
 information

Article

Improving Undergraduate Novice Programmer Comprehension
through Case-Based Teaching with Roles of Variables to
Provide Scaffolding

Nianfeng Shi

����������
�������

Citation: Shi, N. Improving

Undergraduate Novice Programmer

Comprehension through Case-Based

Teaching with Roles of Variables to

Provide Scaffolding. Information 2021,

12, 424. https://doi.org/10.3390/

info12100424

Academic Editor: Willy Susilo

Received: 4 September 2021

Accepted: 14 October 2021

Published: 16 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Computer and Information Engineering, Luoyang Institute of Science and Technology,
Luoyang 471000, China; shinf@lit.edu.cn

Abstract: A role-based teaching approach was proposed in order to decrease the cognitive load
placed by the case-based teaching method in the undergraduate novice programmer comprehension.
The results are evaluated by using the SOLO (Structure of Observed Learning Outcomes) taxonomy.
Data analysis suggested novice programmers with role-based teaching tended to experience better
performances, including the SOLO level of program comprehension, program debugging scores,
program explaining scores, except for programming language knowledge scores, compared with
the classical case-based teaching method. Considering the SOLO category of program comprehen-
sion and performances, evidence that the roles of variables can provide scaffolding to understand
case programs through combining its program structure with its related problem domain is dis-
cussed, and the SOLO categories for relational reasoning are proposed. Meanwhile, the roles of
variables can assist the novice in learning programming language knowledge. These results indicate
that combing case-based teaching with the role of variables is an effective way to improve novice
program comprehension.

Keywords: undergraduate novice programmer; program comprehension; case-based teaching; roles
of variables; SOLO taxonomy

1. Introduction

As a novice, computer programming learning is a complex task [1,2]. Approximately
26.4% of computer science students from the Luoyang Institute of Science and Technology
(LIT) did not pass the C language programming subject in the first semester from 2007 to
2014 [3]. Data from all over the world also indicate that more and more students do not
want to pursue a major in computer programming in higher education [4]. One reason why
students fail to learn programming might be that novice programmers struggle to perform
relational reasoning [5] due to some misconceptions about variables [6]. As a result, they
are usually either unable to accurately understand the fundamentals of programming [2]
or combine the various statements and structures of the programming language into a
valid program [7].

Programming is one cognitive task. Programmers require logical thinking together
with technical skills. Over the past decades, many instructional methods and pedagogical
techniques have been proposed to improve students’ programming learning, such as creat-
ing games, live coding [8], case-based programming [9], and so on. Despite the differences
among these teaching methods, most share the same basic point view: assisting the novice
in program comprehension. The engagement with relational reasoning explicitly through
program comprehension, e.g., reading, explaining, and debugging, could significantly
improve novice program skills [10,11].

Concerning the most effective way to teach novices program comprehension, the
case-based teaching method is usually used, which is a highly adaptable style of teaching
that involves problem-based learning [12]. Previous studies have shown that case-based

Information 2021, 12, 424. https://doi.org/10.3390/info12100424 https://www.mdpi.com/journal/information

https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0002-0346-6071
https://doi.org/10.3390/info12100424
https://doi.org/10.3390/info12100424
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/info12100424
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info12100424?type=check_update&version=1

Information 2021, 12, 424 2 of 14

teaching can cultivate a higher level of critical thinking and foster creativity [4] and problem-
solving skills [13]. These capabilities are necessary for novice programmers to comprehend
programs. However, understanding the structure of the case programs, discussing and
debating problem-solving strategies, and relating case problems to relevant theoretical
knowledge all impose cognitive loads on novice programmers. Various pedagogical
techniques, such as visualization, creative interaction, and animation, were utilized to assist
novice programmers in literature program codes. However, the program comprehension is
still challenging.

Prior research shows that the roles of variables enable novice programmers to engage
in programming in a comprehensive and expert way [3,4,14]. Understanding programs is
crucial to program comprehension. If we provide novice programmers with the roles of
variables, they will understand the case program reasonably and improve their problem-
solving performance, which in turn improves their programming learning outcomes.

We carried out one experiment on program comprehension in the C language pro-
gramming course with the case-based teaching method to investigate our hypothesis. The
SOLO (Structure of Observed Learning Outcomes) taxonomy was adopted to test whether
the roles of variables can provide scaffolding to enhance the pedagogical effect.

2. Literature Review
2.1. Case-Based Teaching

Case-based teaching is a term of practical teaching approach, and it has been used
successfully from as early as 1870 [15]. A case is a way to bridge the abstract nature of
principles and teaching standards to classroom practice [12]. By using cases, the teacher
can present students with examples or best practice models which can describe theoretical
principles in practice. Previous studies have shown that case-based teaching can foster
students’ ability to analyze complex problems and to practice decision-making through
group discussion. Meanwhile, case-based teaching can increase the student engagement in
class activities, which promotes learning and increases achievements [16–18].

Case-based teaching has been successfully used in computer programming courses [19,20],
and it is useful for deepening the understanding of the meaning of the concepts and to
improve the design of the program [21]. Moreover, the effectiveness of case-based teaching
in computer programming language is not related to entry qualifications [22].

However, learning about computer programming with the case-based teaching method
is a big challenge to novice programmers. Novice programmers typically lack computer
programming theoretical knowledge and programming experience. Case-based teaching,
on the other hand, relies heavily on discussion and debate of the case issues and the ar-
ray of potential solutions [23]. To discuss and debate on a case program, students need
to understand the structure of the program and to relate it to relevant experiential and
theoretical background. The teacher should carefully structure case-based instruction of
novice students in order not to hinder acquisition of introductory domain knowledge [24].
Traditional case-based teaching with statics materials fails to teach program learning due to
students’ poor program understanding [25]. A dynamic learning environment, for example,
education games [26], should be employed to develop students’ mental representation
of the problem [22,26,27]. Higher-level knowledge beyond the syntax and operation of
computer programming is also needed to enable students to comprehend the case program
at the early stage of case-based programming learning [28]. In brief, how to alleviate the
cognitive loads placed by the case-based teaching method is still a hot topic to resolve in
novice program learning.

