∏4
j=1 W

ω j
Fj

)


=

(
(0.91).56ei.2π(0.89), (0.55)ei.2π(0.58)

)
.

Theorem 4. (Idempotent). Let Cq-ROFNs τ j = τ =
(
T.ei.2πWT , F.ei.2πWF

)
, j = 1, 2, . . . , k, then

Cq−ROFWA(τ1, τ2, τ3, . . . , τk) = τ (18)

Proof. Because

Cq−ROFWA(τ1, τ2, τ3, . . . , τk)

=



1−

k∏
j=1

(
1− Tq

j

)ω j


1
q

.e
i.2π(1−

∏k
j=1 (1−Wq

Tj
)
ω j )

1
q
,

k∏
j=1

F
ω j

j .e
i.2π(

∏k
j=1 W

ω j
Fj

)


=



1−

k∏
j=1

(1− Tq)ω j


1
q

.ei.2π(1−
∏k

j=1 (1−Wq
T)
ω j )

1
q

,
k∏

j=1
Fω j .ei.2π(

∏k
j=1 W

ω j
F )


=


(1− (1− Tq)

∑k
j=1 ω j

) 1
q
.ei.2π(1−(1−Wq

T)

∑k
j=1 ω j )

1
q
, F

∑k
j=1 ω j .ei.2π(W

∑k
j=1 ω j

F )


=

(
T.ei.2πWT , F.ei.2πWF

)
= τ.
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�

Theorem 5. (Monotonicity). Let the Cq-ROFNs τ j =
(
T j.e

i.2πWTj , F j.e
i.2πWFj

)
and τ′j =(

T′j.e
i.2πW′Tj , F′j.e

i.2πW′Fj

)
j = 1, 2, . . . , k, if T j ≥ T′j, F j ≤ F′j, WT j ≥W′T j

and WF j ≤W′F j
, then

Cq−ROFWA(τ1, τ2, τ3, . . . , τk) ≥ Cq−ROFWA
(
τ′1, τ′2, τ′3, . . . , τ′k

)
(19)

�

Proof. Because T j ≥ T′j, F j ≤ F′j, WT j ≥W′T j
and WF j ≤W′F j

, then

1− Tq
j ≤ 1− T′j

q
⇒


1−

 k∏
j=1

(
1− Tq

j

)ω j


1
q


q

≥


1−

 k∏
j=1

(
1− T′j

q
)ω j


1
q


q

k∏
j=1

F
ω j

j ≤
k∏

j=1
F′j
ω j

and similarly for imaginary parts such that

1−Wq
T j
≤ 1−W′T j

q
⇒


1−

 k∏
j=1

(
1−Wq

T j

)ω j


1
q


q

≥


1−

 k∏
j=1

(
1−W′T j

q
)ω j


1
q


q

k∏
j=1

W
ω j
F j
≤

k∏
j=1

W′F j

ω j

Combing the both real and imaginary parts, we have


1−

 k∏
j=1

(
1− Tq

j

)ω j


1
q


q

.e
i.2π((1−(

∏k
j=1 (1−Wq

Tj
)
ω j ))

1
q )

q

−

k∏
j=1

F
ω j

j .e
i.2π

∏k
j=1 W

ω j
Fj


≥




1−

 k∏
j=1

(
1− T′j

q
)ω j


1
q


q

.e
i.2π((1−(

∏k
j=1 (1−W′Tj

q)
ω j ))

1
q )

q

−

k∏
j=1

F′j
ω j .e

i.2π
∏k

j=1 W′Fj

ω j


We assume that Cq − ROFWA(τ1, τ2, τ3, . . . , τk) = τ and Cq − ROFWA

(
τ′1, τ′2, τ′3, . . . , τ′k

)
= τ′, so

using the Equation (2), we have
S(τ) ≥ S(τ′).

Here there are two possibility which are discussed one by one.

1. When S(τ) > S(τ′), then by Definition 7, we have

τq−ROFWA(τ1, τ2, τ3, . . . , τk) > τq−ROFWA
(
τ′1, τ′2, τ′3, . . . , τ′k

)
;
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2. When S(τ) = S(τ′), then we have


1−

 k∏
j=1

(
1− Tq

j

)ω j


1
q


q

.e
i.2π((1−(

∏k
j=1 (1−Wq

Tj
)
ω j ))

1
q )

q

−

k∏
j=1

F
ω j

j .e
i.2π

∏k
j=1 W

ω j
Fj


=




1−

 k∏
j=1

(
1− T′j

q
)ω j


1
q


q

.e
i.2π((1−(

∏k
j=1 (1−W′Tj

q)
ω j ))

1
q )

q

−

k∏
j=1

F′j
ω j .e

i.2π
∏k

j=1 W′Fj

ω j


Because T j ≥ T′j, F j ≤ F′j, WT j ≥W′T j

and WF j ≤W′F j
, then


1−

 k∏
j=1

(
1− Tq

j

)ω j


1
q


q

=


1−

 k∏
j=1

(
1− T′j

q
)ω j


1
q


q

k∏
j=1

F
ω j

j =
k∏

j=1
F′j
ω j

and similarly for imaginary parts such that
1−

 k∏
j=1

(
1−Wq

T j

)ω j


1
q


q

=


1−

 k∏
j=1

(
1−W′T j

q
)ω j


1
q


q

k∏
j=1

W
ω j
F j

=
k∏

j=1
W′F j

ω j

Because the score functions are equal, then we used the accuracy function such that

