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Abstract: Nowadays, internet of things (IoT) technology is considered as one of the key future
technologies. The adoption of such technology is receiving quick attention from many industries as
competitive pressures inspire them to move forward and invest. As technologies continue to advance,
such as IoT, there is a vital need for an approach to identify its viability. This research proposes the
adoption of IoT technology and the use of a simulation paradigm to capture the complexity of a
system, offer reliable and continuous perceptions into its present and likely future state, and evaluate
the economic feasibility of such adoption. A case study of one of the largest pharmacy retail chain is
presented. IoT devices are suggested to be used to remotely monitor the failures of a geographically
distributed system of refrigeration units. Multi-agents distributed system is proposed to simulate the
operational behavior of the refrigerators and calculate the return of investment (ROI) of the proposed
IoT implementation.

Keywords: internet of things (IoT) technology; agent-based simulation; return on investment (ROI);
multi-agents distributed system

1. Introduction

Kevin Ashton first proposed the concept of internet of things (IoT) technology in 1999 [1].
According to [2], IoT is a worldwide network of physical objects that can communicate without human
intervention. IoT is a structure that contains sensors that can send data to a cloud-based system
through communication technology. The data on the cloud system is analyzed and processed using
advanced real-time analytics software, which helps in fast and precise decision-making without a
human involved. The utilization of the internet of things (IoT) technology is expected to increase
significantly in the coming years [1]. The adoption of such technology is receiving quick attention
from many various industries as competitive pressures inspire them to move forward and invest [3].
However, enterprises need to evaluate the opportunities and the challenges of this technology carefully
because of the ambiguity and the high investment costs of IoT projects. Determining the return on
investment (ROI) of IoT projects will be one of their main concerns.

IoT technology can bring a variety of benefits to businesses include improving operational efficiency,
enhancing customers’ experience, increased productivity, and reducing waste [4]. For example, IoT will
change the processes of the supply chain entirely by providing accurate and real-time investigation
of the material and product flow. Companies will invest in adopting IoT technology to improve
materials tracking and optimize the distribution cost. According to [2], the internet of things (IoT)
technology will gain $14.4 trillion by 2022. Four primary industries will make more than half of the
$14.4 trillion. These four industries are manufacturing industry (27%), retail trade industry (11%),
finance and insurance industry (9%), and information services industry (9%) [2]. Many countries,
such as China and the United Kingdom (UK), started to invest in the internet of things (IoT) technology
after understanding its potential benefits. For example, China and the UK government invested

Information 2020, 11, 527; d0i:10.3390/info11110527 www.mdpi.com/journal/information


http://www.mdpi.com/journal/information
http://www.mdpi.com
http://www.mdpi.com/2078-2489/11/11/527?type=check_update&version=1
http://dx.doi.org/10.3390/info11110527
http://www.mdpi.com/journal/information

Information 2020, 11, 527 2 of 15

$800 million and £5 million, respectively to improve IoT technology [1]. The applications of IoT enable
enterprises to improve their operational process and sophisticated production. The applications covered
many industries, including information sharing [5], decision alignment [6], production planning and
optimization [7], supply chain management [8,9], and cloud-based predictive maintenance [10].
The predictive maintenance, our focus in this research, enables continuous monitoring and reporting
to predict necessary maintenance arrangement before a problem exist [11]. It can forecast the expected
failure time of a machine and program its maintenance schedule. This will help enterprises to reduce
maintenance cost and increase machine productivity.

Modeling and simulation for the internet of things (IoT) environments have become a powerful
tool to analyze big data obtained from IoT objects [12,13]. Simulation techniques can overcome big
data challenges and predict the behaviors of a complex system [14]. The massive amount of data
generated by IoT devices has brought many opportunities to the simulation field. According to [15],
IoT big data has brought the following opportunities: It inspires modeling scientists to improve the
existing techniques of simulation. In addition, IoT big data opens new scientific and modeling areas of
research, such as intelligent simulation tools. In this research, a multi-agent distributed simulation is
used to test the economic feasibility of an IoT project.