2.2. Roles of Variables

Roles of variables are a conceptual framework that can be utilized to improve novice
program learning. The concept of the roles of variables was introduced by [29] after he
found: (a) variables used in programs have several standard use patterns and (b) 99% of
variables in novice-level procedural programs could be covered by only ten roles. A role is

Information 2021, 12, 424 3 of 14

characterized by the sequence of continuous values of a variable and its dependency on
other variables, rather than the way that the variable is used [29]. There are eleven kinds of
roles of variables in the novice C language programming, including Fixed, Value, Temporary,
One-way flag, Most-wanted holder, Most-recent holder, Gatherer, Organizer, Container, Follower,
Stepper, and Walker [14].

Roles of variables represent programming knowledge at a level higher than simple
programming language knowledge [30]. Therefore they can be explicitly taught to stu-
dents. Prior researches suggested that roles of variables could promote the programming
learning of novice programmers and help students to comprehensive programming [31,32].
Students with the role-based teaching method tended to stress deep program structures
as experienced experts while they had fewer problems with the adoption of variables in
program learning [33].

Can roles of variables be employed by the program comprehension with the case-
based teaching method in order to help novice programmers perform the discussion and
debate of the case issues and the array of potential solutions? This is a fresh idea that can
be adopted to alleviate the cognitive loads placed by the case-based program learning.

2.3. SOLO Taxonomy for Program Comprehension

SOLO (Structure of Observed Learning Outcomes) taxonomy presents a way to de-
scribe the increasing complexity of learners’ activities. SOLO is one of the most commonly
used taxonomies, which is based on the integration of details into a structural pattern
(qualitative) and the amount of learners’ knowledge (quantitative) [34]. Using this taxon-
omy, students’ responses will be classified according to the level of integration rather than
absolute correctness [35].

SOLO can be adopted to reliably encode student responses for program comprehen-
sion questions [34,36,37]. There are three reasons, including (a) SOLO enable a teacher
examine how well a student can read several lines of code and integrate them into a valid
program [37]; (b) SOLO is a useful organizing framework for comparing and evaluating
work related to the assessment of novice programmer through reading problems [38];
and (c) the SOLO categories are consistent with the performance of students in program
comprehension [36].

Program comprehension is a cognitive process. To understand how to better pro-
gram, both the holistic point of view and the local perspective are required, which have
students see both “the trees” and “the forest” [5]. The SOLO categories schema of program
comprehension proposed in [35] (see Table 1) was used in this study, which has proven
to be the most accurate and effective educational taxonomy for evaluating programming
understanding [10,34,38,39].

Table 1. SOLO categories for program comprehension [35].

SOLO Category Description

Relational (R) A summary of what the code does in terms of its purpose (the forest)

Relational Error (RE) A summary of what the code does in terms of its purpose, but with
some minor error

Multistructural (M) A line-by-line description of all the code (the trees)

Other (O) Any other description of part or all of the code, displaying no real
evidence of understanding of the code as a whole

2.4. PlanAni System

It is a great challenge job for novice programmers to identify roles of variables and
following program execution. Fortunately, the program visualization is a productivity
tool that can increase roles of variables teaching effectiveness. In this investigation, a
visualization tool named PlanAni system was employed.

PlanAni system is a productivity tool supporting the concept of the roles of the variable
(see Figure 1). In PlanAni system, each variable in the computer program is visualized as a

Information 2021, 12, 424 4 of 14

role image. For example, variable “false” is a role of fixed value, and is visualized as a stone
in Figure 1, giving the impression that the value of a role of fixed value is initialized and
cannot be changed. In addition to role images, role character animations are also employed
to visually demonstrate the operations of variables by PlanAni system. For example, the
animation of assignment to a stepper is that a footprint rolls smoothly along the footsteps,
which implies the fact that the new values of steppers are known to be a succession of
values from the beginning [30].

Information 2021, 12, x FOR PEER REVIEW 4 of 14

example, the animation of assignment to a stepper is that a footprint rolls smoothly along 146

the footsteps, which implies the fact that the new values of steppers are known to be a 147

succession of values from the beginning [30]. 148

Table 1. SOLO categories for program comprehension [35]. 149

SOLO category Description

Relational (R)
A summary of what the code does in terms of its purpose (the

forest)

Relational Error (RE)
A summary of what the code does in terms of its purpose, but

with some minor error

Multistructural (M) A line-by-line description of all the code (the trees)

Other (O)
Any other description of part or all of the code, displaying no real

evidence of understanding of the code as a whole

 150

Figure 1. The interface of the PlanAni system. 151

2. Research method 152

2.1. Participants 153

Figure 1. The interface of the PlanAni system.

3. Research Method
3.1. Participants

A total of 57 first-grade undergraduate students were enrolled in this research, all of
whom were majoring in computer science and technology from the Luoyang Institute of
Science and Technology (LIT). They all attended the C Language Programming Course
in the second semester of the 2018/2019 school year, which is a mandatory subject with a
total of 36 class hours, including 8 laboratory exercises and 28 theoretical lectures.

One control (N = 27) and one experimental (N = 30) group were used in this study,
which were randomly assigned based on the two intact classes. Therefore, nonequivalent
pre-test post-test control group design was used.

Information 2021, 12, 424 5 of 14

3.2. Instruments

Three types of instruments, SOLO levels of the program comprehension, case-based
teaching method, and PlanAni system were used in the study.