H(τ) =




1−

 k∏
j=1

(
1− Tq

j

)ω j


1
q


q

.e
i.2π((1−(

∏k
j=1 (1−Wq

Tj
)
ω j ))

1
q )

q

−

k∏
j=1

F
ω j

j .e
i.2π

∏k
j=1 W

ω j
Fj


= 1

2



1−

 k∏
j=1

(
1− Tq

j

)ω j


1
q


q

+
k∏

j=1
F
ω j

j +


1−

 k∏
j=1

(
1−Wq

T j

)ω j


1
q


q

+
k∏

j=1
W
ω j
F j


= 1

2



1−

 k∏
j=1

(
1− T′j

q
)ω j


1
q


q

+
k∏

j=1
F′j
ω j +


1−

 k∏
j=1

(
1−W′T j

q
)ω j


1
q


q

+
k∏

j=1
W′F j

ω j


=




1−

 k∏
j=1

(
1− T′j

q
)ω j


1
q


q

.e
i.2π((1−(

∏k
j=1 (1−W′Tj

q)
ω j ))

1
q )

q

−

k∏
j=1

F′j
ω j .e

i.2π
∏k

j=1 W′Fj

ω j


= H(τ′).

From case (1) and (2), this Theorem is kept. �
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Theorem 6. (Boundedness). Let τ j =
(
T j.e

i.2πWTj , F j.e
i.2πWFj

)
, j = 1, 2, . . . , k be the collection of Cq-ROFNs,

if τ+j =

(
max
1≤ j≤k

T j.e
i.2πmax

1≤ j≤k
WTj , min

1≤ j≤k
F j.e

i.2π min
1≤ j≤k

WFj
)

and τ−j =

(
min

1≤ j≤k
T j.e

i.2π min
1≤ j≤k

WTj , max
1≤ j≤k

F j.e
i.2πmax

1≤ j≤k
WFj

)
then

τ−j ≤ Cq−ROFWA(τ1, τ2, τ3, . . . , τk) ≤ τ
+
j (20)

Proof. We also discussed two case separately for membership and non-membership grades (for real
and imaginary parts).

1. For membership grade of Cq−ROFWA(τ1, τ2, τ3, . . . , τk), we get

1−

 k∏
j=1

(
1− min

1≤ j≤k
T j

q
)ω j




1
q

≤

1−

 k∏
j=1

(
1− Tq

j

)ω j




1
q

≤

1−

 k∏
j=1

(
1− max

1≤ j≤k
T j

q
)ω j




1
q

⇒

1−


(
1− min

1≤ j≤k
T j

q
)∑k

j=1 ω j



1
q

≤

1−

 k∏
j=1

(
1− Tq

j

)ω j




1
q

≤

1−


(
1− max

1≤ j≤k
T j

q
)∑k

j=1 ω j



1
q

Because
∑k

j=1 ω j = 1, so

⇒ min
1≤ j≤k

T j ≤

1−

 k∏
j=1

(
1− Tq

j

)ω j




1
q

≤ max
1≤ j≤k

T j

2. non-membership grade of Cq−ROFWA(τ1, τ2, τ3, . . . , τk), we obtain

k∏
j=1

min
1≤ j≤k

F j
ω j ≤

k∏
j=1

F j
ω j ≤

k∏
j=1

max
1≤ j≤k

F j
ω j

⇒ min
1≤ j≤k

F j

∑k
j=1 ω j

≤

k∏
j=1

F j
ω j ≤ max

1≤ j≤k
F j

∑k
j=1 ω j

And because
∑k

j=1 ω j = 1 so

min
1≤ j≤k

F j ≤

k∏
j=1

F j
ω j ≤ max

1≤ j≤k
F j

Then combined the above two cases, we have

min
1≤ j≤k

F j ≤

k∏
j=1

F j
ω j ≤ max

1≤ j≤k
F j

By the score function, we get
S(τ−) ≤ S(τ) ≤ S

(
τ+

)
.

So according to the cases (1) and (2) and definition of score function, we obtain

τ−j ≤ Cq−ROFWA(τ1, τ2, τ3, . . . , τk) ≤ τ
+
j .
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�

Next, we will discuss the special cases of our proposed operator.

1. If q = 1, then Cq-ROFWA (Equation (17)) is reduced to CIFWA, i.e.,

τ−j ≤ Cq−ROFWA(τ1, τ2, τ3, . . . , τk) ≤ τ
+
j .

Cq−ROFWA(τ1, τ2, . . . , τk)

=



1−

k∏
j=1

(
1− T1

j

)ω j
1

.e
i.2π(1−

∏k
j=1 (1−W1

Tj
)
ω j )

1
,

k∏
j=1

F
ω j

j .e
i.2π(

∏k
j=1 W

ω j
Fj

)
 = CIFWA(τ1, τ2, . . . , τk)

2. If q = 2, then Cq-ROFWA (Equation (17)) is reduced to PyIFWA, i.e.,

Cq−ROFWA(τ1, τ2, . . . , τk)

=



1−

k∏
j=1

(
1− T2

j

)ω j


1
2

.e
i.2π(1−

∏k
j=1 (1−W2

Tj
)
ω j )

1
2
,

k∏
j=1

F
ω j

j .e
i.2π(

∏k
j=1 W

ω j
Fj

)

 = CPyFWA(τ1, τ2, . . . , τk)

Next, we will propose the notion of Cq-ROFWG operator.