Currently, there is no standard approach for demonstrating real-world IoT-based scenarios.
However, agent-based simulation model (ABSM) can be considered as one of the effective tools to
support IoT implementation and solve complicated problems associated with adopting such technology.
This research focuses on examining the IoT predictive maintenance project by calculating its ROI using
multi-agent distributed simulation. The rest of the research paper is organized as follows. Section 2
provides an overview of the simulation paradigm, primarily multi-agent distributed simulation in the
IoT environment. Section 3 presents a case study of one of the largest pharmacy retail chain in Saudi
Arabia to determine the usefulness of using multi-agent distributed simulation to evaluate IoT project.
Finally, the research concludes in Section 4.

2. Simulation Paradigm in the IoT Environment

Agent-based simulation model (ABSM) is recognized as a powerful tool to overcome IoT
challenges [16]. It represents an appropriate and solid simulation paradigm to effectively tackle these
challenges and support the growth of the IoT environment [17]. Fortino, Guerrieri [18] proposed
the integration of ABSM and cloud architecture in an IoT setting. ABSM was used to support the
development of distributed multi-agent systems while the cloud architecture helped to improve the
IoT devices with powerful computing abilities and massive resources storage. Bernstein, Verghese [19]
proposed a novel ABSM that allows the simulation of IoT with the main elements of an IoT setting.
Their approach was to present events in IoT as stochastic. The simulation results showed that ABSM
can be a practical solution for IoT systems validation, matching the real-world results. Dugdale,
Moghaddam [20] used agents” architecture of ABSM to model the reasoning of an individual agent
while evacuating a building. Their work was applied to a real construction with IoT sensors installed.
Batool and Niazi [21] presented a new approach to demonstrate the IoT settings. The proposed
approach used the cognitive ABSM framework to mimic complicated IoT systems. They demonstrated
the development of numerous standard complicated network topologies such as random and scale-free
networks. A case study was presented to show the effectiveness of using ABSM to model the networked
IoT devices.

ABSM distributed simulation is considered as a key paradigm for in-depth analysis of IoT big
data [22,23]. With a data-intensive era, there is an essential need to support a multi-agent system which
can access streaming and historical data [24,25]. Traditional distributed simulation techniques are not
appropriate for multi-agent system simulations [22]. A new simulation approach is essential to meet
the scalability and performance requirements of big data analytics. ABSM model allows simulation
elements to be distributed for the best use of the available resources. [26-28]. Such a technique facilitates
agent interaction and integration. However, agent-based modeling presents some challenges that other
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types of simulations, such as discrete-event simulation (DES), do not address them [29,30]. DES is
a process-oriented approach based on a logical process modeling. Even though modeling an agent
behavior is quite simple, it is difficult to be developed by DES. Table 1 compares agent-based modeling
with DES models and summarizes the important attributes to differentiate between the two models.

Table 1. Important attributes of agent and discrete model [31].

Agent-Based Models DES Models
Bottom-up modeling approach Top-down modeling approach
The concept of queue does not exist Queue is a main element
The input distributions of the simulation are The input distributions of the simulation are
mostly based on subjective data or perceptions mostly based on objective data
Each agent in the model has its own control One direction of control

ABSM has been used to model a wide range of applications in various industries such as
manufacturing, retail, telecom, and traffic management [32]. For example, ABSM was used to
model the interaction of cellular chemicals [33] and to model the behaviors of car parking [34].
Several applications of ABSM have focused on social and economic aspects such as the behaviors
of the customers. Twomey and Cadman [35] built an agent-based simulation model to imitate the
customer behavior in a media market. In addition, Douglas, Lee [36] used ABSM to examine the
wireless cellular market. The literature shows that there are a few ABSM applications to model the
network itself. Tonmukayakul and Weiss [37] developed ABSM to model sharing techniques in 5G
networks. In addition, in [38] the authors investigate the frequency-sharing mechanism by considering
the heterogeneous nodes as agents of the ABSM framework. ABSM helped them to understand market
models better than the traditional analytical solution.

COVID-19 has been spreading globally in the last six months resulting in massive financial and
health losses. Many countries placed their towns into a total lockdown causing a huge financial
crisis. Others decided to control the financial loss at the cost of citizens” wellbeing. Consequently,
ABSM models were used to assess the effect of the interchange between people’s health and the
financial state [39]. In addition to that, ABSM models were used to estimate the spread risk of the virus
in numerous accommodations. Such information is significantly important in the decision-making
process to know whether to apply the lockdown partially or completely [40].