3.3. Procedure

The experiment started from the first week of the second semester of the 2018/2019
school year, lasting over eighteen weeks with two class hours per week. Experimental group
students were instructed with a revised case-based teaching approach supported by roles
of variables (named role-based teaching method) in learning the C Language Programming
Course. In contrast, control group students used the classical case-based teaching method.
Figure 2 is the diagram of the educational activities in the traditional group (left side) and
the role-based group (right side). Activities of the theoretical lectures are depicted in the
upper part of Figure 2, and laboratory exercises are in the lower one. Activities with dotted
borders are conducted by the teacher, activities with dashed borders are carried out by
students, and the others are completed by the teacher and students together.

Information 2021, 12, x FOR PEER REVIEW 6 of 14

deepen and consolidate students’ understanding of the roles of a variable, in the next two 204

homework assignments, participants must outline the role and reason for its adoption. 205

Secondly, the role of the variable was systematically practiced in the laboratory exer- 206

cises (see Figure2). Three educational activities were required to make students exactly 207

understand the roles of variables and appropriately apply them to the program compre- 208

hension: (a) students were asked to read a straightforward case program carefully selected 209

by the teacher for 10 to 15 minutes; (b) students compiled a complex computer program 210

by revising the example program; and (c) students were required to identify the roles in 211

their program and then explain the life cycle of the variable to the teacher or their peer 212

students with the visual IDE as demonstrating the results. 213

Theoretical

lectures

Teach the programming language knowledge

State the problem and present an example program

Learn the example program

with generic IDE and group

discussion

(Teacher and students)

Learn the example program with generic

IDE and group discussion (Teacher and

students)

Need one new role of variable?

State the informal definition of the

role

State the definition of the

role in detail

Visualize the life cycle of

variables and their state

changes in PlanAni

Identify out roles of variables

Read a simple program and

discuss it with peer learners

Read a simple program and discuss it with

peer learners in the role-based method

Compile a complex program following the example

Reason the result to peer

learners or the teacher

Reason the result to peer learners or the

teacher in the role-based method

Y

N

Case-based group Role-based group

Laboratory

exercises

 214

Figure 2. Pedagogical activities in the control and experimental groups. 215

At the last stage of the course, all participants were asked to complete a final exami- 216

nation. The final exam was a two-hour paper-and-pencil test including four types of items: 217

Figure 2. Pedagogical activities in the control and experimental groups.

Information 2021, 12, 424 6 of 14

Before the semester, the researchers collected some case programs and made them
into handouts. In addition to the handouts, the definitions of the eleven roles with short
program examples in C language described in [40] were printed as booklets to conduct the
role-based teaching in Chinese. At the beginning of the course, all students were presented
with the printed handouts. However, the booklets on the roles of variables were only
handed out to students from the role-based group.

The theoretical lectures and laboratory exercises of the course were methodically
conducted. The pedagogical resources, such as case programs, laboratory tasks, homework
assignments, and the sum of teaching time, were the same in the experimental and control
groups, but roles of variables were only carried out in the experimental group (see Figure 2).

The C Language Programming Course in the experimental group was conducted as
follows. Firstly, the role of the variable was gradually presented in the theoretical lectures
(see Figure 2). The teacher provided some basic concepts of C programming language
covered by case programs. As a new role appearing in the case program, the teacher
instructed its definition in detail with the role-based animation and provided students with
a case program in the PlanAni system (the more information about PlanAni can be found
in the coming related contents). Thereafter, the teacher will repeat the informal definition
and characteristics of a role whenever it reappeared in the forthcoming case programs. In
practice, the code tracing and debugging technologies, supported by the generic visual IDE
(Integrated Development Environment), were employed to visually show the life cycle of
the variable and intuitively elaborate the function of a role. The teacher set breakpoints in
the program codes and systematically explained the sequence of states of each variable
role and its dependency on other variables with the visual debugging tools of IDE, such as
QuickWatch, Step over, Set Next Statement, and so on. During the process, the teacher and
students predicted the following states of a variable and the other variables it depended
on, viewed its execution process, and checked the final execution result. To deepen and
consolidate students’ understanding of the roles of a variable, in the next two homework
assignments, participants must outline the role and reason for its adoption.

Secondly, the role of the variable was systematically practiced in the laboratory exer-
cises (see Figure 2). Three educational activities were required to make students exactly
understand the roles of variables and appropriately apply them to the program compre-
hension: (a) students were asked to read a straightforward case program carefully selected
by the teacher for 10 to 15 min; (b) students compiled a complex computer program by
revising the example program; and (c) students were required to identify the roles in their
program and then explain the life cycle of the variable to the teacher or their peer students
with the visual IDE as demonstrating the results.

At the last stage of the course, all participants were asked to complete a final examina-
tion. The final exam was a two-hour paper-and-pencil test including four types of items:
basic knowledge questions (including the true or false questions (TFQ) and multiple-choice
questions (MCQ)), program explaining (EXPL), program debugging (DBG), and program
construction (CONS).

3.4. Data Collection

Two variable data sets were collected: the final paper-and-pencil test results and SOLO
levels of the program comprehension.

Previous studies suggested that the SOLO level of the responses to program expla-
nation was consistent with program comprehension. There were two steps to obtain the
SOLO level of program comprehension. First, a participant’s answers to EXPL were as-
signed SOLO levels according to Table 1. Then, the SOLO level received was converted into
corresponding scores. Table 2 is the numeric SOLO categories of program comprehension
adopted in the present study.

Information 2021, 12, 424 7 of 14

Table 2. Numeric SOLO categories of program comprehension.

SOLO Category Converted Score SOLO Category Converted Score

R 4 M 2
RE 3 O 1

4. Results and Findings

An independent t-test of the final paper-and-pencil test scores of the two groups was
conducted to evaluate the overall effectiveness of the role-based teaching method. As
shown in Table 3, there was a significant effect for the teaching method, t(2.61) = 55.0,
p = 0.012, with students from the experimental group receiving higher scores for the final
paper-and-pencil test than from the control group. The mean of final paper-and-pencil test
scores in the experimental group was 10% more than the control group, suggesting the role-
based teaching method was more effective than the classical case-based teaching approach.