Definition 11. The Cq-ROFWG is described as:

Cq−ROFWG : Mk
→M, i f

Cq−ROFWG(τ1, τ2, . . . , τk) = τω1
1 ⊗ τ

ω2
2 ⊗ . . .⊗ τ

ωk
k = ⊗k

j=1τ
ω j

j (21)

Base on the operational laws of the Cq-ROFNs, we can obtain the following Theorem.

Theorem 7. Let us consider the Definition (11), then we obtain

Cq−ROFWG(τ1, τ2, . . . , τk)

=

 k∏
j=1

T
ω j

j .e
i.2π(

∏k
j=1 W

ω j
Tj

)
,


1−

k∏
j=1

(
1− Fq

j

)ω j


1
q

.e
i.2π(1−

∏k
j=1 (1−Wq

Fj
)
ω j )

1
q

 (22)

Proof. Straightforward. (Similar to Theorem 3). �

Example 2. Let τ1 =
(
0.6ei.2π(0.7), 0.8ei.2π(0.5)

)
, τ2 =

(
0.5ei.2π(0.5), 0.9ei.2π(0.8)

)
, τ3 =(

0.6ei.2π(0.25), 0.75ei.2π(0.78)
)

and τ4 =
(
0.56ei.2π(0.57), 0.88ei.2π(0.78)

)
be four Cq-ROFNs and

ω = (0.35, 0.1, 0.25, 0.3)T be the weight vector. Then we calculate the Cq-ROFWA operator for q = 4
such that

Cq−ROFWG(τ1, τ2, . . . , τk) =


k∏

j=1
T
ω j

j .e
i.2π(

k∏
j=1

W
ω j
Tj

)

,
1−

k∏
j=1

(
1− Fq

j

)ω j


1
q

.e
i.2π(1−

∏k
j=1 (1−Wq

Fj
)
ω j )

1
q



=

(
(0.55)ei.2π(0.52), (0.87)ei.2π(0.76)

)
.
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Theorem 8. (Idempotent). Let the Cq-ROFNs τ j = τ =
(
T.ei.2πWT , F.ei.2πWF

)
, j = 1, 2, . . . , k, then

Cq−ROFWG(τ1, τ2, τ3, . . . , τk) = τ (23)

Proof. Straightforward. (Similar to Theorem 4). �

Theorem 9. (Monotonicity). Let the Cq-ROFNs τ j =
(
T j.e

i.2πWTj , F j.e
i.2πWFj

)
and τ′j =(

T′j.e
i.2πW′Tj , F′j.e

i.2πW′Fj

)
j = 1, 2, . . . , k, if T j ≥ T′j, F j ≤ F′j, WT j ≥W′T j

and WF j ≤W′F j
, then

Cq−ROFWG(τ1, τ2, τ3, . . . , τk) ≥ Cq−ROFWG
(
τ′1, τ′2, τ′3, . . . , τ′k

)
(24)

Proof. Straightforward. (Similar to Theorem 5). �

Theorem 10. (Boundedness). Let τ j =
(
T j.e

i.2πWTj , F j.e
i.2πWFj

)
, j = 1, 2, . . . , k be the collection of

Cq-ROFNs, if τ+j =

(
max
1≤ j≤k

T j.e
i.2πmax

1≤ j≤k
WTj , min

1≤ j≤k
F j.e

i.2π min
1≤ j≤k

WFj
)

and

τ−j =

(
min

1≤ j≤k
T j.e

i.2π min
1≤ j≤k

WTj , max
1≤ j≤k

F j.e
i.2πmax

1≤ j≤k
WFj

)
then

τ−j ≤ Cq−ROFWG(τ1, τ2, τ3, . . . , τk) ≤ τ
+
j (25)

Proof. Straightforward. (Similar to Theorem 6). �

Next, we will discuss the special cases of our proposed operator.

1. If q = 1, then Cq-ROFWG (Equation (22)) is reduced to CIFWG, i.e.,

Cq−ROFWG(τ1, τ2, . . . , τk) =


k∏

j=1
T
ω j

j .e
i.2π(

∏k
j=1 W

ω j
Tj

)
,

1−
k∏

j=1

(
1− F1

j

)ω j
1

.e
i.2π(1−

∏k
j=1 (1−W1

Fj
)
ω j )

1



= CIFWG(τ1, τ2, . . . , τk).

2. If q = 2, then Cq-ROFWG (Equation (22)) is reduced to PyIFWG, i.e.,

Cq−ROFWG(τ1, τ2, . . . , τk) =


k∏

j=1
T
ω j

j .e
i.2π(

∏k
j=1 W

ω j
Tj

)
,

1−
k∏

j=1

(
1− F2

j

)ω j


1
2

.e
i.2π(1−

∏k
j=1 (1−W2

Fj
)
ω j )

1
2



= CPyFWG(τ1, τ2, . . . , τk).

5. MADM Based on Cq-ROFWA and Cq-ROFGA Operators

We consider an application about MADM problems with Cq-ROFNs. Let X = {X1, X2, . . . , Xm}

be the group of alternatives and τ = {c1, c2, . . . , cn} be the collection of criteria with weighted vector
denoted and defined by ω = (ω1,ω2, . . . ,ωn)

T where
∑n

i=1 ωi = 1 and each ωi ∈ [0, 1].
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5.1. The MADM Method Based on the Proposed Operators

The criteria τ j for the alternative Xi, and give the information by a Cq-ROFNs τi j, then the matrix
D =

(
τi j

)
m×n

can be established. Next, based on Cq-ROFWA and Cq-ROFWG operators, we give the
decision steps as follows.