Lastly, a small number of the previous studies are presented in the literature focusing on using
ABSM to model complex IoT environments. Due to the high degree of flexibility provided by ABSM,
the easiness of adopting new constraints, and the acceptance of the integration with the data science
technique, the author of this paper believes that ABSM is a perfect match to model and evaluate the
problem addressed in this paper.

3. Case Study

3.1. Description of Manufacturing Environment

One of the largest pharmacy retail chain in Saudi Arabia has been chosen in this research to
determine the practicality of using multi-agent distributed simulation in evaluating the viability of
IoT project. The facility manages a national network in 125 cities across the country, which makes it
one of the fastest-growing facilities in the region. The facility has more than 4000 refrigerators in 1331
different store locations. Currently, the management experiences an annual cost of approximately
$4 million due to unexpected refrigerator failure and its associated cost. The main reason behind this
unexpected cost is the absence of having an effective checking system to monitor failures continually.
One of the suggested solutions is to develop a condition-monitoring system by installing IoT sensors
to its refrigerators.
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The objective of this case study is to evaluate the financial feasibility by determining the ROI of the
IoT solutions, which will be applied in 12 store locations as phase one of the project. A hybrid system
containing a multi-agent and DES was developed to capture the system complexity. The agent-based
simulation model (ABSM) helps to model this environment due to the high degree of flexibility
provided by ABSM. In this research, the methodology proposed by Houston, Gooberman-Hill [41] was
used. Their work aimed to examine the integration between agent-based modeling and data science
techniques as a sophisticated process for responding to applied business questions. A detailed case
study was presented to evaluate the ROI of installing sensors on elevators in an underground station
in London. An agent simulation was built using the analysis from the old data. The model outputs
determine when a positive ROI can be attained and identify the features obtained as an output of
stochasticity in the agent model.

3.2. Agents in the Simulation Model

3.2.1. Analysis of Data

The historical failure rate data of the refrigerators were obtained and analyzed using statistical
software. A distribution fitting technique was applied in this study to find the best fitting distribution.
This technique helps to select the proper probability distribution that best defines the reliability of
a component based on the available historical data. Yet, the use of the distribution fitting technique
is attached to complicated calculations which require deep knowledge in the field of statistics and
programming skills. This concern of choosing the best fitting distribution can be simply resolved
by using a specialized distribution fitting software such as EasyFit. EasyFit software was used in
this research to automate the entire distribution fitting process. It helped to make all the required
calculations. Figure 1 displays the reliability function graph for the refrigerator failure rate which was
obtained using EasyFit. The failure rate follows Weibull distribution with alpha = 5.7 and beta = 0.044.
The goodness of fit tests (Chi-squared, Kolmogorov-Smirnov, and Anderson-Darling) to compare the
fitted distributions were investigated (Figure 2). This specific type of distribution was selected based
on the least square error obtained from the statistical software.

Table 2 lists the simulation input parameter, including the coordinate (geographical) data for
12 store locations and the main manufacturing facility.
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Figure 1. Survival function graph for refrigerator.
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Table 2. Simulation input parameters.