Table 3. Results of the t-test of the final paper-and-pencil test scores.

Group N M SD t df p

Experimental 27 79.7 10.01 2.61 55 0.012
Control 30 71.8 12.65

Some data analyses were carried out to understand much more about the difference,
especially the effects of role-based teaching on novice program comprehension. Firstly, a
Mann-Whitney U test of the scores for TFQs and MCQs was conducted because these scores
were not normally distributed. Table 4 showed that the score of TFQs and MCQs in the
experimental (Mdn = 32) group was the same in the control group (Mdn = 33.5), U = 509.0,
p = 0.095. TFQs and MCQs are related to the programming language knowledge of C
language, which is the basis for program comprehension. Given the exact distribution of
the scores of TFQs and MCQs achieved, it will imply that the learning of the programming
language knowledge about C language was sufficiently carried out in the experimental
and control groups.

Table 4. Results of the Mann-Whitney U test of the scores for TFQs and MCQs.

Group N MR U z p

Experimental 27 25.15 509.0 1.67 0.095
Control 30 32.47

Secondly, to evaluate the effect of the role-based teaching method on the ability to
comprehend the program, a Mann-Whitney U test of the SOLO scores of responses for
EXPL, between the experimental and control groups was used due to the non-normal
distribution of the numeric SOLO scores. Table 5 showed that the SOLO score of response
for EXPL was higher in the experimental (Mdn = 3.5) than in the control group (Mdn = 2.5),
U = 263.5, p = 0.019. In Figure 3, 37% of the students from the experimental group achieved
a whole SOLO level of program comprehension compared to 17% of the control group.
These results indicated that students with role-based teaching tended to understand a
program from a relational view corresponding to the control group.

Table 5. Result of the Mann-Whitney U test of the SOLO scores of responses for EXPL.

Group N MR U z p

Experimental 27 32.24 263.5 −2.36 0.019
Control 30 24.28

Information 2021, 12, 424 8 of 14

Information 2021, 12, x FOR PEER REVIEW 8 of 14

distribution of the numeric SOLO scores. Table 5 showed that the SOLO score of response 255

for EXPL was higher in the experimental (Mdn = 3.5) than in the control group (Mdn = 256

2.5), U = 263.5, p = 0.019. In Figure 3, 37% of the students from the experimental group 257

achieved a whole SOLO level of program comprehension compared to 17% of the control 258

group. These results indicated that students with role-based teaching tended to under- 259

stand a program from a relational view corresponding to the control group. 260

Table 5. Result of the Mann-Whitney U test of the SOLO scores of responses for EXPL. 261

Group N MR U z p

Experimental 27 32.24 263.5 -2.36 0.019

Control 30 24.28

Lastly, an independent t-test of the EXPL scores between the experimental and con- 262

trol groups was used to test whether the students from the role-based group performed 263

better in EXPL than the classical case-based group. Table 6 showed that the EXPL scores 264

in the experimental group were significantly higher, t(2.72) = 55, p = 0.009, than in the 265

control group. The mean EXPL score in the experimental group was 9% higher than the 266

control group. The results indicate that the role-based group outperformed the traditional 267

group in EXPL. 268

 269

Figure 3. Distribution of the SOLO scores of program comprehension. 270

Furthermore, to test the effectiveness of the role-based teaching method in program 271

debugging, a Mann-Whitney U test of the DBG scores was also conducted between the 272

experimental and control groups. Table 7 showed the DBG score was higher in the exper- 273

imental group (Mdn=8) than in the control group (Mdn=5.5), U=164.5, p<0.001. 274

Figure 3. Distribution of the SOLO scores of program comprehension.

Lastly, an independent t-test of the EXPL scores between the experimental and control
groups was used to test whether the students from the role-based group performed better
in EXPL than the classical case-based group. Table 6 showed that the EXPL scores in the
experimental group were significantly higher, t(2.72) = 55, p = 0.009, than in the control
group. The mean EXPL score in the experimental group was 9% higher than the control
group. The results indicate that the role-based group outperformed the traditional group
in EXPL.

Table 6. Results of the t-test of the EXPL scores.

Group N M SD t df p

Experimental 27 24.0 3.45 2.72 55 0.009
Control 30 21.3 3.98

Furthermore, to test the effectiveness of the role-based teaching method in program
debugging, a Mann-Whitney U test of the DBG scores was also conducted between the
experimental and control groups. Table 7 showed the DBG score was higher in the ex-
perimental group (Mdn = 8) than in the control group (Mdn = 5.5), U = 164.5, p < 0.001.
Meanwhile, the scores of DBG of the experimental group were between 8 and 10 (about
67%), while between 4 and 6 (about 67%) in the control group (see Figure 4). These results
suggested that the students in the experimental group received better scores of DBG than
the control group.

Information 2021, 12, 424 9 of 14

Table 7. Result of the Mann-Whitney U test of the DBG scores.

Group N MR U z p

Experimental 27 37.91 164.50 −3.89 <0.001
Control 30 21.00

Information 2021, 12, x FOR PEER REVIEW 9 of 14

Meanwhile, the scores of DBG of the experimental group were between 8 and 10 (about 275

67%), while between 4 and 6 (about 67%) in the control group (see Figure 4). These results 276

suggested that the students in the experimental group received better scores of DBG than 277

the control group. 278

Table 6. Results of the t-test of the EXPL scores. 279

Group N M SD t df p

Experimental 27 24.0 3.45 2.72 55 0.009

Control 30 21.3 3.98

Table 7. Result of the Mann-Whitney U test of the DBG scores. 280

Group N MR U z p

Experimental 27 37.91 164.50 -3.89 <0.001

Control 30 21.00

 281

Figure 4. Distribution of program debugging scores. 282

4. Discussion 283

This research reveals that the role-based teaching method can yield better achieve- 284

ments than the classical case-based teaching approach. In the final exam, 11% of students 285

in the role-based group achieved the same or higher than 90% accuracy, compared to 5% 286

in the classical case-based group. In the program explaining, the mean score was increased 287

by 9% by using the role-based teaching method. Meanwhile, in program debugging, 22% 288

of students in the role-based group received full marks, compared to 10% of the classical 289

case-based group, as shown in Figure 4. Apart from programming knowledge, practical 290

skills are essential to novice programmers. Case-based teaching can help programmers go 291

beyond program comprehension to integrate programs with programming language syn- 292

tax and semantics [21]. Roles of variables can teach novice programmers to understand 293

computer programming [14]. Studies suggested that ‘understanding’ and ‘application’ 294

Figure 4. Distribution of program debugging scores.