Step 1. Normalized the decision matrix D =
(
τi j

)
m×n

using the following formula.

Ri j =


(
T j.e

i.2πWTj , F j.e
i.2πWFj

)
f or bene f it(

F j.e
i.2πWFj , T j.e

i.2πWTj

)
f or cost

Step 2. Aggregate all attribute values by the Cq-ROFWA operator or Cq-ROFWG operator to get
the comprehensive value of each alternative.

Step 3. Rank all alternatives by Definition 8 and to find the best company for investment.
Step 4. End.

Example 3. A company wants to invest with another company to increase income: there are four political
companies called alternatives with four attributes such that

c1: Risk analysis.
c2: Growth conditions.
c3: Social political impact.
c4: environmental impact.

We considered the criteria weight vector ω = (0.25, 0.45, 0.20, 0.1)T. The evaluation information
on the alternatives xi(i = 1, 2, 3, 4) under the criterion τ = {c1, c2, c3, c4} is denoted by the Cq-ROFNs.
The complex q-rung orthopair fuzzy information see in Table 1.

Table 1. The decision matrix D for Example 3.

Cq−ROFNs c1 c2 c3 c4

X1

(
(0.8).ei.2π(0.7),
(0.7).ei.2π(0.8)

) (
(0.6).ei.2π(0.9),
(0.9).ei.2π(0.6)

) (
(0.5).ei.2π(0.92),
(0.91).ei.2π(0.5)

) (
(0.4).ei.2π(0.4),
(0.7).ei.2π(0.8)

)
X2

(
(0.7).ei.2π(0.8),
(0.8).ei.2π(0.9)

) (
(0.7).ei.2π(0.6),
(0.7).ei.2π(0.7)

) (
(0.87).ei.2π(0.68),
(0.78).ei.2π(0.77)

) (
(0.43).ei.2π(0.85),
(0.91).ei.2π(0.56)

)
X3

(
(0.7).ei.2π(0.4),
(0.9).ei.2π(0.6)

) (
(0.4).ei.2π(0.4),
(0.7).ei.2π(0.8)

) (
(0.45).ei.2π(0.77),
(0.76).ei.2π(0.61)

) (
(0.72).ei.2π(0.87),
(0.84).ei.2π(0.47)

)
X4

(
(0.9).ei.2π(0.5),
(0.7).ei.2π(0.6)

) (
(0.6).ei.2π(0.8),
(0.83).ei.2π(0.74)

) (
(0.72).ei.2π(0.64),
(0.55).ei.2π(0.69)

) (
(0.67).ei.2π(0.58),
(0.68).ei.2π(0.67)

)

Step 1. Normalized the decision matrix D =
(
τi j

)
m×n

using the following formula and applying
on Table 2.

Ri j =


(
T j.e

i.2πWTj , F j.e
i.2πWFj

)
f or bene f it(

F j.e
i.2πWFj , T j.e

i.2πWTj

)
f or cost



Information 2020, 11, 5 18 of 27

Table 2. The normalized matrix.

Cq−ROFNs c1 c2 c3 c4

X1

(
(0.7).ei.2π(0.8),
(0.8).ei.2π(0.7)

) (
(0.6).ei.2π(0.9),
(0.9).ei.2π(0.6)

) (
(0.5).ei.2π(0.92),
(0.91).ei.2π(0.5)

) (
(0.4).ei.2π(0.4),
(0.7).ei.2π(0.8)

)
X2

(
(0.8).ei.2π(0.9),
(0.7).ei.2π(0.8)

) (
(0.7).ei.2π(0.6),
(0.7).ei.2π(0.7)

) (
(0.87).ei.2π(0.68),
(0.78).ei.2π(0.77)

) (
(0.43).ei.2π(0.85),
(0.91).ei.2π(0.56)

)
X3

(
(0.9).ei.2π(0.6),
(0.7).ei.2π(0.4)

) (
(0.4).ei.2π(0.4),
(0.7).ei.2π(0.8)

) (
(0.45).ei.2π(0.77),
(0.76).ei.2π(0.61)

) (
(0.72).ei.2π(0.87),
(0.84).ei.2π(0.47)

)
X4

(
(0.7).ei.2π(0.6),
(0.9).ei.2π(0.5)

) (
(0.6).ei.2π(0.8),
(0.83).ei.2π(0.74)

) (
(0.72).ei.2π(0.64),
(0.55).ei.2π(0.69)

) (
(0.67).ei.2π(0.58),
(0.68).ei.2π(0.67)

)

Step 2. Aggregate all attribute values by the Cq-ROFWA operator for q = 4 and get the overall
value of each alternative which is listed in Table 3.

Xi = Cq−ROFWA(τi1, τi2, . . . , τik)

=



1−

k∏
j=1

(
1− Tq

i j

)ω j


1
q

.e
i.2π(1−

∏k
j=1 (1−Wq

Tij
)
ω j )

1
q
,

k∏
j=1

F
ω j

i j .e
i.2π(

∏k
j=1 W

ω j
Fi j

)

.

or aggregate all attribute values by the Cq-ROFWG operator for q = 4 and get the overall value of each
alternative which is listed in Table 4.