50f15

# Parameter Value Unit Source
. . . Weibull Analysis of Failure
1 Refrigerator Failure Probability (5.7, 0.044) Rate/Year Dataset
2 Refrigeration Repair Time U?Zlf(;;m Hour Client
3 Response Rate to Failure Uniform Rate/Failure Client
P (0.7,0.99)
4 Number of Manufacturing Facility 1 Facility Client
5 Number of store locations 12 Locations Client
6 Average Refrigeration unit/Store 20 Refrigerators Client
7 Number of Refrigeration units 240 Refrigerators Client
. Uniform .
8 Delay of the repair (5,10) Hour Client
9 Number of Trucks 10 Trucks Client
10 Truck Speed 70 Km/hour Client
11 Queue Capacity 40 Trucks Client
. Triangular Client Refrigerators
12 Cost of Repair (50, 60, 100) $ Specialist
. Triangular Client Refrigerators
13 Cost of food waste/Refrigerator (20, 50, 150) $ Specialist
. . Triangular Client Refrigerators
14 Cost of Out of Service/Refrigerator/Day (20, 80, 100) $ Specialist
Distance between the Manufacturing . AnyLogic
15 Facility and each store AnyLogic GIS Km GIS
# Store Longitude Latitude
Al Nahdi Warehouse, Al Nakheel, Jeddah, Makkah
1 Al-Mukarramah Region, 23241, Saudi Arabia 3925031 21.51589
Al Nahdi Pharmacy, Abdul Rahman Al Sudairi Street, Jeddah,
2 Makkah Al-Mukarramah Region, 23437, Saudi Arabia 39.15542 21.59468
Al Nahdi, Ahmad Al Attas st. Street, Jeddah, Makkah
3 Province, 23424, Saudi Arabia 3913148 21.59764
Al Nahdi Pharmacy, Ali Al-Murtada St., Jeddah, Makkah
4 Province, 21589, Saudi Arabia 39.23951 21.51747
Al Sudais Pharmacy, Ahmed Ibrahim Al Tibi, Jeddah, Makkah
5 Al-Mukarramah Region, 21589, Saudi Arabia 39.23941 2151284
Al Nahdi Pharmacy, Bani Malik Street, Historic Jeddah,
6 Jeddah, Al-Mabahith Roundabout, Saudi Arabia 39.23009 21.52764
Al Nahdi Pharmacy, Umm Al Muminin Safia, Jeddah, Makkah
7 Al Mukarramah Region, Saudi Arabi 39.22284 21.51971
Al Nahdi Pharmacy, Abi Al-Abbas Al-Hadithi, Historic Jeddah,
8 Jeddah, Makkah Al-Mukarramah Region, 21589, Saudi Arabia 3922615 2151232
Al Nahdi Pharmacy, Ba Khashab st. Bakhashab Street, Jeddah,
? Makkah Al-Mukarramah Region, 22331, Saudi Arabi 39.21296 2148603
Al Nahdi Pharmacy, King Khalid Street, Al Qurayyat, Makkah
10 Al Mukarramah Region, 22331, Saudi Arabia 3920554 21482
Al Nahdi Pharmacy, Al Matar st. Airport Street, Jeddah,
1 Makkah Al-Mukarramah Region, 16992, Saudi Arabia 39.19677 21.49728
Al Nahdi Pharmacy, Abu Ubaidah bin Al Jarrah, Jeddah,
12 Makkah Al-Mukarramah Region, 22238, Saudi Arabia 39.1974 2149167
13 Al Nahdi Pharmacy, Old Makkah Road, Historical Jeddah, 39.20527 21.48507

Jeddah, Makkah Al Mukarramah Region, 22331, Saudi Arabia
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Goodness of Fit - Details [hide)

Weibull [=55]
Kolmogorov-Smirmov

Statistic 0.04101

P-Value 0.68036

Rank 10
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Reject? No A N

Anderson-Darling

Statistic 0.93223

Rank 23
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Reject? No

Chi-Squared
Deg. of freedom 8

Statistic 8.9659

P-Value 0.33518

Rank 11

@ 0.2 0.1 0.05 0.02 0.01
Cntical Value 11.03 13.362 15.507 18.168 20.09
Reject? No No No No No

Figure 2. Probability destitution for ref. failure rate.

3.2.2. Unified Modeling Language (UML) of ABSM Model

The various types of unified modeling language (UML) diagrams help in representing and
validating simulation design. Three types of UML are presented in this study. Figure 3 shows a
statechart diagram (behavioral illustration of UML) to display the transitions between different objects.
The UML class diagram (Figure 4) is used to show the different system classes, their characteristics,
and the type of relationships between agents. In addition to that, the sequence diagram which defines
the sequence of messages and instructions between agents as is shown in Figure 5.

Store

—] Working Normally Failure

Out of Service

Internal Repair

Manufacturing Facility

External Repair

Figure 3. Statechart diagram.
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Environment
-interRep : Internal Repair(1]
-manufacturings : External Repair(1]
-stores: Store[1.."
-trucks : Truck[1.*]
-workers : Worker{1..*]

¢

1.*
Store
-name : int
-latitude : int
-longitude : int
-population : int

1

*— Extema Repair

-ExternalRepairTime : double

1 Truck

*|-truckSpeed : dou...