5. Discussion

This research reveals that the role-based teaching method can yield better achieve-
ments than the classical case-based teaching approach. In the final exam, 11% of students
in the role-based group achieved the same or higher than 90% accuracy, compared to 5% in
the classical case-based group. In the program explaining, the mean score was increased
by 9% by using the role-based teaching method. Meanwhile, in program debugging, 22%
of students in the role-based group received full marks, compared to 10% of the classical
case-based group, as shown in Figure 4. Apart from programming knowledge, practical
skills are essential to novice programmers. Case-based teaching can help programmers
go beyond program comprehension to integrate programs with programming language
syntax and semantics [21]. Roles of variables can teach novice programmers to understand
computer programming [14]. Studies suggested that ‘understanding’ and ‘application’
can improve students’ intentions to learn programming, and motivation can significantly
enhance students’ performance [2,7,21,22].

This research also suggests that the students with role-based teaching tend to present
relational answers to the program explanations, which helps them to become experts.
In Figure 3, students with SOLO scores of program comprehension of 3.3, 3.7, and 4.0
accounted for 37%, 22%, and 37% of the total number of students in the role-based group,
compared to 37%, 20%, and 17% of the classical case-based group. The SOLO score of
program comprehension of 3.3, 3.7, and 4.0 mean that students scored out of one, two, or

Information 2021, 12, 424 10 of 14

three full SOLO scores of responses for EXPL. According to Tables 1 and 2, a full SOLO
score of program comprehension indicates that a novice programmer can read the code
reasonably and systematically and extract their objectives. Expert programmers were
good at presenting their program summaries by concentrating on both language-level
concepts and problem domain-level concepts [41]. Thus, these results imply that the roles
of variables can help the novice read several lines codes and integrate them into a coherent
structure [33] like an expert.

This research show that instead of using the classic case-based teaching method
focusing on programming language syntax and semantics or example programs, the
teacher might utilize the roles visualization and program explaining to teach the student
programming language knowledge about C language. There was no significant difference
in their scores of TFQ and MCQ between the experimental and control groups. We did
not expect this result. In addition to the C language programming, in the case of the same
length of time, the students from the experimental group also needed to learn the concept
of the roles of variables. Identifying the roles of variables and following program execution
are not easy tasks for novice programmers, so students need to devote more time to learn
about the roles of variables. The following reasons might be involved to explain this result.
Firstly, visualizing roles information improved the learning of the programming language
knowledge about C language. In this research, the role-based animations by the PlanAni
system were adopted to help the novice learn the concept of the roles of variables. Roles
of variables, on the other hand, are related to programming language knowledge, and
they always be instructed with example programs. By understanding the operation and
adoption of the roles of variables, the novice can know what a variable is, and how it is
used in a program. For example, by watching the animation of stepper and learning the
concept of stepper, the novice can know what the loop structure is and how it works in a
program. Comparing to the learning with the text only, visualizing the loop structure by the
role-based animation is more effective. This opinion supports that visualization techniques
can motivate students to engage in programming and help them learn significantly more
programming concepts [2,42].

Secondly, program explaining assisted the novice in learning the programming lan-
guage knowledge about C language. Programming learning is highly complex, including
acquiring programming knowledge and developing programming skills [43]. Even at the
level of computer literacy, it requires the construction of conceptual knowledge and the
structuring of basic operations (such as loops, conditional statements, etc.) into schema and
plans. In this research, experimental group students were required to list all roles in their
homework. In the laboratory exercise, participants were asked to learn conceptual program
knowledge by reasoning and to explain the roles of variables. Some studies reported
that program explaining and reasoning could significantly improve novice programmers’
understanding of abstract program language concepts [44,45].

Furthermore, this article implies that the grade and SOLO taxonomy can effectively
evaluate the educational achievement as long as the assessment model is appropriate.
Programming is a complex cognitive process. A teacher must select the appropriate
educational assessment tools to accurately evaluate students’ learning achievements and
conduct the programming teaching work efficiently during the course. In this research, we
noticed that the effects of the role-based teaching method can be reflected not only by either
the SOLO level of program comprehension but also by the accuracy of program debugging
and program explaining. This finding suggests that, during the learning proceeding, the
teacher can use the SOLO category to analyze students’ level of program comprehension,
helping them design a personalized learning path.

Meanwhile, the teacher can also employ the final scores for program comprehension
to test the ability of the novice to understand programs. This finding stands on the
opposite side of [33], which reported that students’ grades could not improve program
comprehension by the role-based teaching. The following reason can be used to make our
results sense. Grading was found to reflect teachers’ expectations of “quality” answers [33].

Information 2021, 12, 424 11 of 14

Based on these results, we can conclude that the roles of variables provide scaffolding
to assist novice undergraduate programmer comprehension with case-based teaching
effectively. The SOLO taxonomy can be used to assess the ability of the novice to understand
a program.

6. Conclusions and Recommendations
6.1. Conclusions

Learning program comprehension is a big challenge to novice programmers. Our
findings demonstrate that the roles of variables can significantly improve the novice pro-
grammer’s comprehension of C language with the case-based teaching method. Data
analysis suggests that the improvement contributes to the SOLO level of program com-
prehension, debugging scores, and explaining scores, but no programming language
knowledge scores.