Xi = Cq−ROFWG(τ1, τ2, . . . , τk) =


k∏

j=1
T
ω j

j .e
i.2π(

∏k
j=1 W

ω j
Tj

)
,

1−
k∏

j=1

(
1− Fq

j

)ω j


1
q

.e
i.2π(1−

∏k
j=1 (1−Wq

Fj
)
ω j )

1
q



Table 3. The overall value of each alternative by the Cq-ROFWA operator.

Alternatives Cq−ROFWA

X1

(
(0.60).ei.2π(0.85),
(0.83).ei.2π(0.65)

)
X2

(
(0.74).ei.2π(0.79),
(0.75).ei.2π(0.70)

)
X3

(
(0.74).ei.2π(0.69),
(0.73).ei.2π(0.59)

)
X4

(
(0.66).ei.2π(0.72),
(0.78).ei.2π(0.65)

)

Table 4. The overall value of each alternative by the Cq-ROFWG operator.

Alternatives Cq−ROFWG

X1

(
(0.57).ei.2π(0.75),
(0.86).ei.2π(0.68)

)
X2

(
(0.67).ei.2π(0.72),
(0.78).ei.2π(0.72)

)
X3

(
(0.56).ei.2π(0.55),
(0.75).ei.2π(0.70)

)
X4

(
(0.65).ei.2π(0.68),
(0.82).ei.2π(0.68)

)
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Step 3. Calculate the score functions for all alternatives from the Cq-ROFWA operator
S(X1) = 0.0007, S(X2) = 0.071, S(X3) = 0.057 and S(X4) = 0.049, then we have

X1 ≤ X4 ≤ X3 ≤ X2

So, X2 is the best company for investment.
or calculate the score functions for all alternatives from the Cq-ROFWG operator, and get
S(X1) = −0.174, S(X2) = −0.0878, S(X3) = −0.178 and S(X4) = −0.142, then we have

X3 ≤ X1 ≤ X4 ≤ X2

Step 5. Give the ranking to all alternatives by Definition 8 and to find the best company
for investment.

So, X2 is the best company for investment. Notice that the both operators have provide different
results. The Cq-ROFWA operator show, X2 is a best candidate and X1 is a last option, but in Cq-ROFGA
operator show, X2 is a best candidate and X3 is a last option.

5.2. Advantages and Comparability

In this section, we compare the proposed methods with the existing weighted averaging and
geometric averaging operators of CIFSs, CIVIFS, and CFSs. Now we shall prove that the proposed
operators of Cq-ROFSs are more fruitful and more generalized than the existing weighted averaging
and geometric averaging operators of other fuzzy algebraic structures.

Example 4. A company wants to invest with another company to increase income: there are four political
companies called alternatives with four attributes such that

c1: Risk analysis.
c2: Growth conditions.
c3: Social political impact.
c4: environmental impact.

We considered the criteria weight vector ω = (0.25, 0.45, 0.20, 0.1)T. The evaluation information
on the alternatives xi(i = 1, 2, 3, 4) under the criterion τ = {c1, c2, c3, c4} is denoted by the Cq-ROFNs.
The intuitionistic fuzzy information see in Table 5.

Table 5. The normalized matrix.

Cq−ROFNs c1 c2 c3 c4

X1 (0.40, 0.30) (0.50, 0.40) (0.42, 0.32) (0.52, 0.42)
X2 (0.41, 0.31) (0.51, 0.41) (0.43, 0.33) (0.53, 0.43)
X3 (0.42, 0.32) (0.52, 0.42) (0.40, 0.30) (0.50, 0.40)
X4 (0.43, 0.33) (0.53, 0.43) (0.41, 0.31) (0.51, 0.41)

Step 1. Normalized the decision matrix D =
(
τi j

)
m×n

using the following formula and applying
on Table 1.

Ri j =


(
T j.e

i.2πWTj , F j.e
i.2πWFj

)
f or bene f it(

F j.e
i.2πWFj , T j.e

i.2πWTj

)
f or cost

We know that e0 = 1, so the values in Table 5 were converted into the values in Table 6, which is
in the form of complex fuzzy numbers, we have



Information 2020, 11, 5 20 of 27

Table 6. The normalized matrix.

Cq−ROFNs c1 c2 c3 c4

X1
(
0.40ei.2π(0.0), 0.30ei.2π(0.0)

) (
0.50ei.2π(0.0), 0.40ei.2π(0.0)

) (
0.42ei.2π(0.0), 0.32ei.2π(0.0)

) (
0.52ei.2π(0.0), 0.42ei.2π(0.0)

)
X2

(
0.41ei.2π(0.0), 0.31ei.2π(0.0)

) (
0.51ei.2π(0.0), 0.41ei.2π(0.0)

) (
0.43ei.2π(0.0), 0.33ei.2π(0.0)

) (
0.53ei.2π(0.0), 0.43ei.2π(0.0)

)
X3

(
0.42ei.2π(0.0), 0.32ei.2π(0.0)

) (
0.52ei.2π(0.0), 0.42ei.2π(0.0)

) (
0.40ei.2π(0.0), 0.30ei.2π(0.0)

) (
0.50ei.2π(0.0), 0.40ei.2π(0.0)

)
X4

(
0.43ei.2π(0.0), 0.33ei.2π(0.0)

) (
0.53ei.2π(0.0), 0.43ei.2π(0.0)

) (
0.41ei.2π(0.0), 0.31ei.2π(0.0)

) (
0.51ei.2π(0.0), 0.41ei.2π(0.0)

)

Step 2. Aggregate all attribute values by the Cq-ROFWA operator for q = 4 and get the overall
value of each alternative which is listed in Table 7.