-truckiD : int
+client : Store

-

Order

Refrigerator Failure
-failureRate1 : double

Worker -
-workerlD : int

+customer2 : Store

+client : Store

Figure 4. Class diagram.
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t 1.1.1: Receive repair request J
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1.1.2: Confirm receiving the repair request |
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1.1.4: Fixthe failed refriger ator
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2: Confiim the repair

12: Maintenance team goes back

3.2.3. Build the Simulation Model

Figure 5. Sequence diagram.
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The scope of the case study contains one manufacturing facility, 12 stores, and ten trucks.
The simulation model was built using AnyLogic software. There are four agents in ABSM: manufacturing

agent, store agent, order agent, and truck agent. The structure of each agent and its parameters are

shown in Figure 6.

6 Manufacturing Facility

0 Store

0 Order

6 Truck

(54}

o

z@a o
- =

I statechart
normalWork

:k ustomer

@ numberTrucks

@ enteredSystem

@ client

Figure 6. The structure of each agent in the agent-based simulation model (ABSM).

All four agents are accessible from the main level. The 12 different store locations are combined in
a collection feature in AnyLogic using the coordinate data for each store (Figure 7).
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0 @ b Advanced
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e Umm as Salam

Figure 7. The main level in ABSM.

The store agent has two different statecharts (normalWork and waitingDetails), which describes
the refrigerator behavior (Figure 6). Initially, the 240 refrigerators are in the normalWork state. When a
failure occurs, the refrigerator moves from normalWork state to waitingDetails state. A specific
failure rate triggers the transition between the two states. Maintenance orders are then sent to the
manufacturing agent (different agent) requesting repair. After the repair, the refrigerator goes back to
work typically (normalWork state) based on specific time out. When the manufacturing agent receives
the maintenance orders, the truck starts moving to fix the failed refrigerator and then going back.
The geographic information system (GIS) functionality in AnyLogic helps not only to locate the store
and manufacturing agent on the map using their longitude and latitude data but also to define the
exact roads between them automatically.

Figure 8 shows the processing logic of the manufacturing agent. A discrete-event simulation (DES)
was developed to capture the truck movement between the two different types of agents. Each truck is
assigned to a specific maintenance order using the parameters defined in the truck and order agent.

The DES model inside the manufacturing agent is connected to the store agent (hybrid system)
using the connection feature embedded in AnyLogic. Different Java codes are used to capture system
behaviors (Figure 9).

trucks

e seize repair release sink

delay toPharmacy movelo

resourceTaskStart resourceTaskEnd

o I} i Bg—°

Figure 8. Discrete-event simulation (DES) model in the manufacturing agent.
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Manufacturing Facility Store Agent
Agent
O waitingDetails - State & connections - Link to agents
Name: waitingDetails [Ashowname [Jignore Name: [ connections
Visible: @ yes
Fill color:
This is a standard agent connections link
Entry action: ¥ order order = new order (this); 468 1
X i Agent type: | Agent v
send (order, main.Manufacturing); 1 oters genttype (A9
rectangle. setFillColor (yellowGreen); ey u W0 tion of links
main.Failures++;|
Rmain
Exit action: This standard link is always bidirectional
&0 connactions * Communicati
ecuted for
. m plicable connections
& transition1 - Transition
. trucks Message type: | arder v
Mame: transitionl Olshow name  [ignere .
£ On message received:
Tiggeredby: | Messege v enter.take( msg );
Message type | Object v
Fire transition: (O Unconditionally Actions
@ Cn particular message
p On enter.
O expressionis true
Message “Delivered!” On at exit:
Action: On exit: send("Delivered!", agent.customer);
Guard: On remove:

ABM t I DES

Show name [ ]ignore

Figure 9. The hybrid system.
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One of the essential elements in ABSM is to determine the out of service time for the 240 refrigerators
in the 12 different store locations. This helps significantly to calculate the total cost and to validate the
simulation model. The Java code is shown in Figure 10. Figure 11 shows the visualization of the ABSM
animation of the Saudi Arabia map. The manufacturing facility and the 12 store locations are placed

on the exact physical location to determine the accurate truck movement time between them.

* Actions

On enter:

agent.enteredSystem=time(DAY);

* Actions

On enter:

main.outOfService.add(time(DAY)-agent.enteredSystem);

Figure 10. Determine the out of service time in ABSM.