Meanwhile, this study shows:
(1) The roles visualization and program explaining can play in teaching the student

programming language knowledge instead of focusing on programming language syntax
and semantics.

(2) Students with role-based teaching tend to present relational responses to program
comprehension, making them compile complex programs like experienced programmers.

6.2. Recommendations

In this section, we present some practical suggestions on roles of variables.
A teacher can directly employ the SOLO categories and PlanAni system adopted in this

study to teach novice programmers C language learning. However, the roles of variables
in other programming should be reorganized and designed because the programming
knowledge, especially in the operation of variables, is very different [4]. Case programs
should be carefully selected to cover all roles of variables.

The latest study shows that the home language has an effect on enhancing outcomes
of programming learning. We suggest that a teacher can translate the definition of roles
and variables into the home language [2].

In this study, all teachers agree that the more general the answer to program explaining
is, the higher the ability. Thus, teachers in our study gave better grades for superior
program comprehension skills. We think that the SOLO taxonomy can be utilized to
evaluate students’ ability to deploy relational reason in the other subjects. Therefore, we
extended the SOLO categories for relational reasoning as shown in Table 8.

Table 8. SOLO categories for relational reasoning tasks.

SOLO Category Description

Relational (R) Students associate the concept/process and combine them into relevant
conclusions (the forest)

Relational Error (RE) Students associate the concept/process and combine them into relevant
conclusions, but with some minor errors

Multistructural (M) Students use the concept/process, but find no relationship between the
information, so the conclusions are irrelevant (the trees)

Other (O) Any other description of part or all of the concept/process, displaying
no real evidence of understanding of the piece of information

7. Limitations and Future Work

One of the major limitations in the present study is that we did not measure the
program comprehension using web-based learning. Web-based programming learning
will pressure students and discourage novice programmers due to its poor interactivity [2].
The cognitive loads of programming learning placed by web-based learning are higher
than by face-2-face teaching. Future work could conduct such experiments to examine the
effectiveness of the roles of variables.

Information 2021, 12, 424 12 of 14

Another limitation of our research is the number of paper-and-pencil tests. We only
carried out one final paper-and-pencil test. Therefore, our findings cannot measure the
dynamic effectiveness of improving novice programmers’ program comprehension. Future
work could increase the times of trials to test the effectiveness of the roles of variables in
the different stages of programming learning.

Funding: This research was funded by RESEARCH AND PRACTICE PROJECT OF HIGHER EDU-
CATION TEACHING REFORM OF HENAN PROVINCE, CHINA, grant number 2019SJGLX457.

Acknowledgments: The author would like to thank the anonymous reviewers for their valuable
feedback. They also thank Yajun Pang for her English proofreading and assistance with data collection.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Kuittinen, M.; Sajaniemi, J. Teaching roles of variables in elementary programming courses. SIGCSE Bull. 2004, 36, 57–61.

[CrossRef]
2. Prasad, A.; Chaudhary, K.; Sharma, B. Programming skills: Visualization, interaction, home language and problem solving. Educ.

Inf. Technol. 2021. Available online: https://link.springer.com/article/10.1007/s10639-021-10692-z?utm_source=xmol&utm_
medium=affiliate&utm_content=meta&utm_campaign=DDCN_1_GL01_metadata (accessed on 13 October 2021). [CrossRef]

3. Shi, N.; Min, Z.; Zhang, P. Effects of visualizing roles of variables with animation and IDE in novice program construction. Telemat.
Inform. 2017, 34, 743–754. [CrossRef]

4. Papadakis, S. Evaluating a Teaching Intervention for Teaching STEM and Programming Concepts Through the Creation of a
Weather-Forecast App for Smart Mobile Devices. In Handbook of Research on Tools for Teaching Computational Thinking in P-12
Education; IGI Global: Hershey, PA, USA, 2020; pp. 31–53.

5. Corney, M.; Lister, R.; Teague, D. Early relational reasoning and the novice programmer: Swapping as the “hello world” of
relational reasoning. In Proceedings of the Thirteenth Australasian Computing Education Conference, Perth, Australia, 17–20
January 2011; pp. 95–104.

6. Kohn, T. Variable Evaluation: An Exploration of Novice Programmers’ Understanding and Common Misconceptions. In
Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science Education, Seattle, WA, USA, 8–11 March
2017; pp. 345–350.

7. Algaraibeh, S.M.; Dousay, T.A.; Jeffery, C.L. Integrated Learning Development Environment for Learning and Teaching C/C++
Language to Novice Programmers. In Proceedings of the 2020 IEEE Frontiers in Education Conference (FIE), Uppsala, Sweden,
21–24 October 2020; pp. 1–5.

8. Raj, A.G.S.; Gu, P.; Zhang, E.; Williams, J.; Halverson, R.; Patel, J.M. Live-coding vs Static Code Examples: Which is better with
respect to Student Learning and Cognitive Load? In Proceedings of the Twenty-Second Australasian Computing Education
Conference, Melbourne, Australia, 4–6 February 2020; pp. 152–159.

9. Shrestha, N.; Botta, C.; Barik, T.; Parnin, C. Here we go again: Why is it difficult for developers to learn another programming
language? In Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering (ICSE), Seoul, Korea,
5–11 October 2020; pp. 691–701.

10. Whalley, J.L.; Lister, R.; Thompson, E.; Clear, T.; Robbins, P.; Kumar, P.K.A.; Prasad, C. An australasian study of reading and
comprehension skills in novice programmers, using the bloom and SOLO taxonomies. In Proceedings of the 8th Australasian
Conference on Computing Education, Hobart, Australia, 16–19 January 2006; pp. 243–252.