Xi = Cq−ROFWA(τi1, τi2, . . . , τik)

=



1−

k∏
j=1

(
1− Tq

i j

)ω j


1
q

.e
i.2π(1−

∏k
j=1 (1−Wq

Tij
)
ω j )

1
q
,

k∏
j=1

F
ω j

i j .e
i.2π(

∏k
j=1 W

ω j
Fi j

)


or aggregate all attribute values by the Cq-ROFWG operator for q = 4 and get the overall value of each
alternative which is listed in Table 8.

Xi = Cq−ROFWG(τ1, τ2, . . . , τk) =


k∏

j=1
T
ω j

j .e
i.2π(

∏k
j=1 W

ω j
Tj

)
,

1−
k∏

j=1

(
1− Fq

j

)ω j


1
q

.e
i.2π(1−

∏k
j=1 (1−Wq

Fj
)
ω j )

1
q



Table 7. The overall value of each alternative by the complex q-rung orthopair fuzzy weighted
averaging (Cq-ROFWA) operator.

Alternatives Cq−ROFWA

X1 (0.60, 0.83) =
(
0.60ei.2π(0.0), 0.83ei.2π(0.0)

)
X2 (0.74, 0.75) =

(
0.74ei.2π(0.0), 0.75ei.2π(0.0)

)
X3 (0.74, 0.73) =

(
0.74ei.2π(0.0), 0.73ei.2π(0.0)

)
X4 (0.66, 0.78) =

(
0.66ei.2π(0.0), 0.78ei.2π(0.0)

)
Table 8. The overall value of each alternative by the complex q-rung orthopair fuzzy weighted
geometric operator (Cq-ROFWG) operator.

Alternatives Cq−ROFWG

X1 (0.57, 0.86) =
(
0.57ei.2π(0.0), 0.86ei.2π(0.0)

)
X2 (0.67, 0.78) =

(
0.67ei.2π(0.0), 0.78ei.2π(0.0)

)
X3 (0.56, 0.75) =

(
0.56ei.2π(0.0), 0.75ei.2π(0.0)

)
X4 (0.65, 0.82) =

(
0.65ei.2π(0.0), 0.82ei.2π(0.0)

)
Step 3. Calculate the score functions for all alternatives from the Cq-ROFWA operator
S(X1) = −0.17, S(X2) = −0.0083, S(X3) = 0.00794 and S(X4) = −0.09, then we have

≤ X4 ≤ X2 ≤ X3

So, X3 is the best company for investment.
or calculate the score functions for all alternatives from the Cq-ROFWG operator, and get
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S(X1) = −0.22, S(X2) = −0.12, S(X3) = −0.11 and S(X4) = −0.14, then we have

X1 ≤ X4 ≤ X2 ≤ X3

Step 5. Give the ranking to all alternatives by Definition 8 and to find the best company
for investment.

So, X2 is the best company for investment. Notice that the both operators have provided different
results. The Cq-ROFWA operator shows X2 is a best candidate and X1 is a last option, but the
Cq-ROFGA operator shows X2 is a best candidate and X3 is a last option. The comparison of the
proposed method with existing methods are discussed in Table 9.

Table 9. Comparison between proposed method with existing methods for Example 4.

Methods. Score Values Ranking Results

Xu [54]

S(X1) = −0.18,
S(X2) = −0.0085,
S(X3) = 0.00804,
S(X4) = −0.094

X1 ≤ X4 ≤ X2 ≤ X3

Garg [55]

S(X1) = −0.27,
S(X2) = −0.17,
S(X3) = −0.16,
S(X4) = −0.19

X1 ≤ X4 ≤ X2 ≤ X3

Liu and Wang [28]

S(X1) = −0.27,
S(X2) = −0.0093,
S(X3) = 0.00894,

S(X4) = −0.1

X1 ≤ X4 ≤ X2 ≤ X3

Garg and Rani [49] CIFWA

S(X1) = −0.32,
S(X2) = −0.22,
S(X3) = −0.21,
S(X4) = −0.24

X1 ≤ X4 ≤ X2 ≤ X3

Garg and Rani [49] CIFWG

S(X1) = −0.27,
S(X2) = −0.17,
S(X3) = −0.16,
S(X4) = −0.19

X1 ≤ X4 ≤ X2 ≤ X3

Exiting work CPyFWA

S(X1) = −0.27,
S(X2) = −0.0093,
S(X3) = 0.00894,

S(X4) = −0.1

X1 ≤ X4 ≤ X2 ≤ X3

Existing work CPyFWG

S(X1) = −0.57,
S(X2) = −0.0133,
S(X3) = 0.01294,
S(X4) = −0.14

X1 ≤ X4 ≤ X2 ≤ X3

Proposed work in this article
Cq-ROFWA

S(X1) = −0.17,
S(X2) = −0.0083,
S(X3) = 0.00794,
S(X4) = −0.09

X1 ≤ X4 ≤ X2 ≤ X3

Proposed work in this article
Cq-ROFWG

S(X1) = −0.22,
S(X2) = −0.12,
S(X3) = −0.11,
S(X4) = −0.14

X1 ≤ X4 ≤ X2 ≤ X3

The geometrical interpretation of the proposed work described in Table 9 are available in Figure 2.
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Firstly, we discuss some particular cases of the Cq-ROFWA operator by putting different values of
parameter q, and the comparison between proposed method and existing works is given in Table 10.