°
Jeddah

b
0 ¢ o
b ©

t

¢

g'c
COper R Aty
= [ Virtual | :

Figure 11. Model animation.
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3.2.4. ABSM Validation

Several runs were performed for 1 year to examine the ABSM validity. The process of validation
follows the approach proposed by Kliigl [42]:

1. Face validity: the facility managers approve the ABSM base case initial results.

2. Statistical validation: the initial results of out of service time in ABSM for 250 days were compared
with a subset of out of service time for the same period, which was obtained from the facility
management. The comparison shows a 4.32% relative difference between the two results, which
suggests the ABSM is valid to mimic and imitate the real system.

3.3. Simulation Results

The initial results of the base case model of ABSM show an annual total cost of
$217,516.354 + $6360.759 due to 293 failed refrigerators and annual out of service cost of
$189,456.975 + $5593.887 (Figure 12).

QutOfServiceCostPerDay FoodWasteCostPerFailure RepairCostPerFailure
101.423 44.181 51.586
O Failures (5 FoodWasteCosiP=:~ailure

203 44181
outOfService G HeparcostPerFaiure
Count 140 51528
Mean  13.343 ;
ed G%tsztgemcemslparnay
Wax  12.363 )
Deviation 0,011 D outofService .
Mean Confideree 0.062 140 samples [13.222...13.383]. Mean=12.343
= LT 3 OutOfServiceCost
386 samples [0... 180,456.583] Mean=02 525776
) TotalCost
IR0 i s amar aimeemain 207 25
TotalCost

OutOfServiceCost Count 366
Count 385 Mean  110,307.863
25. 774 Min 0

yREEe Max 217,51
n ,
o Deviation
Mean confidenc
Sum 40,372

Max 189,456,563

Deviation

Mean confidence 5,593, 8!
33,864,434.086

@& TotalCost - Statistics

Name: | TotalCost [Jignere
Visible: (@ yes

® Discrete(samples have no duration in time)
(@] L&_ Continuous(samples have duration in time)

Value: (Failures*(FoodWasteCostPerFailure+RepairCostPerFailure))+(outOfService. sum()*OutofServiceCostPerDay)

(®) Update data automatically
(O Do not update data automatically

Figure 12. ABSM results.
3.3.1. Optimization Experiment

The best optimization of resources can be achieved by applying optimization techniques. Currently,
the facility management operates ten trucks, and it was noticed that the utilization of the truck is
low (39%). One of the problems that need to be solved is determining the ideal number of trucks.
Since ABSM is valid with GIS functionality imbedded in AnyLogic software, this problem can be solved
easily by conducting an optimization experiment (Figure 13). The management wants to maintain a
targeted truck utilization of 85%. The optimization experiment result shows that the truck utilization
of 76% can be reached by using five trucks only.
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Name: Optimization [ignore
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Maximum available memory: 256 v| Mb
Create default Ul
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Figure 13. Optimization experiment and its results.

3.3.2. What-If Scenarios

Different scenarios can be applied to understand system behaviors. For example, two scenarios
were chosen to understand the effect of the delay in the repair. Scenario 1 in Table 3 shows a reduction
of the annual total cost by 0.91%. The out of service cost is minimized by 1.06%, and the out of service
time is reduced by 19 days when the repair delay is decreased to half. Scenario 2, in the same table,
shows that the annual total cost is reduced by 4.26%, the out of service cost is minimized by 2.07%,
and the out of service time is reduced by 38 days when there is no delay in the repair process.

Table 3. The result summary of Scenario 1 and Scenario 2.

Annual Total Cost ~ The Out of Service Cost = The Out of Service Time Reduced By

Scenario 1 $215,545.142 $187,485.351 19 days
Scenario 2 $208,276.813 $185,516.657 38 days

The facility aims to reduce the failure rate and its associated cost. One of the considered solutions is
to invest in an IoT project by installing sensors on its 240 refrigerators to enable predictive maintenance
capabilities. Multi-agent distributed simulation is used to test the economic feasibility by calculating
the ROI of this project. This project requires the use of an intelligent sensing platform with routing
abilities. Five IoT sensors need to be installed on each refrigerator to monitor its major components.
Several potential sensors were assessed such as Libelium Waspmote and Genuino 1000. However,
Wzzard sensing hardware was the most suitable platform in this case based on the facility’s IT
team. In addition to that, the project requires an annual subscription to predictive analytics software.
The facility expected that $550,000 would be the cost of such a project.