11. Shargabi, A.A.; Aljunid, S.A.; Annamalai, M.; Zin, A.M. Performing tasks can improve program comprehension mental model of
novice developers: An empirical approach. In Proceedings of the 28th International Conference on Program Comprehension,
Seoul, Korea, 13–15 June 2020; pp. 263–273.

12. Bonney, K.M. Case study teaching method improves student performance and perceptions of learning gains. J. Microbiol. Biol.
Educ. 2015, 16, 21–28. [CrossRef] [PubMed]

13. Gravett, S.; de Beer, J.; Odendaal-Kroon, R.; Merseth, K.K. The affordances of case-based teaching for the professional learning of
student-teachers. J. Curric. Stud. 2016, 49, 1–22. [CrossRef]

14. Shi, N.; Cui, W.; Zhang, P.; Sun, X. Evaluating the effectiveness roles of variables in the novice programmers learning. J. Educ.
Comput. Res. 2018, 56, 181–201. [CrossRef]

15. Merseth, K.K. The early history of case-based instruction: Insights for teacher education today. J. Teach. Educ. 1991, 42, 243–249.
[CrossRef]

16. Flynn, A.E.; Klein, J.D. The influence of discussion groups in a case-based learning environment. Educ. Technol. Res. Dev. 2001, 49,
71–86. [CrossRef]

17. Baker, E.B.A. Multimedia case-based instruction in literacy: Pedagogy, effectiveness, and perceptions. J. Educ. Multimed. Hypermedia
2009, 18, 249–266.

18. Luo, H. Applying the case-based method in designing self-directed online instruction. Diss. ALL 2015, 254. Available online:
https://surface.syr.edu/cgi/viewcontent.cgi?article=1254&context=etd (accessed on 13 October 2021).

http://doi.org/10.1145/1026487.1008014
https://link.springer.com/article/10.1007/s10639-021-10692-z?utm_source=xmol&utm_medium=affiliate&utm_content=meta&utm_campaign=DDCN_1_GL01_metadata
https://link.springer.com/article/10.1007/s10639-021-10692-z?utm_source=xmol&utm_medium=affiliate&utm_content=meta&utm_campaign=DDCN_1_GL01_metadata
http://doi.org/10.1007/s10639-021-10692-z
http://doi.org/10.1016/j.tele.2017.02.005
http://doi.org/10.1128/jmbe.v16i1.846
http://www.ncbi.nlm.nih.gov/pubmed/25949753
http://doi.org/10.1080/00220272.2016.1149224
http://doi.org/10.1177/0735633117707312
http://doi.org/10.1177/002248719104200402
http://doi.org/10.1007/BF02504916
https://surface.syr.edu/cgi/viewcontent.cgi?article=1254&context=etd

Information 2021, 12, 424 13 of 14

19. Marks, J.; Freeman, W.; Leitner, H. Teaching applied computing without programming: A case-based introductory course for
general education. SIGCSE Bull. 2001, 33, 80–84. [CrossRef]

20. Liu, G.; Yang, Q.; Fan, R. Application of case-based teaching in higher vocational computer courses—A case study of delphi
programming. In Proceedings of the 2nd International Conference on Soft Computing in Information Communication Technology,
Taipei, China, 31 May–1 June 2014; Atlantis Press: Taipei, China, 2014.

21. Chang, C.-S.; Chung, C.-H.; Chang, J.A. Influence of problem-based learning games on effective computer programming learning
in higher education. Educ. Technol. Res. Dev. 2020, 68, 2615–2634. [CrossRef]

22. Veerasamy, A.K.; D’Souza, D.; Lindén, R.; Laakso, M.J. Relationship between perceived problem-solving skills and academic
performance of novice learners in introductory programming courses. J. Comput. Assist. Learn. 2019, 35, 246–255. [CrossRef]

23. Apeanti, W.O.; Essel, D.D. Learning Computer Programming Using Project-Based Collaborative Learning: Students’ Experiences,
Challenges and Outcomes. Int. J. Innov. Educ. Res. 2021, 9. [CrossRef]

24. Demetriadis, S.; Pombortsis, A. Novice student learning in case based hypermedia environment: A quantitative study. J. Educ.
Multimed. Hypermedia 1999, 8, 241–269.

25. Cheah, C.S. Factors contributing to the difficulties in teaching and learning of computer programming: A literature review.
Contemp. Educ. Technol. 2020, 12, ep272. [CrossRef]

26. Mathew, R.; Malik, S.I.; Tawafak, R.M. Teaching Problem Solving Skills using an Educational Game in a Computer Programming
Course. Inform. Educ. 2019, 18, 359–373. [CrossRef]

27. Robins, A.V. 12 Novice Programmers and Introductory Programming. In the Cambridge Handbook of Computing Education
Research. 2019, p. 327. Available online: https://www.cambridge.org/core/books/abs/cambridge-handbook-of-computing-
education-research/novice-programmers-and-introductory-programming/0CEDFE1B121198D3FB5F1541EBE3DCAD (accessed
on 13 October 2021).

28. Bosse, Y.; Gerosa, M.A. Why is programming so difficult to learn? Patterns of Difficulties Related to Programming Learning
Mid-Stage. ACM SIGSOFT Softw. Eng. Notes 2017, 41, 1–6. [CrossRef]

29. Sajaniemi, J. An Empirical Analysis of Roles of Variables in Novice-Level Procedural Programs. In Proceedings of the IEEE 2002
Symposia on Human Centric Computing Languages and Environments, Washington, DC, USA, 3–6 September 2002; pp. 37–39.

30. Sajaniemi, J.; Kuittinen, M. Visualizing roles of variables in program animation. Inf. Vis. 2004, 3, 137–153. [CrossRef]
31. Byckling, P.; Sajaniemi, J. Roles of variables and programming skills improvement. SIGCSE Bull. 2006, 38, 413–417. [CrossRef]
32. Al-Barakati, N.M.; Al-Aama, A.Y. The effect of visualizing roles of variables on student performance in an introductory

programming course. SIGCSE Bull. 2009, 41, 228–232. [CrossRef]
33. Sajaniemi, J.; Kuittinen, M. An experiment on using roles of variables in teaching introductory programming. Comput. Sci. Educ.