Table 10. Ranking results between different existing works for Example 3.

Methods Score Values Ranking

Xu [54] Cannot be Calculated Cannot be Calculated

Garg [55] Cannot be Calculated Cannot be Calculated

Liu and Wang [28] Cannot be Calculated Cannot be Calculated

Garg and Rani [49] CIFWA

S(X1) = −0.0299,
S(X2) = 0.0223,

S(X3) = −0.00487,
S(X4) = −0.0362

X4 ≤ X1 ≤ X3 ≤ X2

Garg and Rani [49] CIFWG

S(X1) = −0.106,
S(X2) = −0.04,

S(X3) = −0.144,
S(X4) = −0.077

X3 ≤ X1 ≤ X4 ≤ X2

Exiting work CPyFWA

S(X1) = −0.0276,
S(X2) = 0.043,
S(X3) = 0.016,

S(X4) = −0.050

X4 ≤ X1 ≤ X3 ≤ X2

Existing work CPyFWG
S(X1) = −0.1551,
S(X3) = −0.19,
S(X4) = −0.117

X3 ≤ X1 ≤ X4 ≤ X2

Proposed work in this article
Cq-ROFWA

S(X1) = 0.0007,
S(X2) = 0.071,
S(X3) = 0.057,
S(X4) = 0.049

X1 ≤ X4 ≤ X3 ≤ X2

Proposed work in this article
Cq-ROFWG

S(X1) = −0.174,
S(X2) = −0.0878,
S(X3) = −0.178,
S(X4) = −0.142

X3 ≤ X1 ≤ X4 ≤ X2

The geometrical interpretation of the proposed work described in Table 10 are available in Figure 3.
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Garg and Rani [49] CIFWG 

𝑆(𝑋ଵ) = −0.106, 𝑆(𝑋ଶ) = −0.04, 𝑆(𝑋ଷ) = −0.144, 𝑆(𝑋ସ) = −0.077 

𝑋ଷ ≤ 𝑋ଵ ≤ 𝑋ସ ≤ 𝑋ଶ 

Exiting work CPyFWA 

𝑆(𝑋ଵ) = −0.0276, 𝑆(𝑋ଶ) = 0.043, 𝑆(𝑋ଷ) = 0.016, 𝑆(𝑋ସ) = −0.050 

𝑋ସ ≤ 𝑋ଵ ≤ 𝑋ଷ ≤ 𝑋ଶ 

Existing work CPyFWG 

𝑆(𝑋ଵ) = −0.1551, 𝑆(𝑋ଶ) = −0.0727, 𝑆(𝑋ଷ) = −0.19, 𝑆(𝑋ସ) = −0.117 

𝑋ଷ ≤ 𝑋ଵ ≤ 𝑋ସ ≤ 𝑋ଶ 

Proposed work in this article 
Cq-ROFWA 

𝑆(𝑋ଵ) = 0.0007, 𝑆(𝑋ଶ) = 0.071, 𝑆(𝑋ଷ) = 0.057, 𝑆(𝑋ସ) = 0.049 

𝑋ଵ ≤ 𝑋ସ ≤ 𝑋ଷ ≤ 𝑋ଶ 

Proposed work in this article 
Cq-ROFWG 

𝑆(𝑋ଵ) = −0.174, 𝑆(𝑋ଶ) = −0.0878, 𝑆(𝑋ଷ) = −0.178, 𝑆(𝑋ସ) = −0.142 

𝑋ଷ ≤ 𝑋ଵ ≤ 𝑋ସ ≤ 𝑋ଶ 

The geometrical interpretation of the proposed work described in Table 10 are available in 
Figure 3. 
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It is clear that the existing methods and our proposed methods are provided that X2 is the best
candidate. However, the CIFS and CPyFS cannot describe the problems effectively, and the Cqq-ROFS
is more powerful tool to deal with uncertain and unpredictable information in real decision making
problems. For further discussion, we will check the superiority and flexibility of our proposed methods
with the help of parameters q for different values. When we considered the Cq-ROFS types, the CIFS
and CPyFS cannot describe it. The condition of CIFS and CPyFS is not satisfied effectively. When we
provided the complex q-rung orthopair fuzzy kinds of information to CPyFs, they are given the results
but not holds the condition of CPyFS, because the data is complex q-rung orthopair fuzzy types.

The comparisons between Cq-ROFWA and Cq-ROFWG operators are given in Tables 11 and 12.

Table 11. The overall value of each alternative by the Cq-ROFWA operator for different values of
parameters q.

Requirements Methods Score Values Ranking

Xu [54] Cannot be Calculated Cannot be Calculated Cannot be Calculated

Garg [55] Cannot be Calculated Cannot be Calculated Cannot be Calculated

Liu and Wang [28] Cannot be Calculated Cannot be Calculated Cannot be Calculated

CIFS = able
CPyFS = able

q−ROFS = able
q = 1

S(X1) = −0.0299,
S(X2) = 0.0223,

S(X3) = −0.00487,
S(X4) = −0.0362

X4 ≤ X1 ≤ X3 ≤ X2

CIFS = not able
CPyFS = able

Cq−ROFS = able
q = 2

S(X1) = −0.0276,
S(X2) = 0.043,
S(X3) = 0.016,

S(X4) = −0.050

X4 ≤ X1 ≤ X3 ≤ X2

CIFS = not able
CPyFS = not able
Cq−ROFS = able

q = 4

S(X1) = 0.0007,
S(X2) = 0.071,
S(X3) = 0.057,
S(X4) = 0.049

X1 ≤ X4 ≤ X3 ≤ X2



Information 2020, 11, 5 24 of 27

Table 11. Cont.