A total of 100 simulation runs were performed for 356 days to examine the full spectrum of
simulation results. Table 4 presented the number of failed refrigerators corresponding to different
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failure reduction rates. These failure reduction rates were suggested by IoT experts. The goal of
applying these scenarios is to expose the dynamics of change and use these insights to achieve
workable solutions to the problem. Table 5 shows a significant reduction in the annual cost when the
failure rate is improving (the facility suggests a response rate between 0.7 and 0.99 to respond to each
refrigerator failure).

Table 4. Number of failed refrigerators corresponding to different failure rates.

Failure Reduction Rate By Failed Refrigerators
80% 144
85% 106
90% 76
95% 33
99% 7

Table 5. The average annual cost for the different rates of failures and responses.

Response Rate

Failure Rate Reduction 70% 80% 85% 90% 95%
80% $189,811.623 $189,439.906 $189,254.051 $189,068.194 $188,885.337
85% $142,182.738 $141,903.953 $141,764.56 $141,625.167 $141,485.665
90% $103,206.331 $103,003.578 $102,902,201 $102,800.825 $102,793.021
95% $47,171.959 $47,079.03 $47,032.566 $46,986.102 $46,939.638
99% $10,006.472 $9986.76 $976.904 $9967.048 $9957.192

3.3.3. Financial Analysis
ROI can be defined by:

(Present value of the cost-saving — Present value of Investment)

Discounted return on investment =
Present value of the Investment

All costs in this study are discounted to the present value (PV). The facility suggests 12.8% as an
annual discount rate. Table 6 illustrates how ROI was calculated with a 95% failure reduction rate and
an 80% response rate.

Table 6. Return of investment (ROI) calculation (95% failure reduction rate and 80% response rate).

Year 0 1 2 3 4 5 6
Cost Saving - $170,483.79 $170,483.79 $170,483.79 $170,483.79 $170,483.79 $170,483.79
PV (Cost Saving) - $151,138.11 $133,987.69 $118,783.41 $105,304.44  $93,355.00 $82,761.53
Total PV (Cost Sav.) $151,138.11  $285,125.80 $403,909.21 $509,213.65 $602,568.65 $685,330.17
Investment $550,000
PV(Investment) $550,000
ROI -72.5% —48.2% —26.6% —7.4% 9.5% 24.6%

Table 7 and Figure 14 summarize the ROI values for different failure reduction rate with a facility
response rate of 80%. Outputs show a positive ROI with a failure reduction rate of 0.95 achieves 9.5%
in Year 5. In comparison, a failure reduction rate of 0.99 shows a positive ROI of 12.7% as soon as Year
4 (disregarding the response rate of the facility).
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Table 7. Summary of annual cost savings and multi-year ROI for different rates.

Facility Response Rate = 0.80 ROI Values
Reductl'on rates ' Annt%al 1 5 3 4 5 6 7 8
of failures cost-simulation result
0.95 $47,079.03 -725% —482% —-26.6% —7.4% 9.5% 24.6% 37.9% 49.7%
0.99 $9,986.76 —-66.5% —36.9% -10.6% 12.7% 33.4% 51.7% 67.9% 82.3%
100.0%
(o)
O
50.0% 0]
o)
X o)
o) 0.0% 7S
I
0 1 2 3 4 5 6 7 8 9
o)
-50.0%
(@)
-100.0%
Years

95% @ 99%

Figure 14. ROI values for different reduction rates of failures.
4. Discussion and Conclusions

The ABSM outputs suggest that the presented application of the IoT Intelligent Sensing Platform,
which allows the predictive maintenance capabilities, would realize a positive ROI between Years
4 and 5 relying on the failure reduction rate of the predictive maintenance tactic. As for practical
implementation, this study proposes that ABSM is a practical tool for facility management. It is vital to
evaluate the IoT execution, assess its feasibility, and reduce its associated risks. Additionally, as skilled
expert with the required technical and administrative skills, managers can use the ABSM outputs to
address the ROI uncertainty as it is one of the main obstacles of IoT adoption.

One of the limitations of this study is that the current failure rates of the refrigerator are based on
a fresh historical data, and it might not be applicable in the near future. Moreover, the likelihood of
replacing the sensors is not considered. Future research work should combine numerous perceptions
from software engineering, manufacturing engineering, and computer science. This combination
would help in conveying the experience and designing a strong artificial intelligence structure that can
be combined with ABSM.
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