2005, 15, 59–82. [CrossRef]
34. Clear, T.; Whalley, J.; Lister, R.; Carbone, A.; Hu, M.; Sheard, J.; Simon, B.; Thompson, E. Reliably classifying novice programmer

exam responses using the SOLO taxonomy. In Proceedings of the 21st Annual Conference of the National Advisory Committee
on Computing Qualifications, Auckland, New Zealand, 4–7 July 2008; pp. 23–30.

35. Lister, R.; Clear, T.; Simon; Bouvier, D.J.; Carter, P.; Eckerdal, A.; Jacková, J.; Lopez, M.; McCartney, R.; Robbins, P.; et al. Naturally
occurring data as research instrument: Analyzing examination responses to study the novice programmer. SIGCSE Bull. 2010, 41,
156–173. [CrossRef]

36. Sheard, J.; Carbone, A.; Lister, R.; Simon, B.; Thompson, E.; Whalley, J.L. Going SOLO to assess novice programmers. In
Proceedings of the 13th Annual Conference on Innovation and Technology in Computer Science Education, Madrid, Spain,
30 June–2 July 2008; pp. 209–213.

37. Lister, R.; Simon, B.; Thompson, E.; Whalley, J.L.; Prasad, C. Not seeing the forest for the trees: Novice programmers and the
SOLO taxonomy. SIGCSE Bull. 2006, 38, 118–122. [CrossRef]

38. Seiter, L. Using SOLO to Classify the Programming Responses of Primary Grade Students. In Proceedings of the 46th ACM
Technical Symposium on Computer Science Education, Kansas, MO, USA, 4–7 March 2015; pp. 540–545.

39. Izu, C.; Schulte, C.; Aggarwal, A.; Cutts, Q.; Duran, R.; Gutica, M.; Heinemann, B.; Kraemer, E.; Lonati, V.; Mirolo, C. Fostering
program comprehension in novice programmers-learning activities and learning trajectories. In Proceedings of the Working
Group Reports on Innovation and Technology in Computer Science Education, Aberdeen, UK, 15–17 July 2019; pp. 27–52. Avail-
able online: https://research.aalto.fi/en/publications/fostering-program-comprehension-in-novice-programmers-learning-ac
(accessed on 13 October 2021).

40. Sajaniemi, J. Role List for Students (v2,C). Available online: http://www.cs.uef.fi/papges/saja/var_roles/stud_vers/stud_C_
eng.html (accessed on 13 October 2021).

41. Pennington, N. Comprehension strategies in programming. In Empirical Studies of Programmers: Second Workshop; Olson, G.M.,
Sheppard, S., Soloway, E., Eds.; Ablex Publishing Corporation: Norwood, NJ, USA, 1987; pp. 100–113.

42. Kumar, A.N. The Effectiveness of Visualization for Learning Expression Evaluation: A Reproducibility Study. In Proceedings
of the 2016 ACM Conference on Innovation and Technology in Computer Science Education, Arequipa, Peru, 11–13 July 2016;
pp. 192–197.

43. Rogalski, J.; Samurçay, R. Acquisition of Programming Knowledge and Skills. In Psychology of Programming; Hoc, J.M., Green,
T.R.G., Samurçay, R., Gillmore, D.J., Eds.; Academic Press: London, UK, 1990; pp. 157–174.

http://doi.org/10.1145/366413.364547
http://doi.org/10.1007/s11423-020-09784-3
http://doi.org/10.1111/jcal.12326
http://doi.org/10.31686/ijier.vol9.iss8.3278
http://doi.org/10.30935/cedtech/8247
http://doi.org/10.15388/infedu.2019.17
https://www.cambridge.org/core/books/abs/cambridge-handbook-of-computing-education-research/novice-programmers-and-introductory-programming/0CEDFE1B121198D3FB5F1541EBE3DCAD
https://www.cambridge.org/core/books/abs/cambridge-handbook-of-computing-education-research/novice-programmers-and-introductory-programming/0CEDFE1B121198D3FB5F1541EBE3DCAD
http://doi.org/10.1145/3011286.3011301
http://doi.org/10.1057/palgrave.ivs.9500075
http://doi.org/10.1145/1124706.1121470
http://doi.org/10.1145/1595496.1562949
http://doi.org/10.1080/08993400500056563
http://doi.org/10.1145/1709424.1709460
http://doi.org/10.1145/1140123.1140157
https://research.aalto.fi/en/publications/fostering-program-comprehension-in-novice-programmers-learning-ac
http://www.cs.uef.fi/papges/saja/var_roles/stud_vers/stud_C_eng.html
http://www.cs.uef.fi/papges/saja/var_roles/stud_vers/stud_C_eng.html

Information 2021, 12, 424 14 of 14

44. Kumar, A.N. A Study of the Influence of Code-Tracing Problems on Code-Writing Skills. In Proceedings of the 18th ACM
Conference on Innovation and Technology in Computer Science Education, Canterbury, UK, 1–3 July 2013; pp. 183–188.

45. Busjahn, T.; Schulte, C. The use of Code Reading in Teaching Programming. In Proceedings of the 13th Koli Calling International
Conference on Computing Education Research, Koli, Finland, 14–17 November 2013; pp. 3–11.

	Introduction
	Literature Review
	Case-Based Teaching
	Roles of Variables
	SOLO Taxonomy for Program Comprehension
	PlanAni System

	Research Method
	Participants
	Instruments
	Procedure
	Data Collection

	Results and Findings
	Discussion
	Conclusions and Recommendations
	Conclusions
	Recommendations

	Limitations and Future Work
	References