Requirements Methods Score Values Ranking

CIFS = not able
CPyFS = not able
Cq−ROFS = able

q = 8

S(X1) = 0.036,
S(X2) = 0.0744,
S(X3) = 0.070,

S(X4) = −0.022

X4 ≤ X1 ≤ X3 ≤ X2

CIFS = not able
CPyFS = not able
Cq−ROFS = able

q = 15

S(X1) = 0.036,
S(X2) = 0.040,
S(X3) = 0.037,

S(X4) = −0.0036

X4 ≤ X1 ≤ X3 ≤ X2

CIFS = not able
CPyFS = not able
Cq−ROFS = able

q = 16

S(X1) = 0.034,
S(X2) = 0.036,
S(X3) = 0.033,

S(X4) = −0.002

X4 ≤ X1 ≤ X3 ≤ X2

Table 12. The overall value of each alternative by the Cq-ROFWG operator for different values of
parameter q.

Requirements Methods Score Values Ranking

Xu [54] Cannot be Calculated Cannot be Calculated Cannot be Calculated

Garg [55] Cannot be Calculated Cannot be Calculated Cannot be Calculated

Liu and Wang [28] Cannot be Calculated Cannot be Calculated Cannot be Calculated

CIFS = able
CPyFS = able

Cq−ROFS = able
q = 1

S(X1) = −0.106,
S(X2) = −0.04,

S(X3) = −0.144,
S(X4) = −0.077

X3 ≤ X1 ≤ X4 ≤ X2

CIFS = not able
CPyFS = able

Cq−ROFS = able
q = 2

S(X1) = −0.1551,
S(X2) = −0.0727,

S(X3) = −0.19,
S(X4) = −0.117

X3 ≤ X1 ≤ X4 ≤ X2

CIFS = not able
CPyFS = not able
Cq−ROFS = able

q = 4

S(X1) = −0.174,
S(X2) = −0.0878,
S(X3) = −0.178,
S(X4) = −0.142

X3 ≤ X1 ≤ X4 ≤ X2

CIFS = not able
CPyFS = not able
Cq−ROFS = able

q = 8

S(X1) = −0.13,
S(X2) = −0.068,
S(X3) = −0.084,
S(X4) = −0.10

X1 ≤ X4 ≤ X3 ≤ X2

CIFS = not able
CPyFS = not able
Cq−ROFS = able

q = 15

S(X1) = −0.064,
S(X2) = −0.031,
S(X3) = −0.017,
S(X4) = −0.042

X1 ≤ X4 ≤ X2 ≤ X3

CIFS = not able
CPyFS = not able
Cq−ROFS = able

q = 16

S(X1) = −0.057,
S(X2) = −0.027,
S(X3) = −0.014,
S(X4) = −0.0367

X1 ≤ X4 ≤ X2 ≤ X3

The advantages of the proposed methods are given by compared with existing methods.

(1) The proposed method assumes that the sum of q-power of membership and q-power of
non-membership grade is restricted to unit disc in complex plane. When a decision maker

provides such kind of information like
(
(0.9).ei.2π(0.76),
(0.78).ei.2π(0.72)

)
, then the CIFS and CPyFS is not able

to handle it. The notion of Cq-ROFS is able to handle this kind of sanitations. The constraint of
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Cq-ROFS is that the sum of q-power of membership and q-power of non-membership grade is
restricted to unit disc in complex plane.

(2) The proposed methods are more general than CIFS and CPyFS. The notion of CIFS and CPyFS all
are the special cases of our proposed method. When, we will consider q = 1, then the proposed
work is reduced to CIFS. When, we will consider q = 2, then the proposed work is reduced to
CPyFS. The Cq-ROFS is more superior than CIF and CPyFS.

From the above comparisons, it is clear that the proposed methods in this paper such as Cq-ROFWA
and Cq-ROFWG operators are more general than CIFS and CPyFS. Therefore, the proposed methods
in this manuscript are more suitable to solve the MAGDM problems.

6. Conclusions

The aims of this article, the notion of q-rung orthopair fuzzy sets (q-ROFSs) and complex fuzzy
sets (CFSs) are combined is to propose the novel approach of complex q-rung orthopair fuzzy sets
(Cq-ROFSs) and their fundamental laws. The Cq-ROFSs are an important way to express uncertain
information, and they are superior to the complex intuitionistic fuzzy sets and the complex Pythagorean
fuzzy sets. Their eminent characteristic is that the sum of the qth power of the real part (similarly for
imaginary part) of complex-valued membership degree and the qth power of the real part (similarly
for imaginary part) of complex-valued non-membership degree is equal to or less than 1, so the space
of uncertain information they can describe is broader. Based on these advantages, we proposed the
Cq-ROFWA and Cq-ROFGA operators and studied their results with examples. Furthermore, we
investigated some methods based on these operators to solve the MADM problems. Finally, we used
the weighted averaging and geometric operators to illustrated the reliability and superiority of the
proposed work and also discussed the advantages of the proposed work by compared with the other
existing work. The comparison of the proposed method with existing methods are also discussed in
this manuscript.
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